1.Administration of a single chain variable fragments chimeric protein (SD) of ovalbumin epitopes internalizing receptor DEC-205 antibody inhibits food allergy in mice.
Chong WAN ; Meiying WU ; Yuqing ZHANG ; Junwei SHAO ; Qingqing LUO ; Jiyu JU ; Lingzhi XU
Chinese Journal of Cellular and Molecular Immunology 2023;39(5):391-396
Objective To investigate the preventive therapeutic effect and possible mechanism of single chain variable fragments chimeric protein (SD) of ovalbumin epitopes internalizing receptor DEC-205 antibody on food allergy in mice. Methods Mice were randomly divided to five groups (control, PBS, scFv DEC 100 μg, SD 50 μg, SD 100 μg) and treated for 24 hours before OVA administration. After challenge, the serum level of OVA-specific IgE, IgG1, IgG2a and IL-4 were detected by ELISA. Infiltration of eosinophils and mast cells in the jejunum was observed by HE staining and toluidine blue staining respectively. The bone marrow of tibia and femur was isolated and cultured to obtain immature dendritic cells(BMDCs), which were further treated with LPS (10 ng/mL), TSLP (50 ng/mL), scFv DEC protein (1000 ng/mL) and SD protein (10,100,1000)ng/mL for 24 hours, and the IL-10 level of supernatant was assayed by ELISA. Results Compared with PBS group, the number of SD-treated mice with diarrhea was markedly reduced. The difference in rectal temperature and the levels of serum OVA-specific IgE, IgG1, IgG2a and IL-4 decreased significantly after prophylactic administration of SD; The number of eosinophils and mast cells in jejunum also decreased significantly while the IL-10 level in the supernatant of BMDCs increased significantly after SD intervention. Conclusion SD mitigates experimental FA response by fosters the immune tolerance property of dendritic cells.
Mice
;
Animals
;
Ovalbumin
;
Interleukin-10
;
Single-Chain Antibodies/genetics*
;
Immunoglobulin E
;
Epitopes/therapeutic use*
;
Interleukin-4
;
Food Hypersensitivity/prevention & control*
;
Immunoglobulin G
;
Recombinant Fusion Proteins/genetics*
;
Mice, Inbred BALB C
;
Disease Models, Animal
2.Preparation of mouse monoclonal antibodies against human adenovirus 55 Hexon (HAdV55 Hexon) protein.
Ruodong YUAN ; Yangchao DONG ; Fuxing WU ; Tian DUAN ; Pan XUE ; Jian ZHANG ; Mingcheng YUAN ; Zhifeng XUE ; Haijun ZHANG ; Qianqian ZHANG ; Xiaopeng GAO ; Yingfeng LEI
Chinese Journal of Cellular and Molecular Immunology 2023;39(6):544-551
Objective To prepare specific mouse monoclonal antibody (mAb) against human adenovirus type 55 Hexon protein (HAdV55 Hexon). Methods The Hexon genes of HAdV55, 3, 4, 7, 16 and 21 were chemically synthesized as templates for PCR amplification. The prokaryotic expression plasmids pET28a-HAdV55 Hexon and eukaryotic expression plasmids pCAGGS-HAdV3, 4, 7, 16, 21 and 55 Hexon were constructed respectively. The pET28a-HAdV55 Hexon plasmid was transformed into E. coli competent cell BL21 (DE3) and was induced by IPTG. After the purified inclusion body was denatured and renatured, Hexon55 protein was purified by tangential flow filtration system. pCAGGS-HAdV55 Hexon was used to immunize BALB/c mice by cupping, and HAdV55 Hexon protein was used to booster immunization. The anti-HAdV55 Hexon mAb was prepared by hybridoma technique and the titer and subclass were determined. The specificity of antibody was identified by Western blot using HEK293T cells transfected with pCAGGS-HAdV55 Hexon and by immunofluorescence assay (IFA) using BHK cells transfected with pCAGGS-HAdV55 Hexon. Both clones with high titer were selected, and the cross-reactivity of pCAGGS-HAdV3, 4, 7, 16, 21 and 55 Hexon transfected cells were analyzed by Western blot analysis and IFA. Results PET28a-HAdV55 Hexon and pCAGGS-HAdV55 Hexon, 3, 4, 7, 16 and 21 expression plasmids were successfully constructed. BL21 transformed with pET28a-HAdV55 Hexon was induced by IPTG. The HAdV55 Hexon protein was mainly expressed in the form of inclusion body. After denaturation and renaturation, the purified HAdV55 Hexon protein was obtained by ultrafiltration. Six hybridoma cell lines secreting HAdV55 Hexon mAb were obtained. The antibody subclass analysis showed that 2 strains were IgG2a subtypes and 4 strains were IgG2b. Two specific HAdV55 Hexon antibodies with high titer were obtained, and there was no cross-reactivity with HAdV3, 4, 7, 16, 21 Hexon. Conclusion The specific mice mAb against HAdV55 Hexon provides an experimental basis for establishing its antigen detection method.
