1.Clinical efficacy of mild therapeutic hypothermia with different rewarming time on neonatal hypoxic-ischemic encephalopathy: a prospective randomized controlled study.
Yu-Xin LIN ; Xiao FENG ; Yi-Dan ZHANG ; Wan-Rong HONG ; Hong-Ying ZHAO
Chinese Journal of Contemporary Pediatrics 2023;25(4):350-356
OBJECTIVES:
To investigate the clinical efficacy of mild therapeutic hypothermia (MTH) with different rewarming time on neonatal hypoxic-ischemic encephalopathy (HIE).
METHODS:
A prospective study was performed on 101 neonates with HIE who were born and received MTH in Zhongshan Hospital, Xiamen University, from January 2018 to January 2022. These neonates were randomly divided into two groups: MTH1 group (n=50; rewarming for 10 hours at a rate of 0.25°C/h) and MTH2 group (n=51; rewarming for 25 hours at a rate of 0.10°C/h). The clinical features and the clinical efficacy were compared between the two groups. A binary logistic regression analysis was used to identify the factors influencing the occurrence of normal sleep-wake cycle (SWC) on amplitude-integrated electroencephalogram (aEEG) at 25 hours of rewarming.
RESULTS:
There were no significant differences between the MTH1 and MTH2 groups in gestational age, 5-minute Apgar score, and proportion of neonates with moderate/severe HIE (P>0.05). Compared with the MTH2 group, the MTH1 group tended to have a normal arterial blood pH value at the end of rewarming, a significantly shorter duration of oxygen dependence, a significantly higher proportion of neonates with normal SWC on aEEG at 10 and 25 hours of rewarming, and a significantly higher Neonatal Behavioral Neurological Assessment score on days 5, 12, and 28 after birth (P<0.05), while there was no significant difference in the incidence rate of rewarming-related seizures between the two groups (P>0.05). There were no significant differences between the two groups in the incidence rate of neurological disability at 6 months of age and the score of Bayley Scale of Infant Development at 3 and 6 months of age (P>0.05). The binary logistic regression analysis showed that prolonged rewarming time (25 hours) was not conducive to the occurrence of normal SWC (OR=3.423, 95%CI: 1.237-9.469, P=0.018).
CONCLUSIONS
Rewarming for 10 hours has a better short-term clinical efficacy than rewarming for 25 hours. Prolonging rewarming time has limited clinical benefits on neonates with moderate/severe HIE and is not conducive to the occurrence of normal SWC, and therefore, it is not recommended as a routine treatment method.
Infant, Newborn
;
Infant
;
Child
;
Humans
;
Child, Preschool
;
Prospective Studies
;
Rewarming
;
Hypoxia-Ischemia, Brain/therapy*
;
Hypothermia, Induced/methods*
;
Treatment Outcome
;
Electroencephalography/methods*
2.A neonatal intelligent regulation system based on the combination of mild hypothermia mattress and hyperbaric oxygen chamber: introduction to a patent.
Ming-Xing ZHU ; Jun-Yu JI ; Xin WANG ; Shi-Xiong CHEN ; Wei-Min HUANG
Chinese Journal of Contemporary Pediatrics 2023;25(1):86-90
Neonatal hypoxic-ischemic encephalopathy (HIE) is a common disease that affects brain function in neonates. At present, mild hypothermia and hyperbaric oxygen therapy are the main methods for the treatment of neonatal HIE; however, they are independent of each other and cannot be combined for synchronous treatment, without monitoring of brain function-related physiological information. In addition, parameter setting of hyperbaric oxygen chamber and mild hypothermia mattress relies on the experience of the medical practitioner, and the parameters remain unchanged throughout the medical process. This article proposes a new device for the treatment of neonatal HIE, which has the modules of hyperbaric oxygen chamber and mild hypothermic mattress, so that neonates can receive the treatment of hyperbaric oxygen chamber and/or mild hypothermic mattress based on their conditions. Meanwhile, it can realize the real-time monitoring of various physiological information, including amplitude-integrated electroencephalogram, electrocardiogram, and near-infrared spectrum, which can monitor brain function, heart rate, rhythm, myocardial blood supply, hemoglobin concentration in brain tissue, and blood oxygen saturation. In combination with an intelligent control algorithm, the device can intelligently regulate parameters according to the physiological information of neonates and give recommendations for subsequent treatment.
