1.Hypothalamic-Modified New Hippocampal Neurons for Alzheimer's Disease.
Neuroscience Bulletin 2023;39(11):1735-1737
2.Effect of electroacupuncture on protein expressions of SOCS3 and IRS-1 in hypothalamus and pancreas islet morphology in diabetic fatty rats.
Shu-Ting ZHUANG ; Rui LI ; Shan-Shan SONG ; Hao-Ru DUAN ; Qiu-Yan LI
Chinese Acupuncture & Moxibustion 2022;42(9):1024-1028
OBJECTIVE:
To observe the effect of electroacupuncture (EA) on protein expressions of suppressor of cytokine signaling 3 (SOCS3) and insulin receptor substrate-1 (IRS-1) in hypothalamus and morphology of pancreas islet in Zucker diabetic fatty (ZDF) rats, and to explore its possible mechanism on improving plasma glucose and insulin resistance of type 2 diabetes mellitus (T2DM).
METHODS:
Twelve SPF male ZDF rats were selected and fed with high-fat diet for 4 weeks to establish the T2DM model, after modeling, the rats were randomly divided into a model group and an EA group, 6 rats in each one. Besides, 6 SPF male Zucker lean rats were selected as a blank group. In the EA group, EA was applied at "Pishu" (BL 20), "Weiwanxiashu" (EX-B 3), "Zusanli" (ST 36) and "Sanyinjiao" (SP 6), with continuous wave, 15 Hz in frequency, 2 mA in intensity, once a day, 20 min each time, 6 times a week for 4 weeks. The fasting plasma glucose (FPG) was measured before and after intervention. The serum level of fasting insulin (FINS) was measured by radioimmunoassay, and the homeostasis model assessment of insulin resistance index (HOMA-IR) was calculated; the morphological change of pancreas islets was observed by HE staining; the protein expressions of SOCS3 and IRS-1 in hypothalamus were detected by Western blot.
RESULTS:
Before intervention, compared with the blank group, FPG in the model group and the EA group was increased (P<0.01). After intervention, compared with the blank group, FPG, serum level of FINS and HOMA-IR were increased (P<0.01), the protein expression of SOCS3 was increased while IRS-1 was decreased in the hypothalamus in the model group (P<0.01). Compared with the model group, FPG, serum level of FINS and HOMA-IR were decreased (P<0.01), the protein expression of SOCS3 was decreased while IRS-1 was increased in the hypothalamus in the EA group (P<0.01). In the model group, the shape of pancreas islets was irregular, the area of pancreas islets and the number of islet β cell nuclei were decreased, the nuclei of islet β cell was compensatory enlargement. In the EA group, the shape and the area of pancreas islets and the number of islet β cell nuclei were improved, the compensatory increase of islet β cell nuclei was alleviated compared with the model group.
CONCLUSION
Electroacupuncture can reduce the fasting plasma glucose, improve the morphology of pancreas islets, and alleviate the insulin resistance in ZDF rats. The mechanism may relate to the down-regulation of SOCS3 and up-regulation of IRS-1 in the hypothalamus, and improving the function of hypothalamus in regulating peripheral glucose metabolism.
Acupuncture Points
;
Animals
;
Blood Glucose/metabolism*
;
Diabetes Mellitus, Type 2/therapy*
;
Electroacupuncture
;
Hypothalamus/metabolism*
;
Insulin Receptor Substrate Proteins/metabolism*
;
Insulin Resistance
;
Male
;
Pancreas/metabolism*
;
Rats
;
Rats, Zucker
;
Suppressor of Cytokine Signaling 3 Protein/metabolism*
3.Sleep deprivation affects sex hormones secretion by regulating the expression of the circadian clock gene in the hypothalamus and pituitary via the PI3K/Akt signaling pathway in pregnant rats.
