1.Kernel Conversion Improves the Correlation between the Extent of Emphysema and Clinical Parameters in Chronic Obstructive Pulmonary Disease: A Multicenter Cohort Study
Tai Joon AN ; Youlim KIM ; Hyun LEE ; Hyeon-Kyoung KOO ; Naoya TANABE ; Kum Ju CHAE ; Kwang Ha YOO
Tuberculosis and Respiratory Diseases 2025;88(2):303-309
Background:
Computed tomography (CT) scans are utilized to assess emphysema, a prominent phenotype of chronic obstructive pulmonary disease (COPD). Variability in CT protocols and equipment across hospitals can impact accuracy. This study aims to implement kernel conversion across different CT settings and evaluate changes in the correlation between the emphysema index pre- and post-kernel conversion, along with clinical measures in COPD patients.
Methods:
Data were extracted from the Korea COPD Subgroup Study database, which included CT scan images from 484 COPD patients. These images underwent kernel conversion. Emphysema extent was quantified using the percentage of low-attenuation areas (%LAA-950) determined by a deep learning-based program. The correlation between %LAA-950 and clinical parameters, including lung function tests, the modified Medical Research Council (mMRC), 6-minute walking distance (6MWD), COPD assessment test (CAT), and the St. George’s Respiratory Questionnaire for COPD (SGRQ-c), was analyzed. Subsequently, these values were compared across various CT settings.
Results:
A total of 484 participants were included. Kernel conversion significantly reduced the variance in %LAA-950 values (before vs. after: 12.6±11.0 vs. 8.8±11.9). Post-kernel conversion, %LAA-950 demonstrated moderate correlations with forced expiratory volume in 1 second (r=–0.41), residual volume/total lung capacity (r=0.42), mMRC (r=0.25), CAT score (r=0.12), SGRQ-c (r=0.21), and 6MWD (r=0.15), all of which were improved compared to the unconverted dataset (all p<0.01).
Conclusion
CT images processed through kernel conversion enhance the correlation between the extent of emphysema and clinical parameters in COPD.
2.Target-Enhanced Whole-Genome Sequencing Shows Clinical Validity Equivalent to Commercially Available Targeted Oncology Panel
Sangmoon LEE ; Jin ROH ; Jun Sung PARK ; Islam Oguz TUNCAY ; Wonchul LEE ; Jung-Ah KIM ; Brian Baek-Lok OH ; Jong-Yeon SHIN ; Jeong Seok LEE ; Young Seok JU ; Ryul KIM ; Seongyeol PARK ; Jaemo KOO ; Hansol PARK ; Joonoh LIM ; Erin CONNOLLY-STRONG ; Tae-Hwan KIM ; Yong Won CHOI ; Mi Sun AHN ; Hyun Woo LEE ; Seokhwi KIM ; Jang-Hee KIM ; Minsuk KWON
Cancer Research and Treatment 2025;57(2):350-361
Purpose:
Cancer poses a significant global health challenge, demanding precise genomic testing for individualized treatment strategies. Targeted-panel sequencing (TPS) has improved personalized oncology but often lacks comprehensive coverage of crucial cancer alterations. Whole-genome sequencing (WGS) addresses this gap, offering extensive genomic testing. This study demonstrates the medical potential of WGS.
Materials and Methods:
This study evaluates target-enhanced WGS (TE-WGS), a clinical-grade WGS method sequencing both cancer and matched normal tissues. Forty-nine patients with various solid cancer types underwent both TE-WGS and TruSight Oncology 500 (TSO500), one of the mainstream TPS approaches.
Results:
TE-WGS detected all variants reported by TSO500 (100%, 498/498). A high correlation in variant allele fractions was observed between TE-WGS and TSO500 (r=0.978). Notably, 223 variants (44.8%) within the common set were discerned exclusively by TE-WGS in peripheral blood, suggesting their germline origin. Conversely, the remaining subset of 275 variants (55.2%) were not detected in peripheral blood using the TE-WGS, signifying them as bona fide somatic variants. Further, TE-WGS provided accurate copy number profiles, fusion genes, microsatellite instability, and homologous recombination deficiency scores, which were essential for clinical decision-making.
Conclusion
TE-WGS is a comprehensive approach in personalized oncology, matching TSO500’s key biomarker detection capabilities. It uniquely identifies germline variants and genomic instability markers, offering additional clinical actions. Its adaptability and cost-effectiveness underscore its clinical utility, making TE-WGS a valuable tool in personalized cancer treatment.
