1.Genome Characterization of Streptococcus mitis KHUD 011 Isolated from the Oral Microbiome of a Healthy Korean Individual
Eun-Young JANG ; Doyun KU ; Seok Bin YANG ; Cheul KIM ; Jae-Hyung LEE ; Ji-Hoi MOON
Journal of Korean Dental Science 2025;18(1):20-29
Purpose:
This study aimed to perform a genome characterization of Streptococcus mitis KHUD 011, a strain isolated from the oral microbiome of a healthy Korean individual, and to compare its genomic features with other S. mitis strains.
Materials and Methods:
The strain was identified through 16S rRNA gene sequencing, and its genome was sequenced using the PacBio Sequel II platform. De novo assembly and annotation were performed, followed by comparative genomic analysis with three additional strains (S. mitis NCTC 12261, S022-V3-A4, and B6). Pan-genome and phylogenetic analyses were conducted to identify strain-specific genes and assess inter-strain genomic diversity.
Results:
The genome of S. mitis KHUD 011 consisted of 1,782 protein-coding genes, with a G+C content of 40.24%. Pan-genome analysis identified 1,263 core gene clusters (50.0%), 496 dispensable clusters (19.7%), and 763 strain-specific clusters (30.3%). KHUD 011 displayed 88 strain-specific genes, particularly associated with cell wall/membrane biogenesis, transcriptional regulation, and carbohydrate metabolism. Phylogenetic analysis placed KHUD 011 closely with NCTC 12261, forming a distinct cluster apart from other strains.
Conclusion
The genome characterization of S. mitis KHUD 011 underscores substantial inter-strain genomic diversity influenced by host interactions, ecological niches, and health status. The identified strain-specific genes, particularly those associated with cell wall/ membrane biogenesis, transcriptional regulation, and carbohydrate metabolism, suggest adaptations to the oral microbiome and its interaction with the host. These findings highlight the ecological versatility of S. mitis and the importance of exploring strains from diverse environments to better understand their role within the host and the broader microbiome.
2.Factors Associated with Postoperative Recurrence in Stage I to IIIA Non–Small Cell Lung Cancer with Epidermal Growth Factor Receptor Mutation: Analysis of Korean National Population Data
Kyu Yean KIM ; Ho Cheol KIM ; Tae Jung KIM ; Hong Kwan KIM ; Mi Hyung MOON ; Kyongmin Sarah BECK ; Yang Gun SUH ; Chang Hoon SONG ; Jin Seok AHN ; Jeong Eun LEE ; Jae Hyun JEON ; Chi Young JUNG ; Jeong Su CHO ; Yoo Duk CHOI ; Seung Sik HWANG ; Chang Min CHOI ; Seung Hun JANG ; Jeong Uk LIM ;
Cancer Research and Treatment 2025;57(1):83-94
Purpose:
Recent development in perioperative treatment of resectable non–small cell lung cancer (NSCLC) have changed the landscape of early lung cancer management. The ADAURA trial has demonstrated the efficacy of adjuvant osimertinib treatment in resectable NSCLC patients; however, studies are required to show which subgroup of patients are at a high risk of relapse and require adjuvant epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor treatment. This study evaluated risk factors for postoperative relapse among patients who underwent complete resection.
Materials and Methods:
Data were obtained from the Korean Association for Lung Cancer Registry (KALC-R), a database created using a retrospective sampling survey by the Korean Central Cancer Registry (KCCR) and the Lung Cancer Registration Committee.
Results:
A total of 3,176 patients who underwent curative resection was evaluated. The mean observation time was approximately 35.4 months. Among stage I to IIIA NSCLC patients, the EGFR-mutant subgroup included 867 patients, and 75.2%, 11.2%, and 11.8% were classified as stage I, stage II, and stage III, respectively. Within the EGFR-mutant subgroup, 44 (5.1%) and 121 (14.0%) patients showed early and late recurrence, respectively. Multivariate analysis on association with postoperative relapse among the EGFR-mutant subgroup showed that age, pathologic N and TNM stages, pleural invasion status, and surgery type were independent significant factors.
Conclusion
Among the population that underwent complete resection for early NSCLC with EGFR mutation, patients with advanced stage, pleural invasion, or limited resection are more likely to show postoperative relapse.