Acta Physiologica Sinica 2022;74(4):534-540
Sleep deprivation (SD) has many deleterious health effects and occurs in more than 70% of pregnant women. However, the changes in sex hormones and relevant mechanisms after SD have not been well clarified. The aim of the present study was to explore the effects of SD on the secretion of sex hormones and the underlying mechanisms. Twelve pregnant Wistar rats were divided into control (CON, n = 6) and SD (n = 6) groups. Pregnant rats in the SD group were deprived of sleep for 18 h, and allowed free rest for 6 h, and then the above procedures were repeated until delivery. The CON group lived in a 12 h light/dark light cycle environment. Estradiol (E2) and progesterone (P4) levels were detected by enzyme-linked immunosorbent assay (ELISA), and the expression of circadian clock genes, Bmal1, Clock and Per2, in hypothalamus and pituitary gland tissues were evaluated by immunohistochemistry (IHC) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The PI3K and Akt phosphorylation levels in the hypothalamic and pituitary tissues were determined by Western blot. The results showed that, compared with the CON group, the SD group exhibited significantly reduced serum E2 and P4 levels, down-regulated Bmal1, Clock and Per2 expression, as well as decreased phosphorylation levels of PI3K and Akt. But there was no significant difference of the total PI3K and Akt protein expression levels between the two groups. These results suggest that SD might affect the expression of the circadian clock genes in the hypothalamus and pituitary via PI3K/Akt pathway, and subsequently regulate the secretion of sex hormones in the pregnant rats, which hints the important roles of SD-induced changes of serum sex hormone levels in the pregnant rats.
ARNTL Transcription Factors/metabolism*
;
Animals
;
Circadian Clocks/physiology*
;
Circadian Rhythm/genetics*
;
Female
;
Gene Expression Regulation/genetics*
;
Gonadal Steroid Hormones/metabolism*
;
Hypothalamus/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Pituitary Gland/metabolism*
;
Pregnancy
;
Progesterone
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Rats
;
Rats, Wistar
;
Signal Transduction
;
Sleep Deprivation/metabolism*
4.Sexual Dimorphism of Inputs to the Lateral Habenula in Mice.
Xue LIU ; Hongren HUANG ; Yulin ZHANG ; Liping WANG ; Feng WANG
Neuroscience Bulletin 2022;38(12):1439-1456
The lateral habenula (LHb), which is a critical neuroanatomical hub and a regulator of midbrain monoaminergic centers, is activated by events resulting in negative valence and contributes to the expression of both appetitive and aversive behaviors. However, whole-brain cell-type-specific monosynaptic inputs to the LHb in both sexes remain incompletely elucidated. In this study, we used viral tracing combined with in situ hybridization targeting vesicular glutamate transporter 2 (vGlut2) and glutamic acid decarboxylase 2 (Gad2) to generate a comprehensive whole-brain atlas of inputs to glutamatergic and γ-aminobutyric acid (GABA)ergic neurons in the LHb. We found >30 ipsilateral and contralateral brain regions that projected to the LHb. Of these, there were significantly more monosynaptic LHb-projecting neurons from the lateral septum, anterior hypothalamus, dorsomedial hypothalamus, and ventromedial hypothalamus in females than in males. More interestingly, we found a stronger GABAergic projection from the medial septum to the LHb in males than in females. Our results reveal a comprehensive connectivity atlas of glutamatergic and GABAergic inputs to the LHb in both sexes, which may facilitate a better understanding of sexual dimorphism in physiological and pathological brain functions.
Animals
;
Male
;
Mice
;
Glutamic Acid/metabolism*
;
Habenula/metabolism*
;
Hypothalamus/metabolism*
;
Neural Pathways/physiology*
;
Sex Characteristics
;
Vesicular Glutamate Transport Protein 2/metabolism*
;
Female
5.The hypothalamus for whole-body physiology: from metabolism to aging.
Tiemin LIU ; Yong XU ; Chun-Xia YI ; Qingchun TONG ; Dongsheng CAI
Protein & Cell 2022;13(6):394-421
Obesity and aging are two important epidemic factors for metabolic syndrome and many other health issues, which contribute to devastating diseases such as cardiovascular diseases, stroke and cancers. The brain plays a central role in controlling metabolic physiology in that it integrates information from other metabolic organs, sends regulatory projections and orchestrates the whole-body function. Emerging studies suggest that brain dysfunction in sensing various internal cues or processing external cues may have profound effects on metabolic and other physiological functions. This review highlights brain dysfunction linked to genetic mutations, sex, brain inflammation, microbiota, stress as causes for whole-body pathophysiology, arguing brain dysfunction as a root cause for the epidemic of aging and obesity-related disorders. We also speculate key issues that need to be addressed on how to reveal relevant brain dysfunction that underlines the development of these disorders and diseases in order to develop new treatment strategies against these health problems.