3.The Effect of Hematopoietic Stem Cell Transplantation on Treatment Outcome in Children with Acute Lymphoblastic Leukemia
Hee Young JU ; Na Hee LEE ; Eun Sang YI ; Young Bae CHOI ; So Jin KIM ; Ju Kyung HYUN ; Hee Won CHO ; Jae Kyung LEE ; Ji Won LEE ; Ki Woong SUNG ; Hong Hoe KOO ; Keon Hee YOO
Cancer Research and Treatment 2025;57(1):240-249
Purpose:
Hematopoietic stem cell transplantation (HSCT) has been an important method of treatment in the advance of pediatric acute lymphoblastic leukemia (ALL). The indications for HSCT are evolving and require updated establishment. In this study, we aimed to investigate the efficacy of HSCT on the treatment outcome of pediatric ALL, considering the indications for HSCT and subgroups.
Materials and Methods:
A retrospective analysis was conducted on ALL patients diagnosed and treated at a single center. Risk groups were categorized based on age at diagnosis, initial white blood cell count, disease lineage (B/T), and cytogenetic study results. Data on the patients’ disease status at HSCT and indications of HSCT were collected. Indications for HSCT were categorized as upfront HSCT at 1st complete remission, relapse, and refractory disease.
Results:
Among the 549 screened patients, a total of 418 patients were included in the study; B-cell ALL (n=379) and T-cell ALL (T-ALL) (n=39). HSCT was conducted on a total of 106 patients (25.4%), with a higher frequency as upfront HSCT in higher-risk groups and specific cytogenetics. The overall survival (OS) was significantly better when done upfront than in relapsed or refractory state in T-ALL patients (p=0.002). The KMT2A-rearranged ALL patients showed superior event-free survival (p=0.002) and OS (p=0.022) when HSCT was done as upfront treatment.
Conclusion
HSCT had a substantial positive effect in a specific subset of pediatric ALL. In particular, frontline HSCT for T-ALL and KMT2A-rearranged ALL offered a better prognosis than when HSCT was conducted in a relapsed or refractory setting.
4.Kernel Conversion Improves the Correlation between the Extent of Emphysema and Clinical Parameters in Chronic Obstructive Pulmonary Disease: A Multicenter Cohort Study
Tai Joon AN ; Youlim KIM ; Hyun LEE ; Hyeon-Kyoung KOO ; Naoya TANABE ; Kum Ju CHAE ; Kwang Ha YOO
Tuberculosis and Respiratory Diseases 2025;88(2):303-309
Background:
Computed tomography (CT) scans are utilized to assess emphysema, a prominent phenotype of chronic obstructive pulmonary disease (COPD). Variability in CT protocols and equipment across hospitals can impact accuracy. This study aims to implement kernel conversion across different CT settings and evaluate changes in the correlation between the emphysema index pre- and post-kernel conversion, along with clinical measures in COPD patients.
Methods:
Data were extracted from the Korea COPD Subgroup Study database, which included CT scan images from 484 COPD patients. These images underwent kernel conversion. Emphysema extent was quantified using the percentage of low-attenuation areas (%LAA-950) determined by a deep learning-based program. The correlation between %LAA-950 and clinical parameters, including lung function tests, the modified Medical Research Council (mMRC), 6-minute walking distance (6MWD), COPD assessment test (CAT), and the St. George’s Respiratory Questionnaire for COPD (SGRQ-c), was analyzed. Subsequently, these values were compared across various CT settings.
Results:
A total of 484 participants were included. Kernel conversion significantly reduced the variance in %LAA-950 values (before vs. after: 12.6±11.0 vs. 8.8±11.9). Post-kernel conversion, %LAA-950 demonstrated moderate correlations with forced expiratory volume in 1 second (r=–0.41), residual volume/total lung capacity (r=0.42), mMRC (r=0.25), CAT score (r=0.12), SGRQ-c (r=0.21), and 6MWD (r=0.15), all of which were improved compared to the unconverted dataset (all p<0.01).
Conclusion
CT images processed through kernel conversion enhance the correlation between the extent of emphysema and clinical parameters in COPD.