Animals
;
Mice
;
Humans
;
Adenoviruses, Human/genetics*
;
Escherichia coli/genetics*
;
HEK293 Cells
;
Isopropyl Thiogalactoside
;
Blotting, Western
;
Immunoglobulin G
;
Antibodies, Monoclonal
;
Antibody Specificity
;
Mice, Inbred BALB C
3.Clonotypic analysis of immunoglobulin heavy chain sequences among 44 patients with Waldenström macroglobulinemia.
Jing TANG ; Yi XIA ; Hua YIN ; Li WANG ; Jiazhu WU ; Ruize CHEN ; Jinhua LIANG ; Huayuan ZHU ; Lei FAN ; Jianyong LI ; Wei XU
Chinese Journal of Medical Genetics 2023;40(3):263-268
OBJECTIVE:
To analyze the correlation between the mutational status of immunoglobulin heavy chain variable (IGHV) gene with the prognosis of patients with Waldenström macroglobulinemia (WM).
METHODS:
Immunoglobulin heavy chain gene (IGH) clonotypic sequence analysis was carried out to assess the mutational status of IGHV in the blood and/or bone marrow samples from 44 WM patients. The usage characteristics of IGHV-IGHD-IGHJ gene was explored.
RESULTS:
The most common IGHV subgroup was IGHV3, which was similar to the data from the Institute of Hematology of Chinese Academy of Medical Science. IGHV3-23 (20.45% vs. 15.44%) and IGHV3-74 (11.36% vs. 7.35%) were the main fragments used, which was followed by IGHV4 gene family (15.91% vs. 24.26%). However, no significant correlation was found between the IGHV4 usage and the prognosis of the patients. Should 98% be taken as the cut-off value for the IGHV mutation status, only 5 patients had no IGHV variant, and there was no correlation with the prognosis. Based on the X-tile analysis, 92.6% was re-selected as the cut-off value for the IGHV variant status in such patients. LDH was increased in 26 patients (59.1%) without IGHV variant (P < 0.05), whilst progression-free survival (P < 0.05) and overall survival (P < 0.05) were significantly shorter compared with those with IGHV variants.
CONCLUSION
The usage characteristics of IGHV-IGHD-IGHJ in our patients was similar to reported by the Institute of Hematology of Chinese Academy of Medical Science, albeit that no correlation was found between the IGHV4 usage and the prognosis of the patients. Furthermore, 98% may not be appropriate for distinguishing the IGHV variant status in WM patients.
Humans
;
Immunoglobulin Heavy Chains/genetics*
;
Multigene Family
;
Mutation
;
Waldenstrom Macroglobulinemia/genetics*
4.Phage antibody library technology in tumor therapy: a review.