Infant, Newborn
;
Humans
;
Hypothermia, Induced/methods*
;
Hypothermia/therapy*
;
Hyperbaric Oxygenation
;
Brain
;
Electroencephalography
;
Hypoxia-Ischemia, Brain/therapy*
3.Research research on the use of melatonin in combination with therapeutic hypothermia for the treatment of neonatal hypoxic-ischemic encephalopathy.
Chinese Journal of Contemporary Pediatrics 2023;25(8):864-869
Neonatal hypoxic-ischemic encephalopathy (HIE) remains one of the leading causes of death and long-term neurodevelopmental disorders in full-term neonates, and there is currently no curative treatment. Therapeutic hypothermia is now a standard therapy for HIE in the neonatal intensive care unit, but its safety and efficacy in remote areas remains unclear. Melatonin is an indole endocrine hormone mainly produced by the pineal gland and it has the ability to easily penetrate the blood-brain barrier. Through receptor and non-receptor mechanisms, melatonin exerts anti-oxidative and anti-inflammatory effects and participates in the regulation of organelle function and the inhibition of cell death. Melatonin is considered one of the most promising drugs for the treatment of HIE based on its reliable safety profile and clinical/preclinical results. This article reviews the recent research on the use of melatonin in combination with therapeutic hypothermia for the treatment of neonatal HIE.
Infant, Newborn
;
Humans
;
Melatonin/therapeutic use*
;
Hypoxia-Ischemia, Brain/therapy*
;
Hypothermia, Induced
;
Intensive Care Units, Neonatal
5.AD-16 Protects Against Hypoxic-Ischemic Brain Injury by Inhibiting Neuroinflammation.
Zhihua HUANG ; Zhengwei LUO ; Andrea OVCJAK ; Jiangfan WAN ; Nai-Hong CHEN ; Wenhui HU ; Hong-Shuo SUN ; Zhong-Ping FENG
Neuroscience Bulletin 2022;38(8):857-870
Neuroinflammation is a key contributor to the pathogenic cascades induced by hypoxic-ischemic (HI) insult in the neonatal brain. AD-16 is a novel anti-inflammatory compound, recently found to exert potent inhibition of the lipopolysaccharide-induced production of pro-inflammatory and neurotoxic mediators. In this study, we evaluated the effect of AD-16 on primary astrocytes and neurons under oxygen-glucose deprivation (OGD) in vitro and in mice with neonatal HI brain injury in vivo. We demonstrated that AD-16 protected against OGD-induced astrocytic and neuronal cell injury. Single dose post-treatment with AD-16 (1 mg/kg) improved the neurobehavioral outcome and reduced the infarct volume with a therapeutic window of up to 6 h. Chronic administration reduced the mortality rate and preserved whole-brain morphology following neonatal HI. The in vitro and in vivo effects suggest that AD-16 offers promising therapeutic efficacy in attenuating the progression of HI brain injury and protecting against the associated mortality and morbidity.
Animals
;
Animals, Newborn
;
Astrocytes/pathology*
;
Brain/pathology*
;
Brain Injuries/pathology*
;
Glucose
;
Hypoxia
;
Hypoxia-Ischemia, Brain/drug therapy*
;
Mice
;
Neuroinflammatory Diseases
;
Neuroprotective Agents/therapeutic use*
;
Oxygen/therapeutic use*
7.Resveratrol promotes the survival and neuronal differentiation of hypoxia-conditioned neuronal progenitor cells in rats with cerebral ischemia.
