1.Exosomes derived from mesenchymal stem cells alleviate white matter damage in neonatal rats by targeting the NLRP3 inflammasome.
Chao WANG ; Yan-Ping ZHU ; BAYIERCAICIKE ; Yu-Qing FENG ; Yan-Mei WANG
Chinese Journal of Contemporary Pediatrics 2025;27(9):1119-1127
OBJECTIVES:
To investigate whether mesenchymal stem cell-derived exosomes (MSC-Exo) alleviate white matter damage (WMD) in neonatal rats by targeting the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3).
METHODS:
Three-day-old Sprague-Dawley rats were randomly assigned to four groups: Sham, hypoxia-ischemia (HI), MSC-Exo, and MCC950 (NLRP3 inhibitor) (n=24 per group). The WMD model was established by unilateral common carotid artery ligation combined with hypoxia. Exosomes (1×108 particles/μL) were transplanted into the lateral ventricle using stereotaxic guidance. Fourteen days after modeling, hematoxylin-eosin staining was used to observe pathological changes in brain tissue, and transmission electron microscopy was used to assess myelinated axons. Western blotting was performed to detect the expression of myelin basic protein (MBP), NLRP3, caspase-1, and interleukin-1β (IL-1β). Immunohistochemistry was used to measure NLRP3, caspase-1, and IL-1β expression. Twenty-eight days post-modeling, behavioral changes were evaluated using the Morris water maze.
RESULTS:
In the HI group, marked inflammatory cell infiltration, extensive vacuolation, and decreased numbers of myelinated axons were observed compared to the Sham group. The MSC-Exo group showed reduced inflammatory infiltration, fewer vacuoles, and increased myelinated axons compared to the HI group, while the MCC950 group showed nearly normal cell morphology. Compared to the Sham group, the HI group exhibited decreased MBP expression, fewer platform crossings, shorter time in the target quadrant, increased expression of NLRP3, caspase-1, and IL-1β, and longer escape latency (all P<0.05). Compared to the HI group, the MSC-Exo and MCC950 groups showed increased MBP expression, more platform crossings, longer target quadrant stay, and reduced NLRP3, caspase-1, and IL-1β expression, as well as shorter escape latency (all P<0.05).
CONCLUSIONS
MSC-Exo may attenuate white matter damage in neonatal rats by targeting the NLRP3 inflammasome and promoting oligodendrocyte maturation.
Animals
;
NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors*
;
Rats, Sprague-Dawley
;
White Matter/pathology*
;
Inflammasomes/physiology*
;
Rats
;
Animals, Newborn
;
Mesenchymal Stem Cells
;
Interleukin-1beta/analysis*
;
Male
;
Caspase 1/analysis*
;
Hypoxia-Ischemia, Brain/therapy*
;
Myelin Basic Protein/analysis*
2.Eye acupuncture improves neural function in rats with cerebral ischemia-reperfusion injury by promoting angiogenesis via upregulating METTL3-mediated m6A methylation.
Yanpeng PU ; Zhen WANG ; Haoran CHU
Journal of Southern Medical University 2025;45(5):921-928
OBJECTIVES:
To evaluate the effect of eye acupuncture on neural function and angiogenesis of ischemic cerebral tissue in rats, and explore the roles of METTL3-mediated m6A methylation and the HIF-1α/VEGF-A signal axis in mediating this effect.
METHODS:
Fifty SD rats were randomized into normal control group, sham-operated group, model group, eye acupuncture group and DMOG (a HIF-1α agonist) group. Rat models of cerebral ischemia/reperfusion injury (CIRI) were established using a modified thread thrombus method, and the changes in neurological deficits of the rats after interventions were evaluated. TTC and Nissl staining were used to examine the changes in infarction size and neuronal injury, and cerebral angiogenesis was detected by double-immunofluorescence staining. m6A methylation modification level in the brain tissue was detected by ELISA, and RT-qPCR and Western blotting were used to detect the mRNA and protein expressions of METTL3 and HIF-1α/VEGF-A.
