1.Comparison of glucose fluctuation between metformin combined with acarbose or sitagliptin in Chinese patients with type 2 diabetes: A multicenter, randomized, active-controlled, open-label, parallel design clinical trial.
Xiaoling CAI ; Suiyuan HU ; Chu LIN ; Jing WU ; Junfen WANG ; Zhufeng WANG ; Xiaomei ZHANG ; Xirui WANG ; Fengmei XU ; Ling CHEN ; Wenjia YANG ; Lin NIE ; Linong JI
Chinese Medical Journal 2025;138(9):1116-1125
BACKGROUND:
Alpha-glucosidase inhibitors or dipeptidyl peptidase-4 inhibitors are both hypoglycemia agents that specifically impact on postprandial hyperglycemia. We compared the effects of acarbose and sitagliptin add on to metformin on time in range (TIR) and glycemic variability (GV) in Chinese patients with type 2 diabetes mellitus through continuous glucose monitoring (CGM).
METHODS:
This study was a randomized, open-label, active-con-trolled, parallel-group trial conducted at 15 centers in China from January 2020 to August 2022. We recruited patients with type 2 diabetes aged 18-65 years with body mass index (BMI) within 19-40 kg/m 2 and hemoglobin A1c (HbA1c) between 6.5% and 9.0%. Eligible patients were randomized to receive either metformin combined with acarbose 100 mg three times daily or metformin combined with sitagliptin 100 mg once daily for 28 days. After the first 14-day treatment period, patients wore CGM and entered another 14-day treatment period. The primary outcome was the level of TIR after treatment between groups. We also performed time series decomposition, dimensionality reduction, and clustering using the CGM data.
RESULTS:
A total of 701 participants received either acarbose or sitagliptin treatment in combination with metformin. There was no statistically significant difference in TIR between the two groups. Time below range (TBR) and coefficient of variation (CV) levels in acarbose users were significantly lower than those in sitagliptin users. Median (25th percentile, 75th percentile) of TBR below target level <3.9 mmol/L (TBR 3.9 ): Acarbose: 0.45% (0, 2.13%) vs . Sitagliptin: 0.78% (0, 3.12%), P = 0.042; Median (25th percentile, 75th percentile) of TBR below target level <3.0 mmol/L (TBR 3.0 ): Acarbose: 0 (0, 0.22%) vs . Sitagliptin: 0 (0, 0.63%), P = 0.033; CV: Acarbose: 22.44 ± 5.08% vs . Sitagliptin: 23.96 ± 5.19%, P <0.001. By using time series analysis and clustering, we distinguished three groups of patients with representative metabolism characteristics, especially in GV (group with small wave, moderate wave and big wave). No significant difference was found in the complexity of glucose time series index (CGI) between acarbose users and sitagliptin users. By using time series analysis and clustering, we distinguished three groups of patients with representative metabolism characteristics, especially in GV.
CONCLUSIONS:
Acarbose had slight advantages over sitagliptin in improving GV and reducing the risk of hypoglycemia. Time series analysis of CGM data may predict GV and the risk of hypoglycemia.
TRIAL REGISTRATION
Chinese Clinical Trial Registry: ChiCTR2000039424.
Humans
;
Metformin/therapeutic use*
;
Sitagliptin Phosphate/therapeutic use*
;
Acarbose/therapeutic use*
;
Diabetes Mellitus, Type 2/blood*
;
Middle Aged
;
Male
;
Female
;
Adult
;
Blood Glucose/drug effects*
;
Hypoglycemic Agents/therapeutic use*
;
Aged
;
Glycated Hemoglobin/metabolism*
;
Adolescent
;
Young Adult
;
China
;
East Asian People
2.Research progress on dihydrochalcones from Lithocarpus litseifolius extracts in treatment of type 2 diabetes mellitus and its complications.
