1.Activation of astrocytes in the dorsomedial hypothalamus accelerates sevoflurane anesthesia emergence in mice.
Shuting GUO ; Fuyang CAO ; Yongxin GUO ; Yanxiang LI ; Xinyu HAO ; Zhuoning ZHANG ; Zhikang ZHOU ; Li TONG ; Jiangbei CAO
Journal of Southern Medical University 2025;45(4):751-759
OBJECTIVES:
To investigate the regulatory role of astrocytes in the dorsomedial hypothalamus (DMH) during sevoflurane anesthesia emergence.
METHODS:
Forty-two male C57BL/6 mice were randomized into 6 groups (n=7) for assessing astrocyte activation in the dorsomedial hypothalamus (DMH) under sevoflurane anesthesia. Two groups of mice received microinjection of agfaABC1D promoter-driven AAV2 vector into the DMH for GCaMP6 overexpression, and the changes in astrocyte activity during sevoflurane or air inhalation were recorded using calcium imaging. For assessing optogenetic activation of astrocytes, another two groups of mice received microinjection of an optogenetic virus or a control vector into the DMH with optic fiber implantation, and sevoflurane anesthesia emergence was compared using behavioral experiments. In the remaining two groups, electroencephalogram (EEG) recording during sevoflurane anesthesia emergence was conducted after injection of the hChR2-expressing and control vectors. Anesthesia induction and recovery were assessed by observing the righting reflex. EEG data were recorded under 2.0% sevoflurane to calculate the burst suppression ratio (BSR) and under 1.5% sevoflurane for power spectrum analysis. Immunofluorescence staining was performed to visualize the colocalization of GFAP-positive astrocytes with viral protein signals.
RESULTS:
Astrocyte activity in the DMH decreased progressively as sevoflurane concentration increased. During 2.0% sevoflurane anesthesia, the mice injected with the ChR2-expressing virus exhibited a significantly shortened wake-up time (P<0.05), and optogenetic activation of the DMH astrocytes led to a marked reduction in BSR (P<0.001). Under 1.5% sevoflurane anesthesia, optogenetic activation resulted in a significant increase in EEG gamma power and a significant decrease in delta power in ChR2 group (P<0.01).
CONCLUSIONS
Optogenetic activation of DMH astrocytes facilitates sevoflurane anesthesia emergence but does not significantly influence anesthesia induction. These findings offer new insights into the mechanisms underlying anesthesia emergence and may provide a potential target for accelerating postoperative recovery and managing anesthesia-related complications.
Animals
;
Astrocytes/physiology*
;
Sevoflurane
;
Mice, Inbred C57BL
;
Mice
;
Male
;
Electroencephalography
;
Anesthetics, Inhalation/pharmacology*
;
Hypothalamus/cytology*
;
Anesthesia Recovery Period
;
Methyl Ethers/pharmacology*
2.Neuronal Regulation of Feeding and Energy Metabolism: A Focus on the Hypothalamus and Brainstem.
Jing CHEN ; Meiting CAI ; Cheng ZHAN
Neuroscience Bulletin 2025;41(4):665-675
In the face of constantly changing environments, the central nervous system (CNS) rapidly and accurately calculates the body's needs, regulates feeding behavior, and maintains energy homeostasis. The arcuate nucleus of the hypothalamus (ARC) plays a key role in this process, serving as a critical brain region for detecting nutrition-related hormones and regulating appetite and energy homeostasis. Agouti-related protein (AgRP)/neuropeptide Y (NPY) neurons in the ARC are core elements that interact with other brain regions through a complex appetite-regulating network to comprehensively control energy homeostasis. In this review, we explore the discovery and research progress of AgRP neurons in regulating feeding and energy metabolism. In addition, recent advances in terms of feeding behavior and energy homeostasis, along with the redundant neural mechanisms involved in energy metabolism, are discussed. Finally, the challenges and opportunities in the field of neural regulation of feeding and energy metabolism are briefly discussed.
Energy Metabolism/physiology*
;
Animals
;
Humans
;
Hypothalamus/metabolism*
;
Neurons/metabolism*
;
Feeding Behavior/physiology*
;
Brain Stem/metabolism*
;
Agouti-Related Protein/metabolism*
;
Homeostasis/physiology*
;
Neuropeptide Y/metabolism*
3.Complexity of the Hypothalamic Oxytocin System and its Involvement in Brain Functions and Diseases.