Xiaoyang CHEN ; Ruiheng AN ; Ju HUANG ; Youfeng LIANG ; Wenjing ZHANG ; Mingxuan HAO ; Rui GUO ; Xiaoning LI ; Yongchao LI ; Lu YING ; Zhao YANG
Chinese Journal of Biotechnology 2023;39(9):3644-3669
Tumor is a serious threat to human health. At present, surgical resection, chemoradiotherapy, targeted therapy and immunotherapy are the main therapeutic strategies. Monoclonal antibody has gradually become an indispensable drug type in the clinical treatment of cancer due to its high efficiency and low toxicity. Phage antibody library technology (PALT) is a novel monoclonal antibody preparation technique. The recombinant immunoglobulin variable region of heavy chain (VH)/variable region of light chain (VL) gene is integrated into the phage vector, and the antibody is expressed on the phage surface in the form of fusion protein to obtain a diverse antibody library. Through the process of adsorption-elution-amplification, the antibody library can be screened to obtain the antibody molecule with specific binding antigen as well as its gene sequence. PALT has the advantages of short antibody production cycle, strong plasticity of antibody structure, large antibody yield, high diversity and direct production of humanized antibodies. It has been used in screening tumor markers and preparation of antibody drugs for breast cancer, gastric cancer, lung cancer and liver cancer. This article reviews the recent progress and the application of PALT in tumor therapy.
Humans
;
Bacteriophages/genetics*
;
Immunoglobulin Variable Region/genetics*
;
Gene Library
;
Antibodies, Monoclonal/therapeutic use*
;
Immunotherapy
;
Peptide Library
5.Single chain antibody fragment display systems: a review.
Yao CHEN ; Xingfu SHU ; Yu ZHAO ; Bowen ZHANG ; Zhongren MA ; Haixia ZHANG
Chinese Journal of Biotechnology 2023;39(9):3681-3694
Single chain antibody fragment (scFv) is a small molecule composed of a variable region of heavy chain (VH) and a variable region of light chain (VL) of an antibody, and these two chains are connected by a flexible short peptide. scFv is the smallest functional fragment with complete antigen-binding activity, which contains both the antibody-recognizing site and the antigen-binding site. Compared with other antibodies, scFv has the advantages of small molecular weight, strong penetration, low immunogenicity, and easy expression. Currently, the most commonly used display systems for scFv mainly include the phage display system, ribosome display system, mRNA display system, yeast cell surface display system and mammalian cell display system. In recent years, with the development of scFv in the field of medicine, biology, and food safety, they have also attracted much attention in the sectors of biosynthesis and applied research. This review summarizes the advances of scFv display systems in recent years in order to facilitate scFv screening and application.
Animals
;
Immunoglobulin Variable Region/genetics*
;
Immunoglobulin Fragments/metabolism*
;
Single-Chain Antibodies/metabolism*
;
Peptide Library
;
Mammals/genetics*
6.Preparation of HSV-IgM human-mouse chimeric antibody and development of stable recombinant cell line.
Yamin CUI ; Xiaoping TIAN ; Jingjing SUN ; Zhiqiang WANG ; Qiaohui ZHAO ; Guilin LI
Chinese Journal of Biotechnology 2023;39(9):3887-3898
In order to achieve large-scale production of HSV-IgM (HSV1, HSV2) human-mouse chimeric antibody in vitro, the gene sequence of the corresponding hybridoma cell was harvested by RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE) technique to clone the chimeric antibody into eukaryotic expression vectors, and express the target proteins in CHO-S cells. At the same time, the screening process of stable cell lines was optimized, and the pressure conditions of pool construction stage and monoclonal screening stage were explored. Finally, the target protein was purified by protein L affinity purification method and the biological activity was detected. The recombinant IgM antibodies, HSV1 and HSV2, weighted at 899 kDa and 909 kDa respectively, were prepared. The optimal screening pressure was 20P200M (the first phase of pressure) and 50P1000M (the second phase of pressure). The final titer for the monoclonal expression of HSV1-IgM and HSV2-IgM was 1 620 mg/L and 623 mg/L, respectively. This study may facilitate the development of quality control products of HSV1 and HSV2 IgM series recombinant antibodies as well as efficient expression of IgM subtype antibodies in vitro.
Cricetinae
;
Humans
;
Animals
;
Mice
;
Immunoglobulin M/genetics*
;
Antibodies, Viral
;
CHO Cells
;
Cricetulus
;
Hybridomas
;
Recombinant Fusion Proteins
7.IgG Fc binding protein (FCGBP) as a prognostic marker of low-grade glioma and its correlation analysis with immune infiltration.