RESULTS:
Compared with the control and sham-operated rats, the CIRI rats had significantly higher neurological deficit scores with larger cerebral infarction area, a greater number of CD31- and EDU-positive new vessels, higher expression levels of HIF-1α and VEGF-A, reduced number of Nissl bodies and m6A methylation level, and lowered METTL3 protein and mRNA expressions. All these changes were significantly improved by interventions with eye acupuncture after modeling or intraperitoneal injections of DMOG for 7 consecutive days prior to modeling, and the effects of the two interventions were similar.
CONCLUSIONS
Eye acupuncture can improve neurological deficits in CIRI rat models possibly by promoting cortical angiogenesis via upregulating METTL3-mediated m6A methylation and regulating the HIF-1α/VEGF-A signal axis.
Animals
;
Rats, Sprague-Dawley
;
Methyltransferases/metabolism*
;
Reperfusion Injury/physiopathology*
;
Methylation
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Rats
;
Vascular Endothelial Growth Factor A/metabolism*
;
Brain Ischemia/metabolism*
;
Acupuncture Therapy
;
Male
;
Up-Regulation
;
Neovascularization, Physiologic
;
Angiogenesis
;
Adenosine/analogs & derivatives*
3.Gastrodin inhibits ferroptosis to alleviate hypoxic-ischemic brain damage in neonatal mice by activating GPX4/SLC7A11/FTH1 signaling.
Tao GUO ; Bolin CHEN ; Jinsha SHI ; Xianfeng KUANG ; Tengyue YU ; Song WEI ; Xiong LIU ; Rong XIAO ; Juanjuan LI
Journal of Southern Medical University 2025;45(10):2071-2081
OBJECTIVES:
To evaluate the therapeutic effect of gastrodin against hypoxic-ischemic brain damage (HIBD) in neonatal mice and explore the role of GPX4/SLC7A11/FTH1 signaling in mediating its effect.
METHODS:
Twenty-four 9- to 11-day-old C57BL/6J mice were randomized equally into 4 groups for sham operation, HIBD modeling by right common carotid artery ligation and subsequent exposure to hypoxia for 1 h, or gastrodin treatment at 100 or 200 mg/kg before and at 1 and 2 days after modeling. The mice then underwent neurological assessment (Zea-Longa scores), and the cerebral cortical penumbra tissue were collected for HE and Nissl staining, detection of ferroptosis biomarkers and protein expressions of GPX4, SLC7A11, and FTH1 with Western blotting and immunofluorescence co-localization, and observation of mitochondrial ultrastructure with electron microscopy. In cultured HT22 neuronal cells with oxygen-glucose deprivation (OGD) for 2 h, the effects of pretreatments with 0.5 mmol/L gastrodin, 10 μmol/L RSL3 (a GPX4 inhibitor), alone or in combination, were analyzed on expressions of ferroptosis-related proteins, cellular Fe²⁺, ROS, lipid peroxidation, MDA, and GSH levels, mitochondrial membrane potential (JC-1), and cell viability.
RESULTS:
Gastrodin treatment at the two doses both significantly ameliorated HIBD and neurological deficits of the mice, reduced mitochondrial damage and Fe²⁺, MDA and ROS levels, increased GSH level, and upregulated GPX4, SLC7A11, and FTH1 protein expressions. In HT22 cells, gastrodin pretreatment obviously attenuated OGD-induced ferroptosis and improved cell viability and mitochondrial function. Co-treatment with RSL3 potently abrogated the inhibitory effects of gastrodin on Fe²⁺, ROS, BODIPY-C11, and MDA levels and attenuated its protective effects on GSH level, cell viability, and mitochondrial membrane potential.
CONCLUSIONS
Gastrodin provides neuroprotective effects in neonatal mice with HIBD by suppressing neuronal ferroptosis via upregulating the GPX4/SLC7A11/FTH1 signaling pathway.