Neuroscience Bulletin 2025;41(7):1267-1288
Oxytocin is classically termed a 'prosocial neuropeptide' because of its evolutionarily conserved role in promoting affiliative behaviors. Endogenous oxytocin is mainly synthesized by hypothalamic oxytocin neurons and signals through oxytocin receptors (OxtRs). Recent studies with cell type-specific and circuit-specific interrogation have uncovered that oxytocin signals exert pleiotropic neuromodulatory effects through anatomically widespread axonal projections and ubiquitously distributed OxtRs. Dysfunctions of oxytocin signals are closely relevant to brain disorders/diseases. While intranasal oxytocin administration has been demonstrated to be one potential strategy to alleviate some brain disorders/diseases, such as autism, obesity, and anxiety, conflicting clinical outcomes highlight the imperative for precision-targeted neuromodulation strategies. Dissecting the molecular, cellular, and neural circuitry mechanisms underlying oxytocinergic modulation is a prerequisite to achieving this goal. This review provides an overview of the current understanding of the oxytocin system in terms of anatomical structure, neuronal modulation, and signal pathways, and discusses the modulatory roles of oxytocin in social, feeding, emotional, and sensory-related brain functions and brain diseases.
Oxytocin/metabolism*
;
Humans
;
Animals
;
Hypothalamus/physiology*
;
Brain/physiology*
;
Brain Diseases/physiopathology*
;
Receptors, Oxytocin/metabolism*
4.Interaction of olfaction and feeding behavior and its neural mechanism.
Acta Physiologica Sinica 2022;74(2):276-282
Olfaction and food intake are interrelated and regulated. In the process of feeding, the metabolic signals in the body and the feeding signals produced by food stimulation are first sensed by the arcuate nucleus of hypothalamus and the nucleus tractus solitarius of brain stem, and then these neurons project to the paraventricular nucleus of hypothalamus. The paraventricular nucleus transmits the signals to other brain regions related to feeding and regulates feeding behavior. In this process, olfactory signals can be transmitted to hypothalamus through olfactory bulb and olfactory cortex to regulate feeding behavior. At the same time, gastrointestinal hormones (ghrelin, insulin, leptin, etc.) and some neurotransmitters (acetylcholine, norepinephrine, serotonin, endocannabinoid, etc.) produced in the process of feeding act on the olfactory system to regulate olfactory function, which in turn affects the feeding itself. This review summaries the research progress of the interaction between olfaction and food intake and its internal mechanism from the aspects of neuronal and hormonal regulation.
Arcuate Nucleus of Hypothalamus/metabolism*
;
Feeding Behavior/physiology*
;
Hypothalamus
;
Paraventricular Hypothalamic Nucleus
;
Smell
5.Sleep deprivation affects sex hormones secretion by regulating the expression of the circadian clock gene in the hypothalamus and pituitary via the PI3K/Akt signaling pathway in pregnant rats.
Acta Physiologica Sinica 2022;74(4):534-540
Sleep deprivation (SD) has many deleterious health effects and occurs in more than 70% of pregnant women. However, the changes in sex hormones and relevant mechanisms after SD have not been well clarified. The aim of the present study was to explore the effects of SD on the secretion of sex hormones and the underlying mechanisms. Twelve pregnant Wistar rats were divided into control (CON, n = 6) and SD (n = 6) groups. Pregnant rats in the SD group were deprived of sleep for 18 h, and allowed free rest for 6 h, and then the above procedures were repeated until delivery. The CON group lived in a 12 h light/dark light cycle environment. Estradiol (E2) and progesterone (P4) levels were detected by enzyme-linked immunosorbent assay (ELISA), and the expression of circadian clock genes, Bmal1, Clock and Per2, in hypothalamus and pituitary gland tissues were evaluated by immunohistochemistry (IHC) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The PI3K and Akt phosphorylation levels in the hypothalamic and pituitary tissues were determined by Western blot. The results showed that, compared with the CON group, the SD group exhibited significantly reduced serum E2 and P4 levels, down-regulated Bmal1, Clock and Per2 expression, as well as decreased phosphorylation levels of PI3K and Akt. But there was no significant difference of the total PI3K and Akt protein expression levels between the two groups. These results suggest that SD might affect the expression of the circadian clock genes in the hypothalamus and pituitary via PI3K/Akt pathway, and subsequently regulate the secretion of sex hormones in the pregnant rats, which hints the important roles of SD-induced changes of serum sex hormone levels in the pregnant rats.
ARNTL Transcription Factors/metabolism*
;
Animals
;
Circadian Clocks/physiology*
;
Circadian Rhythm/genetics*
;
Female
;
Gene Expression Regulation/genetics*
;
Gonadal Steroid Hormones/metabolism*
;
Hypothalamus/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Pituitary Gland/metabolism*
;
Pregnancy
;
Progesterone
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Rats
;
Rats, Wistar
;
Signal Transduction
;
Sleep Deprivation/metabolism*
6.Sexual Dimorphism of Inputs to the Lateral Habenula in Mice.
