1.Combination of Aβ40, Aβ42, and Tau Plasma Levels to Distinguish Amyloid-PET Positive Alzheimer Patients from Normal Controls
Seungyeop BAEK ; Jinny Claire LEE ; Byung Hyun BYUN ; Su Yeon PARK ; Jeong Ho HA ; Kyo Chul LEE ; Seung-Hoon YANG ; Jun-Seok LEE ; Seungpyo HONG ; Gyoonhee HAN ; Sang Moo LIM ; YoungSoo KIM ; Hye Yun KIM
Experimental Neurobiology 2025;34(1):1-8
Alzheimer disease (AD) diagnosis is confirmed using a medley of modalities, such as the detection of amyloid-β (Aβ) neuritic plaques and neurofibrillary tangles with positron electron tomography (PET) or the appraisal of irregularities in cognitive function with examinations. Although these methods have been efficient in confirming AD pathology, the rising demand for earlier intervention during pathogenesis has led researchers to explore the diagnostic potential of fluid biomarkers in cerebrospinal fluid (CSF) and plasma. Since CSF sample collection is invasive and limited in quantity, biomarker detection in plasma has become more attractive and modern advancements in technology has permitted more efficient and accurate analysis of plasma biomolecules. In this study, we found that a composite of standard factors, Aβ40 and total tau levels in plasma, divided by the variation factor, plasma Aβ42 level, provide better correlation with amyloid neuroimaging and neuropsychological test results than a level comparison between total tau and Aβ42 in plasma. We collected EDTA-treated blood plasma samples of 53 subjects, of randomly selected 27 AD patients and 26 normal cognition (NC) individuals, who received amyloid-PET scans for plaque quantification, and measured plasma levels of Aβ40, Aβ42, and total tau with digital enzyme-linked immunosorbent assay (ELISA) in a blinded manner. There was difficulty distinguishing AD patients from controls when analyzing biomarkers independently. However, significant differentiation was observed between the two groups when comparing individual ratios of total-tau×Aβ40/Aβ42. Our results indicate that collectively comparing fluctuations of these fluid biomarkers could aid in monitoring AD pathogenesis.
2.Korean Practice Guidelines for Gastric Cancer 2024: An Evidence-based, Multidisciplinary Approach (Update of 2022 Guideline)
In-Ho KIM ; Seung Joo KANG ; Wonyoung CHOI ; An Na SEO ; Bang Wool EOM ; Beodeul KANG ; Bum Jun KIM ; Byung-Hoon MIN ; Chung Hyun TAE ; Chang In CHOI ; Choong-kun LEE ; Ho Jung AN ; Hwa Kyung BYUN ; Hyeon-Su IM ; Hyung-Don KIM ; Jang Ho CHO ; Kyoungjune PAK ; Jae-Joon KIM ; Jae Seok BAE ; Jeong Il YU ; Jeong Won LEE ; Jungyoon CHOI ; Jwa Hoon KIM ; Miyoung CHOI ; Mi Ran JUNG ; Nieun SEO ; Sang Soo EOM ; Soomin AHN ; Soo Jin KIM ; Sung Hak LEE ; Sung Hee LIM ; Tae-Han KIM ; Hye Sook HAN ; On behalf of The Development Working Group for the Korean Practice Guideline for Gastric Cancer 2024
Journal of Gastric Cancer 2025;25(1):5-114
Gastric cancer is one of the most common cancers in both Korea and worldwide. Since 2004, the Korean Practice Guidelines for Gastric Cancer have been regularly updated, with the 4th edition published in 2022. The 4th edition was the result of a collaborative work by an interdisciplinary team, including experts in gastric surgery, gastroenterology, endoscopy, medical oncology, abdominal radiology, pathology, nuclear medicine, radiation oncology, and guideline development methodology. The current guideline is the 5th version, an updated version of the 4th edition. In this guideline, 6 key questions (KQs) were updated or proposed after a collaborative review by the working group, and 7 statements were developed, or revised, or discussed based on a systematic review using the MEDLINE, Embase, Cochrane Library, and KoreaMed database. Over the past 2 years, there have been significant changes in systemic treatment, leading to major updates and revisions focused on this area.Additionally, minor modifications have been made in other sections, incorporating recent research findings. The level of evidence and grading of recommendations were categorized according to the Grading of Recommendations, Assessment, Development and Evaluation system. Key factors for recommendation included the level of evidence, benefit, harm, and clinical applicability. The working group reviewed and discussed the recommendations to reach a consensus. The structure of this guideline remains similar to the 2022 version.Earlier sections cover general considerations, such as screening, diagnosis, and staging of endoscopy, pathology, radiology, and nuclear medicine. In the latter sections, statements are provided for each KQ based on clinical evidence, with flowcharts supporting these statements through meta-analysis and references. This multidisciplinary, evidence-based gastric cancer guideline aims to support clinicians in providing optimal care for gastric cancer patients.