Animals
;
Ferroptosis/drug effects*
;
Hypoxia-Ischemia, Brain/drug therapy*
;
Mice
;
Mice, Inbred C57BL
;
Signal Transduction/drug effects*
;
Phospholipid Hydroperoxide Glutathione Peroxidase
;
Glucosides/pharmacology*
;
Animals, Newborn
;
Benzyl Alcohols/pharmacology*
;
Amino Acid Transport System y+/metabolism*
4.Engineered Extracellular Vesicles Loaded with MiR-100-5p Antagonist Selectively Target the Lesioned Region to Promote Recovery from Brain Damage.
Yahong CHENG ; Chengcheng GAI ; Yijing ZHAO ; Tingting LI ; Yan SONG ; Qian LUO ; Danqing XIN ; Zige JIANG ; Wenqiang CHEN ; Dexiang LIU ; Zhen WANG
Neuroscience Bulletin 2025;41(6):1021-1040
Hypoxic-ischemic (HI) brain damage poses a high risk of death or lifelong disability, yet effective treatments remain elusive. Here, we demonstrated that miR-100-5p levels in the lesioned cortex increased after HI insult in neonatal mice. Knockdown of miR-100-5p expression in the brain attenuated brain injury and promoted functional recovery, through inhibiting the cleaved-caspase-3 level, microglia activation, and the release of proinflammation cytokines following HI injury. Engineered extracellular vesicles (EVs) containing neuron-targeting rabies virus glycoprotein (RVG) and miR-100-5p antagonists (RVG-EVs-Antagomir) selectively targeted brain lesions and reduced miR-100-5p levels after intranasal delivery. Both pre- and post-HI administration showed therapeutic benefits. Mechanistically, we identified protein phosphatase 3 catalytic subunit alpha (Ppp3ca) as a novel candidate target gene of miR-100-5p, inhibiting c-Fos expression and neuronal apoptosis following HI insult. In conclusion, our non-invasive method using engineered EVs to deliver miR-100-5p antagomirs to the brain significantly improves functional recovery after HI injury by targeting Ppp3ca to suppress neuronal apoptosis.
Animals
;
MicroRNAs/metabolism*
;
Extracellular Vesicles/metabolism*
;
Mice
;
Recovery of Function/physiology*
;
Hypoxia-Ischemia, Brain/therapy*
;
Mice, Inbred C57BL
;
Antagomirs/administration & dosage*
;
Male
;
Animals, Newborn
;
Apoptosis/drug effects*
;
Brain Injuries/metabolism*
;
Glycoproteins
;
Peptide Fragments
;
Viral Proteins
5.A neonatal intelligent regulation system based on the combination of mild hypothermia mattress and hyperbaric oxygen chamber: introduction to a patent.
Ming-Xing ZHU ; Jun-Yu JI ; Xin WANG ; Shi-Xiong CHEN ; Wei-Min HUANG
Chinese Journal of Contemporary Pediatrics 2023;25(1):86-90
Neonatal hypoxic-ischemic encephalopathy (HIE) is a common disease that affects brain function in neonates. At present, mild hypothermia and hyperbaric oxygen therapy are the main methods for the treatment of neonatal HIE; however, they are independent of each other and cannot be combined for synchronous treatment, without monitoring of brain function-related physiological information. In addition, parameter setting of hyperbaric oxygen chamber and mild hypothermia mattress relies on the experience of the medical practitioner, and the parameters remain unchanged throughout the medical process. This article proposes a new device for the treatment of neonatal HIE, which has the modules of hyperbaric oxygen chamber and mild hypothermic mattress, so that neonates can receive the treatment of hyperbaric oxygen chamber and/or mild hypothermic mattress based on their conditions. Meanwhile, it can realize the real-time monitoring of various physiological information, including amplitude-integrated electroencephalogram, electrocardiogram, and near-infrared spectrum, which can monitor brain function, heart rate, rhythm, myocardial blood supply, hemoglobin concentration in brain tissue, and blood oxygen saturation. In combination with an intelligent control algorithm, the device can intelligently regulate parameters according to the physiological information of neonates and give recommendations for subsequent treatment.