5.Kernel Conversion Improves the Correlation between the Extent of Emphysema and Clinical Parameters in Chronic Obstructive Pulmonary Disease: A Multicenter Cohort Study
Tai Joon AN ; Youlim KIM ; Hyun LEE ; Hyeon-Kyoung KOO ; Naoya TANABE ; Kum Ju CHAE ; Kwang Ha YOO
Tuberculosis and Respiratory Diseases 2025;88(2):303-309
Background:
Computed tomography (CT) scans are utilized to assess emphysema, a prominent phenotype of chronic obstructive pulmonary disease (COPD). Variability in CT protocols and equipment across hospitals can impact accuracy. This study aims to implement kernel conversion across different CT settings and evaluate changes in the correlation between the emphysema index pre- and post-kernel conversion, along with clinical measures in COPD patients.
Methods:
Data were extracted from the Korea COPD Subgroup Study database, which included CT scan images from 484 COPD patients. These images underwent kernel conversion. Emphysema extent was quantified using the percentage of low-attenuation areas (%LAA-950) determined by a deep learning-based program. The correlation between %LAA-950 and clinical parameters, including lung function tests, the modified Medical Research Council (mMRC), 6-minute walking distance (6MWD), COPD assessment test (CAT), and the St. George’s Respiratory Questionnaire for COPD (SGRQ-c), was analyzed. Subsequently, these values were compared across various CT settings.
Results:
A total of 484 participants were included. Kernel conversion significantly reduced the variance in %LAA-950 values (before vs. after: 12.6±11.0 vs. 8.8±11.9). Post-kernel conversion, %LAA-950 demonstrated moderate correlations with forced expiratory volume in 1 second (r=–0.41), residual volume/total lung capacity (r=0.42), mMRC (r=0.25), CAT score (r=0.12), SGRQ-c (r=0.21), and 6MWD (r=0.15), all of which were improved compared to the unconverted dataset (all p<0.01).
Conclusion
CT images processed through kernel conversion enhance the correlation between the extent of emphysema and clinical parameters in COPD.
6.Target-Enhanced Whole-Genome Sequencing Shows Clinical Validity Equivalent to Commercially Available Targeted Oncology Panel
Sangmoon LEE ; Jin ROH ; Jun Sung PARK ; Islam Oguz TUNCAY ; Wonchul LEE ; Jung-Ah KIM ; Brian Baek-Lok OH ; Jong-Yeon SHIN ; Jeong Seok LEE ; Young Seok JU ; Ryul KIM ; Seongyeol PARK ; Jaemo KOO ; Hansol PARK ; Joonoh LIM ; Erin CONNOLLY-STRONG ; Tae-Hwan KIM ; Yong Won CHOI ; Mi Sun AHN ; Hyun Woo LEE ; Seokhwi KIM ; Jang-Hee KIM ; Minsuk KWON
Cancer Research and Treatment 2025;57(2):350-361
Purpose:
Cancer poses a significant global health challenge, demanding precise genomic testing for individualized treatment strategies. Targeted-panel sequencing (TPS) has improved personalized oncology but often lacks comprehensive coverage of crucial cancer alterations. Whole-genome sequencing (WGS) addresses this gap, offering extensive genomic testing. This study demonstrates the medical potential of WGS.
Materials and Methods:
This study evaluates target-enhanced WGS (TE-WGS), a clinical-grade WGS method sequencing both cancer and matched normal tissues. Forty-nine patients with various solid cancer types underwent both TE-WGS and TruSight Oncology 500 (TSO500), one of the mainstream TPS approaches.
Results:
TE-WGS detected all variants reported by TSO500 (100%, 498/498). A high correlation in variant allele fractions was observed between TE-WGS and TSO500 (r=0.978). Notably, 223 variants (44.8%) within the common set were discerned exclusively by TE-WGS in peripheral blood, suggesting their germline origin. Conversely, the remaining subset of 275 variants (55.2%) were not detected in peripheral blood using the TE-WGS, signifying them as bona fide somatic variants. Further, TE-WGS provided accurate copy number profiles, fusion genes, microsatellite instability, and homologous recombination deficiency scores, which were essential for clinical decision-making.
Conclusion
TE-WGS is a comprehensive approach in personalized oncology, matching TSO500’s key biomarker detection capabilities. It uniquely identifies germline variants and genomic instability markers, offering additional clinical actions. Its adaptability and cost-effectiveness underscore its clinical utility, making TE-WGS a valuable tool in personalized cancer treatment.