3.Combination of Aβ40, Aβ42, and Tau Plasma Levels to Distinguish Amyloid-PET Positive Alzheimer Patients from Normal Controls
Seungyeop BAEK ; Jinny Claire LEE ; Byung Hyun BYUN ; Su Yeon PARK ; Jeong Ho HA ; Kyo Chul LEE ; Seung-Hoon YANG ; Jun-Seok LEE ; Seungpyo HONG ; Gyoonhee HAN ; Sang Moo LIM ; YoungSoo KIM ; Hye Yun KIM
Experimental Neurobiology 2025;34(1):1-8
Alzheimer disease (AD) diagnosis is confirmed using a medley of modalities, such as the detection of amyloid-β (Aβ) neuritic plaques and neurofibrillary tangles with positron electron tomography (PET) or the appraisal of irregularities in cognitive function with examinations. Although these methods have been efficient in confirming AD pathology, the rising demand for earlier intervention during pathogenesis has led researchers to explore the diagnostic potential of fluid biomarkers in cerebrospinal fluid (CSF) and plasma. Since CSF sample collection is invasive and limited in quantity, biomarker detection in plasma has become more attractive and modern advancements in technology has permitted more efficient and accurate analysis of plasma biomolecules. In this study, we found that a composite of standard factors, Aβ40 and total tau levels in plasma, divided by the variation factor, plasma Aβ42 level, provide better correlation with amyloid neuroimaging and neuropsychological test results than a level comparison between total tau and Aβ42 in plasma. We collected EDTA-treated blood plasma samples of 53 subjects, of randomly selected 27 AD patients and 26 normal cognition (NC) individuals, who received amyloid-PET scans for plaque quantification, and measured plasma levels of Aβ40, Aβ42, and total tau with digital enzyme-linked immunosorbent assay (ELISA) in a blinded manner. There was difficulty distinguishing AD patients from controls when analyzing biomarkers independently. However, significant differentiation was observed between the two groups when comparing individual ratios of total-tau×Aβ40/Aβ42. Our results indicate that collectively comparing fluctuations of these fluid biomarkers could aid in monitoring AD pathogenesis.
4.Combination of Aβ40, Aβ42, and Tau Plasma Levels to Distinguish Amyloid-PET Positive Alzheimer Patients from Normal Controls
Seungyeop BAEK ; Jinny Claire LEE ; Byung Hyun BYUN ; Su Yeon PARK ; Jeong Ho HA ; Kyo Chul LEE ; Seung-Hoon YANG ; Jun-Seok LEE ; Seungpyo HONG ; Gyoonhee HAN ; Sang Moo LIM ; YoungSoo KIM ; Hye Yun KIM
Experimental Neurobiology 2025;34(1):1-8
Alzheimer disease (AD) diagnosis is confirmed using a medley of modalities, such as the detection of amyloid-β (Aβ) neuritic plaques and neurofibrillary tangles with positron electron tomography (PET) or the appraisal of irregularities in cognitive function with examinations. Although these methods have been efficient in confirming AD pathology, the rising demand for earlier intervention during pathogenesis has led researchers to explore the diagnostic potential of fluid biomarkers in cerebrospinal fluid (CSF) and plasma. Since CSF sample collection is invasive and limited in quantity, biomarker detection in plasma has become more attractive and modern advancements in technology has permitted more efficient and accurate analysis of plasma biomolecules. In this study, we found that a composite of standard factors, Aβ40 and total tau levels in plasma, divided by the variation factor, plasma Aβ42 level, provide better correlation with amyloid neuroimaging and neuropsychological test results than a level comparison between total tau and Aβ42 in plasma. We collected EDTA-treated blood plasma samples of 53 subjects, of randomly selected 27 AD patients and 26 normal cognition (NC) individuals, who received amyloid-PET scans for plaque quantification, and measured plasma levels of Aβ40, Aβ42, and total tau with digital enzyme-linked immunosorbent assay (ELISA) in a blinded manner. There was difficulty distinguishing AD patients from controls when analyzing biomarkers independently. However, significant differentiation was observed between the two groups when comparing individual ratios of total-tau×Aβ40/Aβ42. Our results indicate that collectively comparing fluctuations of these fluid biomarkers could aid in monitoring AD pathogenesis.