Infant, Newborn
;
Humans
;
Hypothermia, Induced/methods*
;
Hypothermia/therapy*
;
Hyperbaric Oxygenation
;
Brain
;
Electroencephalography
;
Hypoxia-Ischemia, Brain/therapy*
6.Research research on the use of melatonin in combination with therapeutic hypothermia for the treatment of neonatal hypoxic-ischemic encephalopathy.
Chinese Journal of Contemporary Pediatrics 2023;25(8):864-869
Neonatal hypoxic-ischemic encephalopathy (HIE) remains one of the leading causes of death and long-term neurodevelopmental disorders in full-term neonates, and there is currently no curative treatment. Therapeutic hypothermia is now a standard therapy for HIE in the neonatal intensive care unit, but its safety and efficacy in remote areas remains unclear. Melatonin is an indole endocrine hormone mainly produced by the pineal gland and it has the ability to easily penetrate the blood-brain barrier. Through receptor and non-receptor mechanisms, melatonin exerts anti-oxidative and anti-inflammatory effects and participates in the regulation of organelle function and the inhibition of cell death. Melatonin is considered one of the most promising drugs for the treatment of HIE based on its reliable safety profile and clinical/preclinical results. This article reviews the recent research on the use of melatonin in combination with therapeutic hypothermia for the treatment of neonatal HIE.
Infant, Newborn
;
Humans
;
Melatonin/therapeutic use*
;
Hypoxia-Ischemia, Brain/therapy*
;
Hypothermia, Induced
;
Intensive Care Units, Neonatal
7.Clinical efficacy of mild therapeutic hypothermia with different rewarming time on neonatal hypoxic-ischemic encephalopathy: a prospective randomized controlled study.
Yu-Xin LIN ; Xiao FENG ; Yi-Dan ZHANG ; Wan-Rong HONG ; Hong-Ying ZHAO
Chinese Journal of Contemporary Pediatrics 2023;25(4):350-356
OBJECTIVES:
To investigate the clinical efficacy of mild therapeutic hypothermia (MTH) with different rewarming time on neonatal hypoxic-ischemic encephalopathy (HIE).
METHODS:
A prospective study was performed on 101 neonates with HIE who were born and received MTH in Zhongshan Hospital, Xiamen University, from January 2018 to January 2022. These neonates were randomly divided into two groups: MTH1 group (n=50; rewarming for 10 hours at a rate of 0.25°C/h) and MTH2 group (n=51; rewarming for 25 hours at a rate of 0.10°C/h). The clinical features and the clinical efficacy were compared between the two groups. A binary logistic regression analysis was used to identify the factors influencing the occurrence of normal sleep-wake cycle (SWC) on amplitude-integrated electroencephalogram (aEEG) at 25 hours of rewarming.
RESULTS:
There were no significant differences between the MTH1 and MTH2 groups in gestational age, 5-minute Apgar score, and proportion of neonates with moderate/severe HIE (P>0.05). Compared with the MTH2 group, the MTH1 group tended to have a normal arterial blood pH value at the end of rewarming, a significantly shorter duration of oxygen dependence, a significantly higher proportion of neonates with normal SWC on aEEG at 10 and 25 hours of rewarming, and a significantly higher Neonatal Behavioral Neurological Assessment score on days 5, 12, and 28 after birth (P<0.05), while there was no significant difference in the incidence rate of rewarming-related seizures between the two groups (P>0.05). There were no significant differences between the two groups in the incidence rate of neurological disability at 6 months of age and the score of Bayley Scale of Infant Development at 3 and 6 months of age (P>0.05). The binary logistic regression analysis showed that prolonged rewarming time (25 hours) was not conducive to the occurrence of normal SWC (OR=3.423, 95%CI: 1.237-9.469, P=0.018).
CONCLUSIONS
Rewarming for 10 hours has a better short-term clinical efficacy than rewarming for 25 hours. Prolonging rewarming time has limited clinical benefits on neonates with moderate/severe HIE and is not conducive to the occurrence of normal SWC, and therefore, it is not recommended as a routine treatment method.