Aging
;
Brain/metabolism*
;
Energy Metabolism
;
Humans
;
Hypothalamus/metabolism*
;
Obesity/metabolism*
6.Xiaoyao San, a Chinese herbal formula, ameliorates depression-like behavior in mice through the AdipoR1/AMPK/ACC pathway in hypothalamus.
Kai-Rui TANG ; Xiao-Wei MO ; Xing-Yi ZHOU ; Yue-Yue CHEN ; Dong-Dong LIU ; Liang-Liang HE ; Qing-Yu MA ; Xiao-Juan LI ; Jia-Xu CHEN
Journal of Integrative Medicine 2022;20(5):442-452
OBJECTIVE:
Depression and metabolic disorders have overlapping psychosocial and pathophysiological causes. Current research is focused on the possible role of adiponectin in regulating common biological mechanisms. Xiaoyao San (XYS), a classic Chinese medicine compound, has been widely used in the treatment of depression and can alleviate metabolic disorders such as lipid or glucose metabolism disorders. However, the ability of XYS to ameliorate depression-like behavior as well as metabolic dysfunction in mice and the underlying mechanisms are unclear.
METHODS:
An in vivo animal model of depression was established by chronic social defeat stress (CSDS). XYS and fluoxetine were administered by gavage to the drug intervention group. Depression-like behaviors were analyzed by the social interaction test, open field test, forced swim test, and elevated plus maze test. Glucose levels were measured using the oral glucose tolerance test. The involvement of certain molecules was validated by immunofluorescence, histopathology, and Western blotting. In vitro, hypothalamic primary neurons were exposed to high glucose to induce neuronal damage, and the neuroprotective effect of XYS was evaluated by cell counting kit-8 assay. Immunofluorescence and Western blotting were used to evaluate the influences of XYS on adiponectin receptor 1 (AdipoR1), adenosine 5'-monophosphate-activated protein kinase (AMPK), acetyl-coenzyme A carboxylase (ACC) and other related proteins.
RESULTS:
XYS ameliorated CSDS-induced depression-like behaviors and glucose tolerance impairment in mice and increased the level of serum adiponectin. XYS also restored Nissl bodies in hypothalamic neurons in mice that exhibited depression-like behaviors and decreased the degree of neuronal morphological damage. In vivo and in vitro studies indicated that XYS increased the expression of AdipoR1 in hypothalamic neurons.
CONCLUSION
Adiponectin may be a key regulator linking depression and metabolic disorders; regulation of the hypothalamic AdipoR1/AMPK/ACC pathway plays an important role in treatment of depression by XYS.
AMP-Activated Protein Kinases/metabolism*
;
Acetyl-CoA Carboxylase/metabolism*
;
Adiponectin/metabolism*
;
Animals
;
Antidepressive Agents/pharmacology*
;
China
;
Depression/drug therapy*
;
Disease Models, Animal
;
Drugs, Chinese Herbal/therapeutic use*
;
Glucose
;
Hypothalamus/metabolism*
;
Mice
;
Receptors, Adiponectin/metabolism*
7.Interaction of olfaction and feeding behavior and its neural mechanism.
Acta Physiologica Sinica 2022;74(2):276-282
Olfaction and food intake are interrelated and regulated. In the process of feeding, the metabolic signals in the body and the feeding signals produced by food stimulation are first sensed by the arcuate nucleus of hypothalamus and the nucleus tractus solitarius of brain stem, and then these neurons project to the paraventricular nucleus of hypothalamus. The paraventricular nucleus transmits the signals to other brain regions related to feeding and regulates feeding behavior. In this process, olfactory signals can be transmitted to hypothalamus through olfactory bulb and olfactory cortex to regulate feeding behavior. At the same time, gastrointestinal hormones (ghrelin, insulin, leptin, etc.) and some neurotransmitters (acetylcholine, norepinephrine, serotonin, endocannabinoid, etc.) produced in the process of feeding act on the olfactory system to regulate olfactory function, which in turn affects the feeding itself. This review summaries the research progress of the interaction between olfaction and food intake and its internal mechanism from the aspects of neuronal and hormonal regulation.