Yun-Qin WEI ; Yu-Lan CAI ; Yan YANG ; Shang-Heng FAN ; Lin-Li WU ; Gui-Lan NIE
China Journal of Chinese Materia Medica 2025;50(3):658-671
Type 2 diabetes mellitus(T2DM) is a prevalent metabolic and endocrine disorder. Long-term hyperglycemia can lead to severe chronic complications, imposing substantial economic burdens on both society and patients. Despite the availability of various hypoglycemic agents for clinical use, these agents often fail to meet the therapeutic needs of T2DM and its complications. Consequently, there is an urgent need for novel therapeutic strategies and drugs. Lithocarpus litseifolius(L. litseifolius), commonly referred to as "cordyceps on trees", has a long history of use in traditional medicine and can be applied in tea, sugar, and medicine. Research indicates that L. litseifolius extracts are rich in dihydrochalcones, including trilobatin, phloridzin, and phloretin, which exhibit a range of pharmacological activities, such as anti-inflammatory, antioxidant, hypoglycemic, hypolipidemic, hepatoprotective, and cardioprotective effects. These properties suggest potential applications in the treatment of T2DM and its complications. This review systematically compiled and organized the relevant literature from the past decade on dihydrochalcones(trilobatin, phloridzin, and phloretin) from L. litseifolius extracts. It highlighted recent research progress regarding their role in treating T2DM and its complications through mechanisms such as reducing insulin resistance, regulating glucose transport, improving glucose and lipid metabolism, modulating enzyme activity, regulating gut microbiota, and alleviating inflammation and oxidative damage. The purpose of this review is to provide a reference and basis for future research on the prevention and treatment of T2DM and its complications using dihydrochalcones(trilobatin, phloridzin, and phloretin) from L. litseifolius extracts.
Chalcones/chemistry*
;
Diabetes Mellitus, Type 2/metabolism*
;
Humans
;
Animals
;
Elaeocarpaceae/chemistry*
;
Drugs, Chinese Herbal/therapeutic use*
;
Hypoglycemic Agents/chemistry*
;
Plant Extracts/chemistry*
3.Systematic review and Meta-analysis of efficacy and safety of Wumei Pills in treatment of type 2 diabetes mellitus.
Wei-Jin HUANG ; Yun-Yi YANG ; Jia-Yuan CAI ; Xiao-Xiao QU ; Yan-Ming HE ; Hong-Jie YANG
China Journal of Chinese Materia Medica 2025;50(12):3441-3451
Wumei Pills, a classic traditional Chinese medicine(TCM) formula, are widely used in the treatment of biliary ascariasis and diarrhea. In recent years, studies have shown that Wumei Pills have advantages in the treatment of type 2 diabetes mellitus(T2DM), while there are no relevant reports that systematically evaluate the efficacy of Wumei Pills in the treatment of T2DM. This study addresses this issue by systematically evaluating the efficacy and safety of Wumei Pills, aiming to provide an evidence-based basis for clinical practice. PubMed, Cochrane Library, EMbase, Web of Science, CNKI, Wanfang, and VIP were researched for the randomized controlled trial(RCT) involving Wumei Pills for the treatment of T2DM that were published from inception to September 2024. RevMan 5.3 was used for the Meta-analysis of the data. A total of 18 RCTs were included, with a total of 1 437 patients. Meta-analysis produced the following results.(1)Treatment group outperformed control group in terms of overall response rate(RR=1.28, 95%CI[1.14, 1.43], P<0.000 1), fasting blood glucose(FPG)(WMD=-0.69, 95%CI[-0.93,-0.46], P<0.000 01), two-hour postprandial plasma glucose(2hPG)(WMD=-0.74, 95%CI[-1.17,-0.31], P<0.000 7), glycated hemoglobin(HbA1c)(WMD=-0.39, 95%CI[-0.60,-0.18], P=0.000 3), high-density lipoprotein(HDL)(WMD=0.38, 95%CI[0.28, 0.48], P<0.000 01), and body mass index(BMI)(WMD=-1.41, 95%CI[-2.40,-0.42], P=0.005).(2)The two groups had comparable effects regarding total cholesterol(TC)(WMD=-0.53, 95%CI[-1.13, 0.08], P=0.09) and low-density lipoprotein(LDL)(WMD=-0.25, 95%CI[-0.56, 0.06], P=0.12).(3)Triglycerides(TG)(WMD=-0.28,95%CI [-0.59,0.03],P=0.08), sensitivity analysis showed potential reduction effect(WMD=-0.20,95%CI[-0.36,-0.04],P=0.01). Occurrence of adverse drug reaction(RR=0.43,95%CI [0.23,0.80],P=0.007), sensitivity analysis showed significant disappearance(RR=0.56,95%CI[0.26,1.22],P=0.14), suggesting that the efficacy of treatment group was not better than that of control group. The results indicate that the treatment of T2DM with Wumei Pills is greatly related to the improvement of glucose metabolism, lipid metabolism, and clinical efficacy. The findings provide a basis for clinical application of Wumei Pills in treating T2DM, while the conclusion remains to be verified by clinical studies with higher quality.