5.Korean Practice Guidelines for Gastric Cancer 2024: An Evidence-based, Multidisciplinary Approach (Update of 2022 Guideline)
In-Ho KIM ; Seung Joo KANG ; Wonyoung CHOI ; An Na SEO ; Bang Wool EOM ; Beodeul KANG ; Bum Jun KIM ; Byung-Hoon MIN ; Chung Hyun TAE ; Chang In CHOI ; Choong-kun LEE ; Ho Jung AN ; Hwa Kyung BYUN ; Hyeon-Su IM ; Hyung-Don KIM ; Jang Ho CHO ; Kyoungjune PAK ; Jae-Joon KIM ; Jae Seok BAE ; Jeong Il YU ; Jeong Won LEE ; Jungyoon CHOI ; Jwa Hoon KIM ; Miyoung CHOI ; Mi Ran JUNG ; Nieun SEO ; Sang Soo EOM ; Soomin AHN ; Soo Jin KIM ; Sung Hak LEE ; Sung Hee LIM ; Tae-Han KIM ; Hye Sook HAN ; On behalf of The Development Working Group for the Korean Practice Guideline for Gastric Cancer 2024
Journal of Gastric Cancer 2025;25(1):5-114
Gastric cancer is one of the most common cancers in both Korea and worldwide. Since 2004, the Korean Practice Guidelines for Gastric Cancer have been regularly updated, with the 4th edition published in 2022. The 4th edition was the result of a collaborative work by an interdisciplinary team, including experts in gastric surgery, gastroenterology, endoscopy, medical oncology, abdominal radiology, pathology, nuclear medicine, radiation oncology, and guideline development methodology. The current guideline is the 5th version, an updated version of the 4th edition. In this guideline, 6 key questions (KQs) were updated or proposed after a collaborative review by the working group, and 7 statements were developed, or revised, or discussed based on a systematic review using the MEDLINE, Embase, Cochrane Library, and KoreaMed database. Over the past 2 years, there have been significant changes in systemic treatment, leading to major updates and revisions focused on this area.Additionally, minor modifications have been made in other sections, incorporating recent research findings. The level of evidence and grading of recommendations were categorized according to the Grading of Recommendations, Assessment, Development and Evaluation system. Key factors for recommendation included the level of evidence, benefit, harm, and clinical applicability. The working group reviewed and discussed the recommendations to reach a consensus. The structure of this guideline remains similar to the 2022 version.Earlier sections cover general considerations, such as screening, diagnosis, and staging of endoscopy, pathology, radiology, and nuclear medicine. In the latter sections, statements are provided for each KQ based on clinical evidence, with flowcharts supporting these statements through meta-analysis and references. This multidisciplinary, evidence-based gastric cancer guideline aims to support clinicians in providing optimal care for gastric cancer patients.