Arcuate Nucleus of Hypothalamus/metabolism*
;
Feeding Behavior/physiology*
;
Hypothalamus
;
Paraventricular Hypothalamic Nucleus
;
Smell
8.Bile acids regulate anorexigenic neuropeptide through p-STAT3-SOCS3 signaling in mouse hypothalamic cells.
Chunxiu CHEN ; Yong ZHOU ; Rongfeng HUANG ; Miaoran WANG ; Yue LI ; Jibin LI
Journal of Zhejiang University. Medical sciences 2020;40(7):1001-1007
OBJECTIVE:
To explore the effects of taurolithocholic acid (tLCA) and chenodeoxycholic acid (CDCA) on the expression of aorexigenic neuropeptide in mouse hypothalamus GT1-7 cells.
METHODS:
Mouse hypothalamic GT1-7 cells were treated with culture medium containing 10% FBS (control group, =3) or with 10 nmol/L, 100 nmol/L, 1 μmol/L and 10 μmol/L tLCA (tLCA group, =3) or CDCA (CDCA group, =3) for 12, 24 or 48 h. Real-time PCR was performed to determine the expression levels of proopiomelanocortin (POMC) mRNA in the cells, and the production levels of α-melanocyte-stimulating hormone (α-MSH) were assessed using an ELISA kit. Signal transduction and activator of transcription 3 phosphorylation (p-STAT3), threonine kinase phosphorylation (p-AKT), suppressor of cytokine signaling 3 (SOCS3), G protein-coupled bile acid receptor-1 (TGR5) and farnesoid X receptor (FXR) protein were detected by Western blotting.
RESULTS:
Western blotting results showed that mouse hypothalamic GT1-7 cells expressed two bile acid receptors, TGR5 and FXR, whose expressions were regulated by bile acids. Real-time PCR showed that the expression of POMC mRNA was significantly increased in the cells after treatment with 10 μmol/L tLCA or CDCA for 24 h. POMC-derived anorexigenic peptide α-MSH increased significantly in GT1-7 cells after treatment with 10 μmol/L tLCA or CDCA for 24 h. Treatment of the cells with tLCA or CDCA significantly increased the expressions of intracellular signaling proteins including p-STAT3, p-AKT and SOCS3.
CONCLUSIONS
Mouse hypothalamic GT1-7 cells express bile acid receptors TGR5 and FXR. Bile acids tLCA or CDCA can promote the expression of POMC mRNA and increase the production of the anorexigenic peptide α-MSH. The intracellular signaling proteins p-AKT, p-STAT3 and SOCS3 are likely involved in bile acid-induced anorexigenic peptide production.
Animals
;
Cell Line
;
Chenodeoxycholic Acid
;
pharmacology
;
Gene Expression Regulation
;
drug effects
;
Hypothalamus
;
cytology
;
Mice
;
Neuropeptides
;
genetics
;
metabolism
;
Pro-Opiomelanocortin
;
genetics
;
RNA, Messenger
;
genetics
;
STAT3 Transcription Factor
;
metabolism
;
Signal Transduction
;
drug effects
;
Suppressor of Cytokine Signaling 3 Protein
;
metabolism
;
Taurolithocholic Acid
;
pharmacology
;
alpha-MSH
;
genetics
9.Bile acids regulate anorexigenic neuropeptide through p-STAT3-SOCS3 signaling in mouse hypothalamic cells.
Chunxiu CHEN ; Yong ZHOU ; Rongfeng HUANG ; Miaoran WANG ; Yue LI ; Jibin LI
Journal of Southern Medical University 2020;40(7):1001-1007
OBJECTIVE:
To explore the effects of taurolithocholic acid (tLCA) and chenodeoxycholic acid (CDCA) on the expression of aorexigenic neuropeptide in mouse hypothalamus GT1-7 cells.