Humans
;
Diabetes Mellitus, Type 2/blood*
;
Drugs, Chinese Herbal/administration & dosage*
;
Randomized Controlled Trials as Topic
;
Blood Glucose/metabolism*
;
Hypoglycemic Agents/therapeutic use*
;
Treatment Outcome
;
Glycated Hemoglobin/metabolism*
;
Female
4.Blood glucose-lowering mechanism of Poria aqueous extract by UPLC-Q-TOF-MS/MS combined with network pharmacology and experimental verification.
Dan-Dan ZHANG ; Wen-Biao WAN ; Qing YAO ; Fang LI ; Zi-Yin YAO ; Xiao-Chuan YE
China Journal of Chinese Materia Medica 2025;50(14):3980-3989
Ultra performance liquid chromatography-quadrupole-time-of-flight-mass spectrometry/mass spectrometry(UPLC-Q-TOF-MS/MS), network pharmacology, and animal experiments were integrated o explore the blood glucose-lowering effects and mechanisms of Poria aqueous extract. Firstly, the active components of Poria aqueous extract were identified by UPLC-Q-TOF-MS/MS. Subsequently, network pharmacology was employed to predict the blood glucose-lowering components and mechanisms of Poria aqueous extract. Finally, a rat model of diabetes mellitus, 16S rDNA sequencing, and Western blot were employed to investigate the blood glucose-lowering effect and mechanism of Poria aqueous extract. A total of 39 triterpenoids were identified in the Poria aqueous extract, among them, 25-hydroxypachymic acid, 25α-hydroxytumulosic acid, 16α-hydroxytrametenolic acid, polyporenic acid C, and tumulosic acid may be the main active ingredients for treating diabetes. The Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis revealed that Poria might exert its therapeutic effects through multiple pathways such as NOD-like receptor signaling pathway, nuclear factor-kappa B(NF-κB) signaling pathway, and tumor necrosis factor(TNF) signaling pathway. The results of animal experiments demonstrated that Poria aqueous extract significantly reduced the levels of blood glucose and lipids and regulated the intestinal flora in diabetic rats. The main affected taxa included g_Escherichia-Shigella, g_Corynebacterium, g_Prevotella_9, g_Prevotellaceae_UCG-001, and g_Bacteroidota_unclassified. In addition, Poria aqueous extract lowered the levels of D-lactic acid and lipopolysaccharide, alleviated colonic mucosal damage, significantly down-regulated the protein levels of NOD-like receptor pyrin domain-containing protein 3(NLRP3), NF-κB, and TNF-α, and significantly up-regulated the protein levels of zonula occludens 1 and occludin in diabetic rates. Poria aqueous extract may play a role in treating diabetes mellitus by repairing the intestinal flora disturbance, protecting the intestinal barrier function, and inhibiting the NF-κB/NLRP3 signaling pathway. The results provide a scientific basis for clinical application and expansion of indications of Poria.
Animals
;
Rats
;
Network Pharmacology
;
Tandem Mass Spectrometry
;
Male
;
Drugs, Chinese Herbal/pharmacology*
;
Chromatography, High Pressure Liquid
;
Blood Glucose/drug effects*
;
Rats, Sprague-Dawley
;
Hypoglycemic Agents/administration & dosage*
;
Poria/chemistry*
;
Diabetes Mellitus, Experimental/metabolism*
;
NF-kappa B/genetics*
;
Gastrointestinal Microbiome/drug effects*
;
Humans
5.Hypoglycemic effect and mechanism of berberine in vitro based on regulation of BMAL1:CLOCK complex involved in hepatic glycolysis, glucose oxidation a nd gluconeogenesis to improve energy metabolism.