Xue LIU ; Hongren HUANG ; Yulin ZHANG ; Liping WANG ; Feng WANG
Neuroscience Bulletin 2022;38(12):1439-1456
The lateral habenula (LHb), which is a critical neuroanatomical hub and a regulator of midbrain monoaminergic centers, is activated by events resulting in negative valence and contributes to the expression of both appetitive and aversive behaviors. However, whole-brain cell-type-specific monosynaptic inputs to the LHb in both sexes remain incompletely elucidated. In this study, we used viral tracing combined with in situ hybridization targeting vesicular glutamate transporter 2 (vGlut2) and glutamic acid decarboxylase 2 (Gad2) to generate a comprehensive whole-brain atlas of inputs to glutamatergic and γ-aminobutyric acid (GABA)ergic neurons in the LHb. We found >30 ipsilateral and contralateral brain regions that projected to the LHb. Of these, there were significantly more monosynaptic LHb-projecting neurons from the lateral septum, anterior hypothalamus, dorsomedial hypothalamus, and ventromedial hypothalamus in females than in males. More interestingly, we found a stronger GABAergic projection from the medial septum to the LHb in males than in females. Our results reveal a comprehensive connectivity atlas of glutamatergic and GABAergic inputs to the LHb in both sexes, which may facilitate a better understanding of sexual dimorphism in physiological and pathological brain functions.
Animals
;
Male
;
Mice
;
Glutamic Acid/metabolism*
;
Habenula/metabolism*
;
Hypothalamus/metabolism*
;
Neural Pathways/physiology*
;
Sex Characteristics
;
Vesicular Glutamate Transport Protein 2/metabolism*
;
Female
7.Impaired Hypothalamic Regulation of Sympathetic Outflow in Primary Hypertension.
Jing-Jing ZHOU ; Hui-Jie MA ; Jian-Ying SHAO ; Hui-Lin PAN ; De-Pei LI
Neuroscience Bulletin 2019;35(1):124-132
The hypothalamic paraventricular nucleus (PVN) is a crucial region involved in maintaining homeostasis through the regulation of cardiovascular, neuroendocrine, and other functions. The PVN provides a dominant source of excitatory drive to the sympathetic outflow through innervation of the brainstem and spinal cord in hypertension. We discuss current findings on the role of the PVN in the regulation of sympathetic output in both normotensive and hypertensive conditions. The PVN seems to play a major role in generating the elevated sympathetic vasomotor activity that is characteristic of multiple forms of hypertension, including primary hypertension in humans. Recent studies in the spontaneously hypertensive rat model have revealed an imbalance of inhibitory and excitatory synaptic inputs to PVN pre-sympathetic neurons as indicated by impaired inhibitory and enhanced excitatory synaptic inputs in hypertension. This imbalance of inhibitory and excitatory synaptic inputs in the PVN forms the basis for elevated sympathetic outflow in hypertension. In this review, we discuss the disruption of balance between glutamatergic and GABAergic inputs and the associated cellular and molecular alterations as mechanisms underlying the hyperactivity of PVN pre-sympathetic neurons in hypertension.
Animals
;
Blood Pressure
;
physiology
;
Excitatory Postsynaptic Potentials
;
physiology
;
Humans
;
Hypertension
;
physiopathology
;
Hypothalamus
;
physiology
;
Neurons
;
physiology
;
Paraventricular Hypothalamic Nucleus
;
physiology
8.Mechanisms of histamine ameliorating memory impairment induced by pentylenetetrazole-kindling epilepsy in rats.
Lisan ZHANG ; Guanfeng CHEN ; Jiefang CHEN ; Xudong HE ; Xingyue HU
Journal of Zhejiang University. Medical sciences 2017;46(1):1-6
To investigate the effects of neuronal histamine on spatial memory acquisition impairment in rats with pentylenetetrazole-kindling epilepsy, and to explore its mechanisms.A subconvulsive dose of pentylenetetrazole (35 mg/kg) was intraperitoneally injected in rats every 48 h to induce chemical kindling until fully kindled. Morris water maze was used to measure the spatial memory acquisition of the rats one week after fully pentylenetetrazole-kindled, and the histamine contents in different brain areas were measured spectrofluorometrically. Different dosages of hitidine (the precursor of histamine), pyrilamine (H1 receptor antagonist), and zolantidine (H2 receptor antagonist) were intraperitoneally injected, and their effects on spatial memory acquisition of the rats were observed.Compared with control group, escape latencies were significantly prolonged on Morris water maze training day 2 and day 3 in pentylenetetrazole-kindling epilepsy rats (all<0.05); and the histamine contents in hippocampus, thalamus and hypothalamus were decreased significantly (all<0.05). Escape latencies were markedly shortened on day 3 by intraperitoneally injected with histidine 500 mg/kg, and on day 2 and day 3 by intraperitoneally injected with histidine 1000 mg/kg in pentylenetetrazole-kindling epilepsy rats (all<0.05). The protection of histidine was reversed by zolantidine (10 and 20 mg/kg), but not by pyrilamine.Neuronal histamine can improve the spatial memory acquisition impairment in rats with pentylenetetrazole-kindling epilepsy, and the activation of H2 receptors is possibly involved in the protective effects of histamine.