Infant, Newborn
;
Infant
;
Child
;
Humans
;
Child, Preschool
;
Prospective Studies
;
Rewarming
;
Hypoxia-Ischemia, Brain/therapy*
;
Hypothermia, Induced/methods*
;
Treatment Outcome
;
Electroencephalography/methods*
8.AD-16 Protects Against Hypoxic-Ischemic Brain Injury by Inhibiting Neuroinflammation.
Zhihua HUANG ; Zhengwei LUO ; Andrea OVCJAK ; Jiangfan WAN ; Nai-Hong CHEN ; Wenhui HU ; Hong-Shuo SUN ; Zhong-Ping FENG
Neuroscience Bulletin 2022;38(8):857-870
Neuroinflammation is a key contributor to the pathogenic cascades induced by hypoxic-ischemic (HI) insult in the neonatal brain. AD-16 is a novel anti-inflammatory compound, recently found to exert potent inhibition of the lipopolysaccharide-induced production of pro-inflammatory and neurotoxic mediators. In this study, we evaluated the effect of AD-16 on primary astrocytes and neurons under oxygen-glucose deprivation (OGD) in vitro and in mice with neonatal HI brain injury in vivo. We demonstrated that AD-16 protected against OGD-induced astrocytic and neuronal cell injury. Single dose post-treatment with AD-16 (1 mg/kg) improved the neurobehavioral outcome and reduced the infarct volume with a therapeutic window of up to 6 h. Chronic administration reduced the mortality rate and preserved whole-brain morphology following neonatal HI. The in vitro and in vivo effects suggest that AD-16 offers promising therapeutic efficacy in attenuating the progression of HI brain injury and protecting against the associated mortality and morbidity.
Animals
;
Animals, Newborn
;
Astrocytes/pathology*
;
Brain/pathology*
;
Brain Injuries/pathology*
;
Glucose
;
Hypoxia
;
Hypoxia-Ischemia, Brain/drug therapy*
;
Mice
;
Neuroinflammatory Diseases
;
Neuroprotective Agents/therapeutic use*
;
Oxygen/therapeutic use*
10.Resveratrol promotes the survival and neuronal differentiation of hypoxia-conditioned neuronal progenitor cells in rats with cerebral ischemia.
Yao YAO ; Rui ZHOU ; Rui BAI ; Jing WANG ; Mengjiao TU ; Jingjing SHI ; Xiao HE ; Jinyun ZHOU ; Liu FENG ; Yuanxue GAO ; Fahuan SONG ; Feng LAN ; Xingguo LIU ; Mei TIAN ; Hong ZHANG
Frontiers of Medicine 2021;15(3):472-485
Hypoxia conditioning could increase the survival of transplanted neuronal progenitor cells (NPCs) in rats with cerebral ischemia but could also hinder neuronal differentiation partly by suppressing mitochondrial metabolism. In this work, the mitochondrial metabolism of hypoxia-conditioned NPCs (hcNPCs) was upregulated via the additional administration of resveratrol, an herbal compound, to resolve the limitation of hypoxia conditioning on neuronal differentiation. Resveratrol was first applied during the in vitro neuronal differentiation of hcNPCs and concurrently promoted the differentiation, synaptogenesis, and functional development of neurons derived from hcNPCs and restored the mitochondrial metabolism. Furthermore, this herbal compound was used as an adjuvant during hcNPC transplantation in a photothrombotic stroke rat model. Resveratrol promoted neuronal differentiation and increased the long-term survival of transplanted hcNPCs. 18-fluorine fluorodeoxyglucose positron emission tomography and rotarod test showed that resveratrol and hcNPC transplantation synergistically improved the neurological and metabolic recovery of stroke rats. In conclusion, resveratrol promoted the neuronal differentiation and therapeutic efficiency of hcNPCs in stroke rats via restoring mitochondrial metabolism. This work suggested a novel approach to promote the clinical translation of NPC transplantation therapy.
Animals
;
Brain Ischemia/drug therapy*
;
Cell Differentiation
;
Hypoxia
;
Neurons
;
Rats
;
Resveratrol/pharmacology*

Result Analysis
Print
Save
E-mail