Zhong-Hua XU ; Li-Ke YAN ; Wei-Hua LIU ; Can CUI ; Han-Yue XIAO ; Hui-Ping LI ; Jun TU
China Journal of Chinese Materia Medica 2025;50(15):4293-4303
This paper aims to investigate the hypoglycemic effect and mechanism of berberine in improving energy metabolism based on the multi-pathway regulation of brain and muscle aromatic hydrocarbon receptor nuclear translocal protein 1(BMAL1): cyclin kaput complex of day-night spontaneous output cyclin kaput(CLOCK). The dexamethasone-induced hepatic insulin resistance(IR) HepG2 cell model was used; 0.5, 1, 5, 10, 20 μmol·L~(-1) berberine were administered at 15, 18, 21, 24, 30, 36 h. The time-dose effect of glucose content in extracellular fluid was detected by glucose oxidase method. The optimal dosage and time of berberine were determined for the follow-up study. Glucose oxidase method and chemiluminescence method were respectively performed to detect hepatic glucose output and relative content of ATP in cells; Ca~(2+), reactive oxygen species(ROS), mitochondrial structure and membrane potential were detected by fluorescent probes. Moreover, ultraviolet colorimetry method was used to detect the liver type of pyruvate kinase(L-PK) and phosphoenol pyruvate carboxykinase(PEPCK). In addition, pyruvate dehydrogenase E1 subunit α1(PDHA1), phosphate fructocrine-liver type(PFKL), forkhead box protein O1(FoxO1), peroxisome proliferator-activated receptor gamma co-activator 1α(PGC1α), glucose-6-phosphatase(G6Pase), glucagon, phosphorylated nuclear factor-red blood cell 2-related factor 2(p-Nrf2)(Ser40), heme oxygenase 1(HO-1), NAD(P)H quinone oxidoreductase 1(NQO1), fibroblast growth factor 21(FGF21), uncoupled protein(UCP) 1 and UCP2 were detected by Western blot. BMAL1:CLOCK complex was detected by immunofluorescence double-staining method, combined with small molecule inhibitor CLK8. Western blot was used to detect PDHA1, PFKL, FoxO1, PGC1α, G6Pase, glucagon, Nrf2, HO-1, NQO1, FGF21, UCP1 and UCP2 in the CLK8 group. The results showed that berberine downregulated the glucose content in extracellular fluid in IR-HepG2 cells in a time-and dose-dependent manner. Moreover, berberine inhibited hepatic glucose output and reduced intracellular Ca~(2+) and ROS whereas elevated JC-1 membrane potential and improved mitochondrial structure to enhance ATP production. In addition, berberine upregulated the rate-limiting enzymes such as PFKL, L-PK and PDHA1 to promote glycolysis and aerobic oxidation but also downregulated PGC1α, FoxO1, G6Pase, PEPCK and glucagon to inhibit hepatic gluconeogenesis. Berberine not only upregulated p-Nrf2(Ser40), HO-1 and NQO1 to enhance antioxidant capacity but also upregulated FGF21, UCP1 and UCP2 to promote energy metabolism. Moreover, berberine increased BMAL1, CLOCK and nuclear BMAL1:CLOCK complex whereas CLK8 reduced the nuclear BMAL1:CLOCK complex. Finally, CLK8 decreased PDHA1, PFKL, Nrf2, HO-1, NQO1, FGF21, UCP1, UCP2 and increased FoxO1, PGC1α, G6Pase and glucagon compared with the 20 μmol·L~(-1) berberine group. BMAL1:CLOCK complex inhibited gluconeogenesis, promoted glycolysis and glucose aerobic oxidation pathways, improved the reduction status within mitochondria, protected mitochondrial structure and function, increased ATP energy storage and promoted energy consumption in IR-HepG2 cells. These results suggested that berberine mediated BMAL1:CLOCK complex to coordinate the regulation of hepatic IR cells to improve energy metabolism in vitro.