3.Genome Characterization of Streptococcus mitis KHUD 011 Isolated from the Oral Microbiome of a Healthy Korean Individual
Eun-Young JANG ; Doyun KU ; Seok Bin YANG ; Cheul KIM ; Jae-Hyung LEE ; Ji-Hoi MOON
Journal of Korean Dental Science 2025;18(1):20-29
Purpose:
This study aimed to perform a genome characterization of Streptococcus mitis KHUD 011, a strain isolated from the oral microbiome of a healthy Korean individual, and to compare its genomic features with other S. mitis strains.
Materials and Methods:
The strain was identified through 16S rRNA gene sequencing, and its genome was sequenced using the PacBio Sequel II platform. De novo assembly and annotation were performed, followed by comparative genomic analysis with three additional strains (S. mitis NCTC 12261, S022-V3-A4, and B6). Pan-genome and phylogenetic analyses were conducted to identify strain-specific genes and assess inter-strain genomic diversity.
Results:
The genome of S. mitis KHUD 011 consisted of 1,782 protein-coding genes, with a G+C content of 40.24%. Pan-genome analysis identified 1,263 core gene clusters (50.0%), 496 dispensable clusters (19.7%), and 763 strain-specific clusters (30.3%). KHUD 011 displayed 88 strain-specific genes, particularly associated with cell wall/membrane biogenesis, transcriptional regulation, and carbohydrate metabolism. Phylogenetic analysis placed KHUD 011 closely with NCTC 12261, forming a distinct cluster apart from other strains.
Conclusion
The genome characterization of S. mitis KHUD 011 underscores substantial inter-strain genomic diversity influenced by host interactions, ecological niches, and health status. The identified strain-specific genes, particularly those associated with cell wall/ membrane biogenesis, transcriptional regulation, and carbohydrate metabolism, suggest adaptations to the oral microbiome and its interaction with the host. These findings highlight the ecological versatility of S. mitis and the importance of exploring strains from diverse environments to better understand their role within the host and the broader microbiome.
7.Genome Characterization of Streptococcus mitis KHUD 011 Isolated from the Oral Microbiome of a Healthy Korean Individual
Eun-Young JANG ; Doyun KU ; Seok Bin YANG ; Cheul KIM ; Jae-Hyung LEE ; Ji-Hoi MOON
Journal of Korean Dental Science 2025;18(1):20-29
Purpose:
This study aimed to perform a genome characterization of Streptococcus mitis KHUD 011, a strain isolated from the oral microbiome of a healthy Korean individual, and to compare its genomic features with other S. mitis strains.
Materials and Methods:
The strain was identified through 16S rRNA gene sequencing, and its genome was sequenced using the PacBio Sequel II platform. De novo assembly and annotation were performed, followed by comparative genomic analysis with three additional strains (S. mitis NCTC 12261, S022-V3-A4, and B6). Pan-genome and phylogenetic analyses were conducted to identify strain-specific genes and assess inter-strain genomic diversity.
Results:
The genome of S. mitis KHUD 011 consisted of 1,782 protein-coding genes, with a G+C content of 40.24%. Pan-genome analysis identified 1,263 core gene clusters (50.0%), 496 dispensable clusters (19.7%), and 763 strain-specific clusters (30.3%). KHUD 011 displayed 88 strain-specific genes, particularly associated with cell wall/membrane biogenesis, transcriptional regulation, and carbohydrate metabolism. Phylogenetic analysis placed KHUD 011 closely with NCTC 12261, forming a distinct cluster apart from other strains.
Conclusion
The genome characterization of S. mitis KHUD 011 underscores substantial inter-strain genomic diversity influenced by host interactions, ecological niches, and health status. The identified strain-specific genes, particularly those associated with cell wall/ membrane biogenesis, transcriptional regulation, and carbohydrate metabolism, suggest adaptations to the oral microbiome and its interaction with the host. These findings highlight the ecological versatility of S. mitis and the importance of exploring strains from diverse environments to better understand their role within the host and the broader microbiome.