7.The Effect of Hematopoietic Stem Cell Transplantation on Treatment Outcome in Children with Acute Lymphoblastic Leukemia
Hee Young JU ; Na Hee LEE ; Eun Sang YI ; Young Bae CHOI ; So Jin KIM ; Ju Kyung HYUN ; Hee Won CHO ; Jae Kyung LEE ; Ji Won LEE ; Ki Woong SUNG ; Hong Hoe KOO ; Keon Hee YOO
Cancer Research and Treatment 2025;57(1):240-249
Purpose:
Hematopoietic stem cell transplantation (HSCT) has been an important method of treatment in the advance of pediatric acute lymphoblastic leukemia (ALL). The indications for HSCT are evolving and require updated establishment. In this study, we aimed to investigate the efficacy of HSCT on the treatment outcome of pediatric ALL, considering the indications for HSCT and subgroups.
Materials and Methods:
A retrospective analysis was conducted on ALL patients diagnosed and treated at a single center. Risk groups were categorized based on age at diagnosis, initial white blood cell count, disease lineage (B/T), and cytogenetic study results. Data on the patients’ disease status at HSCT and indications of HSCT were collected. Indications for HSCT were categorized as upfront HSCT at 1st complete remission, relapse, and refractory disease.
Results:
Among the 549 screened patients, a total of 418 patients were included in the study; B-cell ALL (n=379) and T-cell ALL (T-ALL) (n=39). HSCT was conducted on a total of 106 patients (25.4%), with a higher frequency as upfront HSCT in higher-risk groups and specific cytogenetics. The overall survival (OS) was significantly better when done upfront than in relapsed or refractory state in T-ALL patients (p=0.002). The KMT2A-rearranged ALL patients showed superior event-free survival (p=0.002) and OS (p=0.022) when HSCT was done as upfront treatment.
Conclusion
HSCT had a substantial positive effect in a specific subset of pediatric ALL. In particular, frontline HSCT for T-ALL and KMT2A-rearranged ALL offered a better prognosis than when HSCT was conducted in a relapsed or refractory setting.
8.Kernel Conversion Improves the Correlation between the Extent of Emphysema and Clinical Parameters in Chronic Obstructive Pulmonary Disease: A Multicenter Cohort Study
Tai Joon AN ; Youlim KIM ; Hyun LEE ; Hyeon-Kyoung KOO ; Naoya TANABE ; Kum Ju CHAE ; Kwang Ha YOO
Tuberculosis and Respiratory Diseases 2025;88(2):303-309
Background:
Computed tomography (CT) scans are utilized to assess emphysema, a prominent phenotype of chronic obstructive pulmonary disease (COPD). Variability in CT protocols and equipment across hospitals can impact accuracy. This study aims to implement kernel conversion across different CT settings and evaluate changes in the correlation between the emphysema index pre- and post-kernel conversion, along with clinical measures in COPD patients.
Methods:
Data were extracted from the Korea COPD Subgroup Study database, which included CT scan images from 484 COPD patients. These images underwent kernel conversion. Emphysema extent was quantified using the percentage of low-attenuation areas (%LAA-950) determined by a deep learning-based program. The correlation between %LAA-950 and clinical parameters, including lung function tests, the modified Medical Research Council (mMRC), 6-minute walking distance (6MWD), COPD assessment test (CAT), and the St. George’s Respiratory Questionnaire for COPD (SGRQ-c), was analyzed. Subsequently, these values were compared across various CT settings.
Results:
A total of 484 participants were included. Kernel conversion significantly reduced the variance in %LAA-950 values (before vs. after: 12.6±11.0 vs. 8.8±11.9). Post-kernel conversion, %LAA-950 demonstrated moderate correlations with forced expiratory volume in 1 second (r=–0.41), residual volume/total lung capacity (r=0.42), mMRC (r=0.25), CAT score (r=0.12), SGRQ-c (r=0.21), and 6MWD (r=0.15), all of which were improved compared to the unconverted dataset (all p<0.01).
Conclusion
CT images processed through kernel conversion enhance the correlation between the extent of emphysema and clinical parameters in COPD.