6.Combination of Aβ40, Aβ42, and Tau Plasma Levels to Distinguish Amyloid-PET Positive Alzheimer Patients from Normal Controls
Seungyeop BAEK ; Jinny Claire LEE ; Byung Hyun BYUN ; Su Yeon PARK ; Jeong Ho HA ; Kyo Chul LEE ; Seung-Hoon YANG ; Jun-Seok LEE ; Seungpyo HONG ; Gyoonhee HAN ; Sang Moo LIM ; YoungSoo KIM ; Hye Yun KIM
Experimental Neurobiology 2025;34(1):1-8
Alzheimer disease (AD) diagnosis is confirmed using a medley of modalities, such as the detection of amyloid-β (Aβ) neuritic plaques and neurofibrillary tangles with positron electron tomography (PET) or the appraisal of irregularities in cognitive function with examinations. Although these methods have been efficient in confirming AD pathology, the rising demand for earlier intervention during pathogenesis has led researchers to explore the diagnostic potential of fluid biomarkers in cerebrospinal fluid (CSF) and plasma. Since CSF sample collection is invasive and limited in quantity, biomarker detection in plasma has become more attractive and modern advancements in technology has permitted more efficient and accurate analysis of plasma biomolecules. In this study, we found that a composite of standard factors, Aβ40 and total tau levels in plasma, divided by the variation factor, plasma Aβ42 level, provide better correlation with amyloid neuroimaging and neuropsychological test results than a level comparison between total tau and Aβ42 in plasma. We collected EDTA-treated blood plasma samples of 53 subjects, of randomly selected 27 AD patients and 26 normal cognition (NC) individuals, who received amyloid-PET scans for plaque quantification, and measured plasma levels of Aβ40, Aβ42, and total tau with digital enzyme-linked immunosorbent assay (ELISA) in a blinded manner. There was difficulty distinguishing AD patients from controls when analyzing biomarkers independently. However, significant differentiation was observed between the two groups when comparing individual ratios of total-tau×Aβ40/Aβ42. Our results indicate that collectively comparing fluctuations of these fluid biomarkers could aid in monitoring AD pathogenesis.
7.Korean Practice Guidelines for Gastric Cancer 2024: An Evidence-based, Multidisciplinary Approach (Update of 2022 Guideline)
In-Ho KIM ; Seung Joo KANG ; Wonyoung CHOI ; An Na SEO ; Bang Wool EOM ; Beodeul KANG ; Bum Jun KIM ; Byung-Hoon MIN ; Chung Hyun TAE ; Chang In CHOI ; Choong-kun LEE ; Ho Jung AN ; Hwa Kyung BYUN ; Hyeon-Su IM ; Hyung-Don KIM ; Jang Ho CHO ; Kyoungjune PAK ; Jae-Joon KIM ; Jae Seok BAE ; Jeong Il YU ; Jeong Won LEE ; Jungyoon CHOI ; Jwa Hoon KIM ; Miyoung CHOI ; Mi Ran JUNG ; Nieun SEO ; Sang Soo EOM ; Soomin AHN ; Soo Jin KIM ; Sung Hak LEE ; Sung Hee LIM ; Tae-Han KIM ; Hye Sook HAN ; On behalf of The Development Working Group for the Korean Practice Guideline for Gastric Cancer 2024
Journal of Gastric Cancer 2025;25(1):5-114
Gastric cancer is one of the most common cancers in both Korea and worldwide. Since 2004, the Korean Practice Guidelines for Gastric Cancer have been regularly updated, with the 4th edition published in 2022. The 4th edition was the result of a collaborative work by an interdisciplinary team, including experts in gastric surgery, gastroenterology, endoscopy, medical oncology, abdominal radiology, pathology, nuclear medicine, radiation oncology, and guideline development methodology. The current guideline is the 5th version, an updated version of the 4th edition. In this guideline, 6 key questions (KQs) were updated or proposed after a collaborative review by the working group, and 7 statements were developed, or revised, or discussed based on a systematic review using the MEDLINE, Embase, Cochrane Library, and KoreaMed database. Over the past 2 years, there have been significant changes in systemic treatment, leading to major updates and revisions focused on this area.Additionally, minor modifications have been made in other sections, incorporating recent research findings. The level of evidence and grading of recommendations were categorized according to the Grading of Recommendations, Assessment, Development and Evaluation system. Key factors for recommendation included the level of evidence, benefit, harm, and clinical applicability. The working group reviewed and discussed the recommendations to reach a consensus. The structure of this guideline remains similar to the 2022 version.Earlier sections cover general considerations, such as screening, diagnosis, and staging of endoscopy, pathology, radiology, and nuclear medicine. In the latter sections, statements are provided for each KQ based on clinical evidence, with flowcharts supporting these statements through meta-analysis and references. This multidisciplinary, evidence-based gastric cancer guideline aims to support clinicians in providing optimal care for gastric cancer patients.