Qiao LIU ; Jiarui ZHANG ; Fuqin ZHANG ; Wei ZHANG ; Li GONG
Chinese Journal of Cellular and Molecular Immunology 2023;39(8):686-692
Objective To identify the possibility of IgG Fc binding protein (FCGBP) acting as a prognostic marker of low-grade glioma (LGG) and its correlation with immune infiltration. Methods The expression of FCGBP was analyzed in pan-cancer using The Cancer Genome Atlas (TCGA), Genotypic tissue expression (GTEX), and China Glioma Genome Atlas (CGGA) database. Then, GSE15824 and GSE68848 datasets were selected for further verification. And gene expression Profile Interaction analysis (GEPIA) database and R language were used to analyze the relationship between FCGBP and survival prognosis. Metascape and GSEA were used for functional annotation and enrichment analysis. Finally, the expression of FCGBP gene in LGG immune microenvironment and its correlation with immune cells were analyzed by TIMER database. Results FCGBP was highly expressed in LGG tissues, indicating poor prognosis of LGG patients. Receiver operating characteristic (ROC) curve analysis and COX analysis showed that FCGBP was an independent risk factor for the prognosis of LGG. Moreover, Gene Ontology (GO) demonstrated that FCGBP was involved in cell metabolism, localization, positive, and negative regulation of biological processes, as well as biological adhesion, response to viral and microbial stimulation, and inflammation. GSEA pathway enrichment analysis showed that FCGBP was significantly correlated with Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway, Toll-like receptor (TLR) pathway, chemokine pathway, and P53 pathway. In addition, FCGBP expression was positively correlated with the expression of most immune cells in the immune microenvironment of LGG. Conclusion The high expression of FCGBP in LGG is a risk factor for survival and prognosis, and it is positively correlated with the expression of immune cells.
Humans
;
Prognosis
;
Glioma/genetics*
;
China
;
Gene Ontology
;
Immunoglobulin G
;
Tumor Microenvironment
;
Cell Adhesion Molecules
8.Inhibition of M2 macrophage polarization and reduction of airway inflammation in asthmatic mice with lncRNA MRAK088388 knockout.
Weiwei SHE ; Tianshou SUN ; Chengfeng LONG ; Meiyu CHEN ; Xu CHEN ; Qinxue LIAO ; Mingdong WANG ; Wei CAO
Chinese Journal of Cellular and Molecular Immunology 2023;39(9):777-786
Objective To investigate the long non-coding RNA(lncRNA) MRAK08838 regulates macrophage function to influence the development of asthmatic airway inflammation. Methods MRAK088388 gene knockout (MRAK088388-/-) mouse model was prepared and allergic asthma was induced by dust mite protein Dermatophagoides farinae 1 (Der f1). The mice were sacrificed after 28 days of modeling, and serum was collected to measure IgE and IgG. The FinePointe RC system was used to measure airway hyperresponsiveness and evaluate lung function in mice. Lung tissue was taken for HE staining, and periodic acid-Schiff (PAS) staining was used to evaluate inflammatory infiltration and mucus secretion in mouse lungs. Fluorescence quantitative PCR was used to detect the expression level of lncRNA MRAK08838 in bronchoalveolar lavage fluid (BALF) cells and lung tissue of asthmatic mice. ELISA was used to detect the levels of inflammatory cytokines IFN-γ, IL-4, IL-5, IL-13, IL-10 and IL-17A. Flow cytometry was used to evaluate the phenotype of macrophages in BALF and lung tissue, as well as the proportion of neutrophils, eosinophils, and alveolar macrophages. The changes of the above indicators were detected in mice by adoptive transfer of bone marrow-derived macrophages (BMDM). Results Under the challengle of Der f1, MRAK088388-/- mice showed reduced allergic airway inflammation, including reduced eosinophils in BALF and reduced production of IgE and IgG1. In addition, Der f1-treated MRAK088388-/- mice had fewer M2 macrophages than wild-type asthmatic mice. Wild-type mouse BMDM (M0) and Der f1-treated MRAK088388-/- mice also showed mild inflammatory response. Conclusion Knockout of MRAK088388 alleviates airway inflammation in asthmatic mice by inhibiting M2 polarization of airway macrophages.