Humans
;
Berberine/pharmacology*
;
Gluconeogenesis/drug effects*
;
Hep G2 Cells
;
Glucose/metabolism*
;
Liver/drug effects*
;
Energy Metabolism/drug effects*
;
Hypoglycemic Agents/pharmacology*
;
ARNTL Transcription Factors/genetics*
;
Glycolysis/drug effects*
;
Oxidation-Reduction/drug effects*
6.Tongmai Hypoglycemic Capsule Attenuates Myocardial Oxidative Stress and Fibrosis in the Development of Diabetic Cardiomyopathy in Rats.
Jie-Qiong ZENG ; Hui-Fen ZHOU ; Hai-Xia DU ; Yu-Jia WU ; Qian-Ping MAO ; Jun-Jun YIN ; Hai-Tong WAN ; Jie-Hong YANG
Chinese journal of integrative medicine 2025;31(3):251-260
OBJECTIVE:
To investigate the effect of Tongmai Hypoglycemic Capsule (THC) on myocardium injury in diabetic cardiomyopathy (DCM) rats.
METHODS:
A total of 24 Sprague Dawley rats were fed for 4 weeks with high-fat and high-sugar food and then injected with streptozotocin intraperitoneally for the establishment of the DCM model. In addition, 6 rats with normal diets were used as the control group. After modeling, 24 DCM rats were randomly divided into the model, L-THC, M-THC, and H-THC groups by computer generated random numbers, and 0, 0.16, 0.32, 0.64 g/kg of THC were adopted respectively by gavage, with 6 rats in each group. After 12 weeks of THC administration, echocardiography, histopathological staining, biochemical analysis, and Western blot were used to detect the changes in myocardial structure, oxidative stress (OS), biochemical indexes, protein expressions of myocardial fibrosis, and nuclear factor erythroid 2-related faactor 2 (Nrf2) element, respectively.
RESULTS:
Treatment with THC significantly decreased cardiac markers such as creatine kinase, lactate dehydrogenase, and creatine kinase-MB, etc., (P<0.01); enhanced cardiac function indicators including heart rate, ejection fraction, cardiac output, interventricular septal thickness at diastole, and others (P<0.05 or P<0.01); decreased levels of biochemical indicators such as fasting blood glucose, total cholesterol, triglycerides, low-density lipoprotein cholesterol, aspartate transaminase, (P<0.05 or P<0.01); and decreased the levels of myocardial fibrosis markers α-smooth muscle actin (α-SMA), and collagen I (Col-1) protein (P<0.01), improved myocardial morphology and the status of myocardial interstitial fibrosis. THC significantly reduced malondialdehyde levels in model rats (P<0.01), increased levels of catalase, superoxide dismutase, and glutathione (P<0.01), and significantly increased the expression of Nrf2, NAD(P)H:quinone oxidoreductase 1, heme oxygenase-1, and superoxide dismutase 2 proteins in the left ventricle of rats (P<0.01).
CONCLUSION
THC activates the Nrf2 signaling pathway and plays a protective role in reducing OS injury and cardiac fibrosis in DCM rats.
Animals
;
Diabetic Cardiomyopathies/physiopathology*
;
Oxidative Stress/drug effects*
;
Drugs, Chinese Herbal/therapeutic use*
;
Rats, Sprague-Dawley
;
Myocardium/metabolism*
;
Fibrosis
;
Male
;
Capsules
;
Hypoglycemic Agents/therapeutic use*
;
NF-E2-Related Factor 2/metabolism*
;
Rats
;
Diabetes Mellitus, Experimental/drug therapy*
7.Neuroprotective and antidiabetic lanostane-type triterpenoids from the fruiting bodies of Ganoderma theaecolum.