METHODS:
Mouse hypothalamic GT1-7 cells were treated with culture medium containing 10% FBS (control group, =3) or with 10 nmol/L, 100 nmol/L, 1 μmol/L and 10 μmol/L tLCA (tLCA group, =3) or CDCA (CDCA group, =3) for 12, 24 or 48 h. Real-time PCR was performed to determine the expression levels of proopiomelanocortin (POMC) mRNA in the cells, and the production levels of α-melanocyte-stimulating hormone (α-MSH) were assessed using an ELISA kit. Signal transduction and activator of transcription 3 phosphorylation (p-STAT3), threonine kinase phosphorylation (p-AKT), suppressor of cytokine signaling 3 (SOCS3), G protein-coupled bile acid receptor-1 (TGR5) and farnesoid X receptor (FXR) protein were detected by Western blotting.
RESULTS:
Western blotting results showed that mouse hypothalamic GT1-7 cells expressed two bile acid receptors, TGR5 and FXR, whose expressions were regulated by bile acids. Real-time PCR showed that the expression of POMC mRNA was significantly increased in the cells after treatment with 10 μmol/L tLCA or CDCA for 24 h. POMC-derived anorexigenic peptide α-MSH increased significantly in GT1-7 cells after treatment with 10 μmol/L tLCA or CDCA for 24 h. Treatment of the cells with tLCA or CDCA significantly increased the expressions of intracellular signaling proteins including p-STAT3, p-AKT and SOCS3.
CONCLUSIONS
Mouse hypothalamic GT1-7 cells express bile acid receptors TGR5 and FXR. Bile acids tLCA or CDCA can promote the expression of POMC mRNA and increase the production of the anorexigenic peptide α-MSH. The intracellular signaling proteins p-AKT, p-STAT3 and SOCS3 are likely involved in bile acid-induced anorexigenic peptide production.
Animals
;
Bile Acids and Salts
;
Chenodeoxycholic Acid
;
Hypothalamus
;
Mice
;
Neuropeptides
;
Phosphorylation
;
STAT3 Transcription Factor
;
Signal Transduction
;
Suppressor of Cytokine Signaling 3 Protein
10.Impaired Hypothalamic Regulation of Sympathetic Outflow in Primary Hypertension.
Jing-Jing ZHOU ; Hui-Jie MA ; Jian-Ying SHAO ; Hui-Lin PAN ; De-Pei LI
Neuroscience Bulletin 2019;35(1):124-132
The hypothalamic paraventricular nucleus (PVN) is a crucial region involved in maintaining homeostasis through the regulation of cardiovascular, neuroendocrine, and other functions. The PVN provides a dominant source of excitatory drive to the sympathetic outflow through innervation of the brainstem and spinal cord in hypertension. We discuss current findings on the role of the PVN in the regulation of sympathetic output in both normotensive and hypertensive conditions. The PVN seems to play a major role in generating the elevated sympathetic vasomotor activity that is characteristic of multiple forms of hypertension, including primary hypertension in humans. Recent studies in the spontaneously hypertensive rat model have revealed an imbalance of inhibitory and excitatory synaptic inputs to PVN pre-sympathetic neurons as indicated by impaired inhibitory and enhanced excitatory synaptic inputs in hypertension. This imbalance of inhibitory and excitatory synaptic inputs in the PVN forms the basis for elevated sympathetic outflow in hypertension. In this review, we discuss the disruption of balance between glutamatergic and GABAergic inputs and the associated cellular and molecular alterations as mechanisms underlying the hyperactivity of PVN pre-sympathetic neurons in hypertension.
Animals
;
Blood Pressure
;
physiology
;
Excitatory Postsynaptic Potentials
;
physiology
;
Humans
;
Hypertension
;
physiopathology
;
Hypothalamus
;
physiology
;
Neurons
;
physiology
;
Paraventricular Hypothalamic Nucleus
;
physiology

Result Analysis
Print
Save
E-mail