8.Genome Characterization of Streptococcus mitis KHUD 011 Isolated from the Oral Microbiome of a Healthy Korean Individual
Eun-Young JANG ; Doyun KU ; Seok Bin YANG ; Cheul KIM ; Jae-Hyung LEE ; Ji-Hoi MOON
Journal of Korean Dental Science 2025;18(1):20-29
Purpose:
This study aimed to perform a genome characterization of Streptococcus mitis KHUD 011, a strain isolated from the oral microbiome of a healthy Korean individual, and to compare its genomic features with other S. mitis strains.
Materials and Methods:
The strain was identified through 16S rRNA gene sequencing, and its genome was sequenced using the PacBio Sequel II platform. De novo assembly and annotation were performed, followed by comparative genomic analysis with three additional strains (S. mitis NCTC 12261, S022-V3-A4, and B6). Pan-genome and phylogenetic analyses were conducted to identify strain-specific genes and assess inter-strain genomic diversity.
Results:
The genome of S. mitis KHUD 011 consisted of 1,782 protein-coding genes, with a G+C content of 40.24%. Pan-genome analysis identified 1,263 core gene clusters (50.0%), 496 dispensable clusters (19.7%), and 763 strain-specific clusters (30.3%). KHUD 011 displayed 88 strain-specific genes, particularly associated with cell wall/membrane biogenesis, transcriptional regulation, and carbohydrate metabolism. Phylogenetic analysis placed KHUD 011 closely with NCTC 12261, forming a distinct cluster apart from other strains.
Conclusion
The genome characterization of S. mitis KHUD 011 underscores substantial inter-strain genomic diversity influenced by host interactions, ecological niches, and health status. The identified strain-specific genes, particularly those associated with cell wall/ membrane biogenesis, transcriptional regulation, and carbohydrate metabolism, suggest adaptations to the oral microbiome and its interaction with the host. These findings highlight the ecological versatility of S. mitis and the importance of exploring strains from diverse environments to better understand their role within the host and the broader microbiome.
9.Factors Associated with Postoperative Recurrence in Stage I to IIIA Non–Small Cell Lung Cancer with Epidermal Growth Factor Receptor Mutation: Analysis of Korean National Population Data
Kyu Yean KIM ; Ho Cheol KIM ; Tae Jung KIM ; Hong Kwan KIM ; Mi Hyung MOON ; Kyongmin Sarah BECK ; Yang Gun SUH ; Chang Hoon SONG ; Jin Seok AHN ; Jeong Eun LEE ; Jae Hyun JEON ; Chi Young JUNG ; Jeong Su CHO ; Yoo Duk CHOI ; Seung Sik HWANG ; Chang Min CHOI ; Seung Hun JANG ; Jeong Uk LIM ;
Cancer Research and Treatment 2025;57(1):83-94
Purpose:
Recent development in perioperative treatment of resectable non–small cell lung cancer (NSCLC) have changed the landscape of early lung cancer management. The ADAURA trial has demonstrated the efficacy of adjuvant osimertinib treatment in resectable NSCLC patients; however, studies are required to show which subgroup of patients are at a high risk of relapse and require adjuvant epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor treatment. This study evaluated risk factors for postoperative relapse among patients who underwent complete resection.
Materials and Methods:
Data were obtained from the Korean Association for Lung Cancer Registry (KALC-R), a database created using a retrospective sampling survey by the Korean Central Cancer Registry (KCCR) and the Lung Cancer Registration Committee.
Results:
A total of 3,176 patients who underwent curative resection was evaluated. The mean observation time was approximately 35.4 months. Among stage I to IIIA NSCLC patients, the EGFR-mutant subgroup included 867 patients, and 75.2%, 11.2%, and 11.8% were classified as stage I, stage II, and stage III, respectively. Within the EGFR-mutant subgroup, 44 (5.1%) and 121 (14.0%) patients showed early and late recurrence, respectively. Multivariate analysis on association with postoperative relapse among the EGFR-mutant subgroup showed that age, pathologic N and TNM stages, pleural invasion status, and surgery type were independent significant factors.
Conclusion
Among the population that underwent complete resection for early NSCLC with EGFR mutation, patients with advanced stage, pleural invasion, or limited resection are more likely to show postoperative relapse.

Result Analysis
Print
Save
E-mail