Yao YAO ; Rui ZHOU ; Rui BAI ; Jing WANG ; Mengjiao TU ; Jingjing SHI ; Xiao HE ; Jinyun ZHOU ; Liu FENG ; Yuanxue GAO ; Fahuan SONG ; Feng LAN ; Xingguo LIU ; Mei TIAN ; Hong ZHANG
Frontiers of Medicine 2021;15(3):472-485
Hypoxia conditioning could increase the survival of transplanted neuronal progenitor cells (NPCs) in rats with cerebral ischemia but could also hinder neuronal differentiation partly by suppressing mitochondrial metabolism. In this work, the mitochondrial metabolism of hypoxia-conditioned NPCs (hcNPCs) was upregulated via the additional administration of resveratrol, an herbal compound, to resolve the limitation of hypoxia conditioning on neuronal differentiation. Resveratrol was first applied during the in vitro neuronal differentiation of hcNPCs and concurrently promoted the differentiation, synaptogenesis, and functional development of neurons derived from hcNPCs and restored the mitochondrial metabolism. Furthermore, this herbal compound was used as an adjuvant during hcNPC transplantation in a photothrombotic stroke rat model. Resveratrol promoted neuronal differentiation and increased the long-term survival of transplanted hcNPCs. 18-fluorine fluorodeoxyglucose positron emission tomography and rotarod test showed that resveratrol and hcNPC transplantation synergistically improved the neurological and metabolic recovery of stroke rats. In conclusion, resveratrol promoted the neuronal differentiation and therapeutic efficiency of hcNPCs in stroke rats via restoring mitochondrial metabolism. This work suggested a novel approach to promote the clinical translation of NPC transplantation therapy.
Animals
;
Brain Ischemia/drug therapy*
;
Cell Differentiation
;
Hypoxia
;
Neurons
;
Rats
;
Resveratrol/pharmacology*
8.Impact of mild hypothermia therapy on hemodynamics during the induction stage in neonates with moderate to severe hypoxic-ischemic encephalopathy.
Jian-Bo LI ; Wen-Shen WU ; Bang DU ; Feng-Dan XU ; Ning LI ; Jin-Gen LIE ; Xiao-Guang HE
Chinese Journal of Contemporary Pediatrics 2021;23(2):133-137
OBJECTIVE:
To study the changes in hemodynamics during the induction stage of systemic mild hypothermia therapy in neonates with moderate to severe hypoxic-ischemic encephalopathy (HIE).
METHODS:
A total of 21 neonates with HIE who underwent systemic mild hypothermia therapy in the Department of Neonatology, Dongguan Children's Hospital Affiliated to Guangdong Medical University, from July 2017 to April 2020 were enrolled. The rectal temperature of the neonates was lowered to 34℃ after 1-2 hours of induction and maintained at this level for 72 hours using a hypothermia blanket. The impedance method was used for noninvasive hemodynamic monitoring, and the changes in heart rate (HR), mean arterial pressure (MAP), stroke volume (SV), cardiac output (CO), cardiac index (CI), and total peripheral resistance (TPR) from the start of hypothermia induction to the achievement of target rectal temperature (34℃). Blood lactic acid (LAC) and resistance index (RI) of the middle cerebral artery were recorded simultaneously.
RESULTS:
The 21 neonates with HIE had a mean gestational age of (39.6±1.1) weeks, a mean birth weight of (3 439±517) g, and a mean 5-minute Apgar score of 6.8±2.0. From the start of hypothermia induction to the achievement of target rectal temperature (34℃), there were significant reductions in HR, CO, and CI (
CONCLUSIONS
The systemic mild hypothermia therapy may have a significant impact on hemodynamics in neonates with moderate to severe HIE, and continuous hemodynamic monitoring is required during the treatment.
Cardiac Output
;
Child
;
Hemodynamics
;
Humans
;
Hypothermia
;
Hypoxia-Ischemia, Brain/therapy*
;
Infant
;
Infant, Newborn
;
Vascular Resistance
9.Effect of different melatonin treatment regimens on white matter damage in neonatal rats with hypoxic-ischemic brain damage.