Animals
;
Benzothiazoles
;
pharmacology
;
Brain Chemistry
;
drug effects
;
Epilepsy
;
chemically induced
;
complications
;
Hippocampus
;
chemistry
;
Histamine H1 Antagonists
;
pharmacology
;
Histamine H2 Antagonists
;
pharmacology
;
Histidine
;
pharmacology
;
Hypothalamus
;
chemistry
;
Kindling, Neurologic
;
physiology
;
Memory Disorders
;
drug therapy
;
etiology
;
Pentylenetetrazole
;
Phenoxypropanolamines
;
pharmacology
;
Piperidines
;
pharmacology
;
Pyrilamine
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Histamine H2
;
drug effects
;
physiology
;
Spatial Memory
;
drug effects
;
Spectrometry, Fluorescence
;
Thalamus
;
chemistry
9.Experimental research on substance P content of hypothalamus and dorsal root ganglia in rats with lumbar vertebrae Gucuofeng model.
Bo CHEN ; Xun LIN ; Jian PANG ; Ling-jun KONG ; Hong-sheng ZHAN ; Ying-wu CHENG ; Yin-yu SHI
China Journal of Orthopaedics and Traumatology 2015;28(1):75-77
OBJECTIVETo detect the effects of lumbar vertebrae Gucuofeng on the substance P content of hypothalamus and dorsal root ganglia in rat models.
METHODSA hundred and twenty SPF level SD male rats with the weight of 350 to 450 g were randomly divided into rotary fixation group (RF group), simple fixation group (SF group) and sham-operation group (Sham group). The external link fixation system was implanted into the L4-L6 of rats in RF group and SF group; and in RF group, that the L5 spinous process was rotated to the right resulted in L4, L5, L6 spinous process not collinear; in SF group, the external link fixation system was simply implanted and not rotated. The rats of Sham group were not implanted the external link fixation system and only open and suture. The substance P content of hypothalamus and dorsal root ganglia were detected at 1, 4, 8, 12 weeks after operation.
RESULTSSubstance P content of hypothalamus in RF group and SF group was lower than Sham group at 1, 4, 8 weeks after operation (P<0.05). Substance P content of dorsal root ganglia was higher than Sham group at 1, 4, 8, 12 weeks after operation (P<0.05). There was no significant differences in the substance P content of hypothalamus among three groups at 12 weeks after operation (P>0.05).
CONCLUSIONLumbar vertebrae Gucuofeng can inhibit the analgesic activity of substance P in hypothalamus and promote the synthesis and transmission of substance P in dorsal root ganglia, so as to cause or aggravate the pain.
Animals ; Disease Models, Animal ; Ganglia, Spinal ; chemistry ; Hypothalamus ; chemistry ; Joint Dislocations ; metabolism ; Lumbar Vertebrae ; injuries ; Male ; Rats ; Rats, Sprague-Dawley ; Substance P ; analysis ; physiology
10.Induced differentiation of stem cells into androgen-secreting cells.
National Journal of Andrology 2015;21(8):753-756
Leydig cells are the major source of androgens in males. Stem cells can be induced to differentiate into androgen-secreting Leydig like cells, whose functions are regulated by the hypothalamus and pituitary, so that they precisely secret the necessary hormones to maintain physiological function. Therefore, the establishment of an effective protocol to induce the differentiation of stem cells into androgen-secreting cells is very helpful for the treatment of hypogonadism caused by abnormalities of Leydig cells. This review outlines the recent findings concerning the differentiation of stem cells into androgen-secreting cells.
Androgens
;
secretion
;
Cell Differentiation
;
physiology
;
Humans
;
Hypogonadism
;
therapy
;
Hypothalamus
;
physiology
;
Male
;
Pituitary Gland
;
physiology
;
Stem Cells
;
cytology
;
secretion

Result Analysis
Print
Save
E-mail