8.Comparison of Two Quinupristin–dalfopristin Susceptibility Testing Methods and Two Interpretive Criteria for Enterococcus faecium Bloodstream Isolates from Korean Hospitals
Yong Jun KWON ; Ha Jin LIM ; Soo Hyun KIM ; Seung A BYUN ; Ga Yeong LEE ; Ga-Gyeong KIM ; Seok Hoon JEONG ; Jeong Hwan SHIN ; Young Ah KIM ; Young UH ; Jong Hee SHIN
Annals of Laboratory Medicine 2025;45(6):630-634
Enterococcus faecium, particularly in its multidrug-resistant forms, causes invasive nosocomial infections. Given the limited data comparing the effectiveness of the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the CLSI clinical breakpoints (CBPs) for quinupristin–dalfopristin (QD) resistance and the need to evaluate their practical application, we retrospectively investigated the susceptibility patterns of 287 E.faecium bloodstream isolates from Korean hospitals to QD using the updated EUCAST and CLSI CBPs and two antimicrobial susceptibility testing methods: disk diffusion (DD) and Sensititre broth microdilution (Sensititre). QD resistance rates were 5.9% (CLSI) and 18.8% (EUCAST) for DD and 22.6% (CLSI) and 28.2% (EUCAST) for Sensititre. The most prevalent QD resistance gene types among QD-resistant isolates were ermB+msrC+ or ermB– msrC+. Categorical agreement between DD and Sensititre ranged from 77.7% to 90.7%, depending on the testing method and CBPs applied. The EUCAST zone diameter CBPs more effectively help identify QD-resistant E. faecium isolates using the DD method than the CLSI zone diameter CBPs. In comparison, the CLSI minimum inhibitory concentration (MIC) CBPs provide more reliable results for resistance classification in the Sensititre method than EUCAST MIC CBPs. These findings would help improve clinical decision-making for treating multidrug-resistant E. faecium infections.
9.Exploring a Case of Potential Facial Lichen Planopilaris or Follicular Variant of Lichen Planus Pigmentosus
Kyung-Ju LEE ; Jun Hyeong JEONG ; Jae Won LEE ; Hyun-Tae SHIN ; Ji Won BYUN ; Gwang Seong CHOI ; Jeonghyun SHIN
Korean Journal of Dermatology 2024;62(10):560-564
Lichen planopilaris (LPP) is a follicular variant of lichen planus, typically occurring on the scalp. A 61-year-old man presented with asymptomatic pigmented atrophic patches on his chin. Dermoscopy showed reticular hyperpigmentation and perifollicular hyperkeratosis. A punch biopsy revealed follicular plugging, perifollicular lymphocytic infiltration, vacuolar degeneration of the follicular basal cell layer, mild interface dermatitis, and melanophages. Direct immunofluorescence testing was negative, leading to a diagnosis of facial LPP. Some have classified similar cases as facial LPP, while others have reported them as a follicular variant of lichen planus pigmentosus. This report explores the question of whether these cases should be classified as facial LPP, or as a follicular variant of lichen planus pigmentosus, or as conditions encompassed within the spectrum of these two disorders, with a comprehensive literature review.
10.Exploring a Case of Potential Facial Lichen Planopilaris or Follicular Variant of Lichen Planus Pigmentosus
Kyung-Ju LEE ; Jun Hyeong JEONG ; Jae Won LEE ; Hyun-Tae SHIN ; Ji Won BYUN ; Gwang Seong CHOI ; Jeonghyun SHIN
Korean Journal of Dermatology 2024;62(10):560-564
Lichen planopilaris (LPP) is a follicular variant of lichen planus, typically occurring on the scalp. A 61-year-old man presented with asymptomatic pigmented atrophic patches on his chin. Dermoscopy showed reticular hyperpigmentation and perifollicular hyperkeratosis. A punch biopsy revealed follicular plugging, perifollicular lymphocytic infiltration, vacuolar degeneration of the follicular basal cell layer, mild interface dermatitis, and melanophages. Direct immunofluorescence testing was negative, leading to a diagnosis of facial LPP. Some have classified similar cases as facial LPP, while others have reported them as a follicular variant of lichen planus pigmentosus. This report explores the question of whether these cases should be classified as facial LPP, or as a follicular variant of lichen planus pigmentosus, or as conditions encompassed within the spectrum of these two disorders, with a comprehensive literature review.

Result Analysis
Print
Save
E-mail