Animals
;
Mice
;
Mice, Knockout
;
RNA, Long Noncoding/genetics*
;
Asthma/genetics*
;
Macrophages
;
Immunoglobulin E
9.Salidroside improves intestinal mucosal immune status of rats under compound stress of hypoxia and training via inhibiting TLR4/NF-κB signaling pathway.
Qin XU ; Hongyan PENG ; Yongmei ZHAO ; Tuolihanayi TUOLIKEN ; Wendong BAI
Chinese Journal of Cellular and Molecular Immunology 2023;39(9):801-806
Objective To investigate the effect of salidroside on intestinal mucosal immune status in rats under compound stress of hypoxia and training (HTCS) and the mechanism. Methods SD rats were randomly divided into HTCS model group (model), placebo group (placebo) and salidroside group (salidro). Model group received no intervention, and placebo and salidro group received intraperitoneal injection of normal saline and salidroside, respectively. Then, ileum tissue of rats were collected and the intestinal damage was assayed by HE staining and Chiu scores. Intestinal permeability indices, including serum D-diamine oxidase (DAO), D-lactic acid (DLA) and endotoxin (END) and secretory immunoglobulin A (sIgA) of intestinal tissue were detected by ELISA. T lymphocyte subsets of intestinal tissue were detected by flow cytometry. Expression of tight junction molecules, including ZO-1, Claudin-3, occluding, were detected by PCR and western blot. Activation of TLR4/NF-κB signaling pathway was detected by Western blot analysis. Results Compared with model group and placebo group, salidro group had the decreased intestinal mucosal injury and low Chiu score, and the level of intestinal permeability indices including serum DAO, DLA and END fell off. CD4+ T cell percentage, CD4+/CD8+ ratio and sIgA level were went up, while CD8+ T cell percentage was went down. mRNA and the level of protein expressions of ZO-1, claudin-3 and occludin increased, while activation of TLR4/NF-κB signaling pathway was inhibited. Conclusion Salidroside can alleviate the intestinal barrier injury and improve intestinal mucosal immune status of rats under compound stress of hypoxia and training via inhibiting TLR4/NF-κB signalling pathway.
Animals
;
Rats
;
Rats, Sprague-Dawley
;
NF-kappa B
;
Toll-Like Receptor 4/genetics*
;
Claudin-3
;
Hypoxia
;
Immunoglobulin A, Secretory
;
Signal Transduction
10.Research advances in the etiology and pathogenesis of immunoglobulin A vasculitis.
Reaila JIANATI ; Xi-Xi LIU ; Xue-Jun ZHU
Chinese Journal of Contemporary Pediatrics 2023;25(12):1287-1292
Immunoglobulin A vasculitis (IgAV), also known as Henoch-Schönlein purpura, has complex etiology and pathogenesis which have not been fully clarified. The latest research shows that SARS-CoV-2 and related vaccines, human papilloma vaccine, and certain biological agents can also induce IgAV. Most studies believe that the formation of galactose-deficient IgA1 (Gd-IgA1) and Gd-IgA1-containing immune complex plays a crucial role in the pathogenesis of IgAV. It is hypothesized that the pathogenesis of IgAV is associated with the binding of IgA1 to anti-endothelial cell antibodies. In addition, genetics also constitutes a major focus of IgAV research. This article reviews the new advances in the etiology of IgAV and summarizes the role of Gd-IgA1, Gd-IgA1-containing immune complex, anti-endothelial antibody, IgA1 conjugates, T lymphocyte immunity, and genetic factors in the pathogenesis of IgAV.
Humans
;
IgA Vasculitis
;
Antigen-Antibody Complex
;
Immunoglobulin A/genetics*

Result Analysis
Print
Save
E-mail