Jiaocen GUO ; Li YANG ; Luting DAI ; Qingyun MA ; Jiaoyang YAN ; Qingyi XIE ; Yougen WU ; Haofu DAI ; Youxing ZHAO
Chinese Journal of Natural Medicines (English Ed.) 2025;23(2):245-256
Eight previously undescribed lanostane triterpenoids, including five nortriterpenoids with 26 carbons, ganothenoids A-E (1-5), and three lanostanoids, ganothenoids F-H (6-8), along with 24 known ones (9-32), were isolated from the fruiting bodies of Ganodrma theaecolum. The structures of the novel compounds were elucidated using comprehensive spectroscopic methods, including electronic circular dichroism (ECD) and nuclear magnetic resonance (NMR) calculations. Compounds 1-32 were assessed for their neuroprotective effects against H2O2-induced damage in human neuroblastoma SH-SY5Y cells, as well as their inhibitory activities against protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase. Compound 4 demonstrated the most potent neuroprotective activity against H2O2-induced oxidative stress by suppressing G0/G1 phase cell cycle arrest, reducing reactive oxygen species (ROS) levels, and inhibiting cell apoptosis through modulation of B-cell lymphoma 2 protein (Bcl-2) and Bcl-2 associated X-protein (Bax) protein expression. Compounds 26, 12, and 28 exhibited PTP1B inhibitory activities with IC50 values ranging from 13.92 to 56.94 μmol·L-1, while compound 12 alone displayed significant inhibitory effects on α-glucosidase with an IC50 value of 43.56 μmol·L-1. Additionally, enzyme kinetic analyses and molecular docking simulations were conducted for compounds 26 and 12 with PTP1B and α-glucosidase, respectively.
Humans
;
Fruiting Bodies, Fungal/chemistry*
;
Triterpenes/isolation & purification*
;
Neuroprotective Agents/isolation & purification*
;
Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism*
;
Ganoderma/chemistry*
;
Apoptosis/drug effects*
;
Hypoglycemic Agents/isolation & purification*
;
Molecular Structure
;
alpha-Glucosidases/metabolism*
;
Cell Line, Tumor
;
Reactive Oxygen Species/metabolism*
;
Oxidative Stress/drug effects*
;
Hydrogen Peroxide/toxicity*
;
Molecular Docking Simulation
8.Novel araucarene diterpenes from Agathis dammara exert hypoglycemic activity by promoting pancreatic β cell regeneration and glucose uptake.
Zhewei YU ; Yi ZHANG ; Wenhui WANG ; XinYi WU ; Shunzhi LIU ; Yanlin BIN ; Hongsheng LI ; Bangping CAI ; Zheng WANG ; Meijuan FANG ; Rong QI ; Mingyu LI ; Yingkun QIU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(4):492-503
In this study, araucarene diterpenes, characterized by a pimarene skeleton with a variably oxidized side chain at C-13, were investigated. A total of 16 araucarene diterpenoids and their derivatives were isolated from the woods of Agathis dammara, including 11 previously unreported compounds: dammaradione (1), dammarones D-G (2, 5, 14, 15), dammaric acids B-F (8-12), and dammarol (16). The structures of these new compounds were elucidated using high-resolution electrospray ionization mass spectroscopy (HR-ESI-MS) and one-dimensional/two-dimensional (1D/2D) nuclear magnetic resonance (NMR), while their absolute configurations were determined through the electronic circular dichroism (ECD) exciton chirality method and Snatzke's method. The hypoglycemic activity of all isolated compounds was evaluated using a transgenic zebrafish model, and a structure-activity relationship (SAR) analysis was conducted. Araucarone (3) and dammaric acid C (9), serving as representative compounds, demonstrated significant hypoglycemic effects on zebrafish. The primary mechanism involves the promotion of pancreatic β cell regeneration and glucose uptake. Specifically, these compounds enhance the differentiation of pancreatic endocrine precursor cells (PEP cells) into β cells in zebrafish.
Zebrafish
;
Animals
;
Diterpenes/isolation & purification*
;
Insulin-Secreting Cells/cytology*
;
Glucose/metabolism*
;
Hypoglycemic Agents/isolation & purification*
;
Molecular Structure
;
Structure-Activity Relationship
;
Plant Extracts/pharmacology*
;
Regeneration/drug effects*
9.The transcriptomic-based disease network reveals synergistic therapeutic effect of total alkaloids from Coptis chinensis and total ginsenosides from Panax ginseng on type 2 diabetes mellitus.