9.Target-Enhanced Whole-Genome Sequencing Shows Clinical Validity Equivalent to Commercially Available Targeted Oncology Panel
Sangmoon LEE ; Jin ROH ; Jun Sung PARK ; Islam Oguz TUNCAY ; Wonchul LEE ; Jung-Ah KIM ; Brian Baek-Lok OH ; Jong-Yeon SHIN ; Jeong Seok LEE ; Young Seok JU ; Ryul KIM ; Seongyeol PARK ; Jaemo KOO ; Hansol PARK ; Joonoh LIM ; Erin CONNOLLY-STRONG ; Tae-Hwan KIM ; Yong Won CHOI ; Mi Sun AHN ; Hyun Woo LEE ; Seokhwi KIM ; Jang-Hee KIM ; Minsuk KWON
Cancer Research and Treatment 2025;57(2):350-361
Purpose:
Cancer poses a significant global health challenge, demanding precise genomic testing for individualized treatment strategies. Targeted-panel sequencing (TPS) has improved personalized oncology but often lacks comprehensive coverage of crucial cancer alterations. Whole-genome sequencing (WGS) addresses this gap, offering extensive genomic testing. This study demonstrates the medical potential of WGS.
Materials and Methods:
This study evaluates target-enhanced WGS (TE-WGS), a clinical-grade WGS method sequencing both cancer and matched normal tissues. Forty-nine patients with various solid cancer types underwent both TE-WGS and TruSight Oncology 500 (TSO500), one of the mainstream TPS approaches.
Results:
TE-WGS detected all variants reported by TSO500 (100%, 498/498). A high correlation in variant allele fractions was observed between TE-WGS and TSO500 (r=0.978). Notably, 223 variants (44.8%) within the common set were discerned exclusively by TE-WGS in peripheral blood, suggesting their germline origin. Conversely, the remaining subset of 275 variants (55.2%) were not detected in peripheral blood using the TE-WGS, signifying them as bona fide somatic variants. Further, TE-WGS provided accurate copy number profiles, fusion genes, microsatellite instability, and homologous recombination deficiency scores, which were essential for clinical decision-making.
Conclusion
TE-WGS is a comprehensive approach in personalized oncology, matching TSO500’s key biomarker detection capabilities. It uniquely identifies germline variants and genomic instability markers, offering additional clinical actions. Its adaptability and cost-effectiveness underscore its clinical utility, making TE-WGS a valuable tool in personalized cancer treatment.
10.The Effect of Hematopoietic Stem Cell Transplantation on Treatment Outcome in Children with Acute Lymphoblastic Leukemia
Hee Young JU ; Na Hee LEE ; Eun Sang YI ; Young Bae CHOI ; So Jin KIM ; Ju Kyung HYUN ; Hee Won CHO ; Jae Kyung LEE ; Ji Won LEE ; Ki Woong SUNG ; Hong Hoe KOO ; Keon Hee YOO
Cancer Research and Treatment 2025;57(1):240-249
Purpose:
Hematopoietic stem cell transplantation (HSCT) has been an important method of treatment in the advance of pediatric acute lymphoblastic leukemia (ALL). The indications for HSCT are evolving and require updated establishment. In this study, we aimed to investigate the efficacy of HSCT on the treatment outcome of pediatric ALL, considering the indications for HSCT and subgroups.
Materials and Methods:
A retrospective analysis was conducted on ALL patients diagnosed and treated at a single center. Risk groups were categorized based on age at diagnosis, initial white blood cell count, disease lineage (B/T), and cytogenetic study results. Data on the patients’ disease status at HSCT and indications of HSCT were collected. Indications for HSCT were categorized as upfront HSCT at 1st complete remission, relapse, and refractory disease.
Results:
Among the 549 screened patients, a total of 418 patients were included in the study; B-cell ALL (n=379) and T-cell ALL (T-ALL) (n=39). HSCT was conducted on a total of 106 patients (25.4%), with a higher frequency as upfront HSCT in higher-risk groups and specific cytogenetics. The overall survival (OS) was significantly better when done upfront than in relapsed or refractory state in T-ALL patients (p=0.002). The KMT2A-rearranged ALL patients showed superior event-free survival (p=0.002) and OS (p=0.022) when HSCT was done as upfront treatment.
Conclusion
HSCT had a substantial positive effect in a specific subset of pediatric ALL. In particular, frontline HSCT for T-ALL and KMT2A-rearranged ALL offered a better prognosis than when HSCT was conducted in a relapsed or refractory setting.

Result Analysis
Print
Save
E-mail