Rui MA ; Yu-Hui MA ; Xin-Yue ZHANG ; Yin GENG ; Lan-Fen CHEN ; Xue-Ning ZHANG ; Xiao-Li WANG
Chinese Journal of Contemporary Pediatrics 2021;23(3):300-305
OBJECTIVE:
To study the effect of different melatonin treatment regimens on long-term behavior and white matter damage in neonatal rats with hypoxic-ischemic brain damage (HIBD), and to seek an optimal melatonin treatment regimen.
METHODS:
Healthy Sprague-Dawley rats, aged 7 days, were randomly divided into four groups: sham-operation, HIBD, single-dose immediate treatment (SDIT), and 7-day continuous treatment (7DCT), with 8 rats in each group. A neonatal rat model of HIBD was prepared according to the classical Rice-Vannucci method. On day 21 after HIBD, the Morris water maze test was used to evaluate spatial learning and memory abilities. On day 70 after HIBD, immunofluorescence assay was used to measure the expression of neuronal nuclear antigen (NeuN) in the cerebral cortex and the hippocampal CA1 region of neonatal rats, and double-label immunofluorescence was used to measure the expression of myelin basic protein (MBP) and neurofilament 200 (NF200) in the corpus striatum and the corpus callosum.
RESULTS:
The results of the Morris water maze test showed that the SDIT and 7DCT groups had a significantly shorter mean escape latency than the HIBD group, and the 7DCT group had a significantly shorter mean escape latency than the SDIT group (
CONCLUSIONS
Both SDIT and 7DCT can improve long-term behavior and reduce white matter damage in neonatal rats with HIBD, and 7DCT is more effective than SDIT.
Animals
;
Animals, Newborn
;
Hypoxia-Ischemia, Brain/drug therapy*
;
Melatonin/pharmacology*
;
Rats
;
Rats, Sprague-Dawley
;
White Matter
10.Effect of astragaloside IV on the expression of NOD-like receptor protein 3 inflammasome in neonatal rats with hypoxic-ischemic brain damage.
Na LI ; Ya-Ping MU ; Chun-Ying LIU ; Yang WANG ; Xiao-Feng LI ; Xue-Wei WANG
Chinese Journal of Contemporary Pediatrics 2021;23(4):402-409
OBJECTIVE:
To study the effect of astragaloside IV (AS-IV) on NOD-like receptor protein 3 (NLRP3) inflammasome in neonatal rats with hypoxic-ischemic brain damage (HIBD).
METHODS:
A total of 24 Sprague-Dawley rats, aged 7 days, were randomly divided into a sham-operation group, an HIBD group, and an AS-IV treatment group, with 8 rats in each group. After 24 hours of modeling, brain tissue was collected for hematoxylin-eosin staining, yo-PRO-1 staining, and EthD-2 immunofluorescent staining in order to observe the cerebral protection effect of AS-IV in vivo. HT22 cells were used to prepare a model of oxygen-glycogen deprivation (OGD), and a concentration gradient (50-400 μmol/L) was established for AS-IV. CCK-8 assay was used to measure the viability of HT22 cells. RT-PCR and Western blot were used to observe the effect of different concentrations of AS-IV on the mRNA and protein expression of NLRP3, gasdermin D (GSDMD), caspase-1, and interleukin-1β (IL-1β).
RESULTS:
Yo-Pro-1 and EthD-2 staining showed that compared with the sham-operation group, the HIBD group had an increase in pyroptotic cells with a small number of necrotic cells, and the AS-IV group had reductions in both pyroptotic and necrotic cells. Compared with the sham-operation group, the HIBD group had significantly higher protein expression levels of NLRP3, IL-1β, caspase-1, and GSDMD (
CONCLUSIONS
AS-IV may alleviate HIBD in neonatal rats by inhibiting the expression of NLRP3, GSDMD, caspase-1, and IL-1β.
Animals
;
Animals, Newborn
;
Brain
;
Hypoxia-Ischemia, Brain/drug therapy*
;
Inflammasomes
;
NLR Proteins
;
Rats
;
Rats, Sprague-Dawley
;
Saponins
;
Triterpenes

Result Analysis
Print
Save
E-mail