Qian CHEN ; Shuying ZHANG ; Xuanxi JIANG ; Jie LIAO ; Xin SHAO ; Xin PENG ; Zheng WANG ; Xiaoyan LU ; Xiaohui FAN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(8):997-1008
Coptis chinensis Franch. and Panax ginseng C. A. Mey. are traditional herbal medicines with millennia of documented use and broad therapeutic applications, including anti-diabetic properties. However, the synergistic effect of total alkaloids from Coptis chinensis and total ginsenosides from Panax ginseng on type 2 diabetes mellitus (T2DM) and its underlying mechanism remain unclear. The research demonstrated that the optimal ratio of total alkaloids from Coptis chinensis and total ginsenosides from Panax ginseng was 4∶1, exhibiting maximal efficacy in improving insulin resistance and gluconeogenesis in primary mouse hepatocytes. This combination demonstrated significant synergistic effects in improving glucose tolerance, reducing fasting blood glucose (FBG), the weight ratio of epididymal white adipose tissue (eWAT), and the homeostasis model assessment of insulin resistance (HOMA-IR) in leptin receptor-deficient (db/db) mice. Subsequently, a T2DM liver-specific network was constructed based on RNA sequencing (RNA-seq) experiments and public databases by integrating transcriptional properties of disease-associated proteins and protein-protein interactions (PPIs). The network recovery index (NRI) score of the combined treatment group with a 4∶1 ratio exceeded that of groups treated with individual components. The research identified that activated adenosine 5'-monophosphate-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) signaling in the liver played a crucial role in the synergistic treatment of T2DM, as verified by western blot experiment in db/db mice. These findings demonstrate that the 4∶1 combination of total alkaloids from Coptis chinensis and total ginsenosides from Panax ginseng significantly improves insulin resistance and glucose and lipid metabolism disorders in db/db mice, surpassing the efficacy of individual treatments. The synergistic mechanism correlates with enhanced AMPK/ACC signaling pathway activity.
Animals
;
Panax/chemistry*
;
Ginsenosides/administration & dosage*
;
Diabetes Mellitus, Type 2/metabolism*
;
Mice
;
Male
;
Alkaloids/pharmacology*
;
Coptis/chemistry*
;
Drug Synergism
;
Insulin Resistance
;
Mice, Inbred C57BL
;
Humans
;
Transcriptome/drug effects*
;
Blood Glucose/metabolism*
;
Hypoglycemic Agents/administration & dosage*
;
Drugs, Chinese Herbal/administration & dosage*
;
Hepatocytes/metabolism*
10.The development and benefits of metformin in various diseases.
Ying DONG ; Yingbei QI ; Haowen JIANG ; Tian MI ; Yunkai ZHANG ; Chang PENG ; Wanchen LI ; Yongmei ZHANG ; Yubo ZHOU ; Yi ZANG ; Jia LI
Frontiers of Medicine 2023;17(3):388-431
Metformin has been used for the treatment of type II diabetes mellitus for decades due to its safety, low cost, and outstanding hypoglycemic effect clinically. The mechanisms underlying these benefits are complex and still not fully understood. Inhibition of mitochondrial respiratory-chain complex I is the most described downstream mechanism of metformin, leading to reduced ATP production and activation of AMP-activated protein kinase (AMPK). Meanwhile, many novel targets of metformin have been gradually discovered. In recent years, multiple pre-clinical and clinical studies are committed to extend the indications of metformin in addition to diabetes. Herein, we summarized the benefits of metformin in four types of diseases, including metabolic associated diseases, cancer, aging and age-related diseases, neurological disorders. We comprehensively discussed the pharmacokinetic properties and the mechanisms of action, treatment strategies, the clinical application, the potential risk of metformin in various diseases. This review provides a brief summary of the benefits and concerns of metformin, aiming to interest scientists to consider and explore the common and specific mechanisms and guiding for the further research. Although there have been countless studies of metformin, longitudinal research in each field is still much warranted.
Humans
;
Metformin/pharmacokinetics*
;
Diabetes Mellitus, Type 2/metabolism*
;
Hypoglycemic Agents/pharmacology*
;
AMP-Activated Protein Kinases/metabolism*
;
Aging

Result Analysis
Print
Save
E-mail