1.Association between metabolic parameters and erection in erectile dysfunction patients with hyperuricemia.
Guo-Wei DU ; Pei-Ning NIU ; Zhao-Xu YANG ; Xing-Hao ZHANG ; Jin-Chen HE ; Tao LIU ; Yan XU ; Jian-Huai CHEN ; Yun CHEN
Asian Journal of Andrology 2025;27(4):482-487
The relationship between hyperuricemia (HUA) and erectile dysfunction (ED) remains inadequately understood. Given that HUA is often associated with various metabolic disorders, this study aims to explore the multivariate linear impacts of metabolic parameters on erectile function in ED patients with HUA. A cross-sectional analysis was conducted involving 514 ED patients with HUA in the Department of Andrology, Jiangsu Province Hospital of Chinese Medicine (Nanjing, China), aged 18 to 60 years. General demographic information, medical history, and laboratory results were collected to assess metabolic disturbances. Sexual function was evaluated using the 5-item version of the International Index of Erectile Function (IIEF-5) questionnaire. Based on univariate analysis, variables associated with IIEF-5 scores were identified, and the correlations between them were evaluated. The effects of these variables on IIEF-5 scores were further explored by multiple linear regression models. Fasting plasma glucose ( β = -0.628, P < 0.001), uric acid ( β = -0.552, P < 0.001), triglycerides ( β = -0.088, P = 0.047), low-density lipoprotein cholesterol ( β = -0.164, P = 0.027), glycated hemoglobin (HbA1c; β = -0.562, P = 0.012), and smoking history ( β = -0.074, P = 0.037) exhibited significant negative impacts on erectile function. The coefficient of determination ( R ²) for the model was 0.239, and the adjusted R ² was 0.230, indicating overall statistical significance ( F -statistic = 26.52, P < 0.001). Metabolic parameters play a crucial role in the development of ED. Maintaining normal metabolic indices may aid in the prevention and improvement of erectile function in ED patients with HUA.
Humans
;
Male
;
Erectile Dysfunction/metabolism*
;
Hyperuricemia/metabolism*
;
Adult
;
Middle Aged
;
Cross-Sectional Studies
;
Glycated Hemoglobin/metabolism*
;
Blood Glucose/metabolism*
;
Uric Acid/blood*
;
Young Adult
;
Triglycerides/blood*
;
Adolescent
;
Cholesterol, LDL/blood*
;
Penile Erection/physiology*
;
Surveys and Questionnaires
2.A New Perspective on the Prediction and Treatment of Stroke: The Role of Uric Acid.
Bingrui ZHU ; Xiaobin HUANG ; Jiahao ZHANG ; Xiaoyu WANG ; Sixuan TIAN ; Tiantong ZHAN ; Yibo LIU ; Haocheng ZHANG ; Sheng CHEN ; Cheng YU
Neuroscience Bulletin 2025;41(3):486-500
Stroke, a major cerebrovascular disease, has high morbidity and mortality. Effective methods to reduce the risk and improve the prognosis are lacking. Currently, uric acid (UA) is associated with the pathological mechanism, prognosis, and therapy of stroke. UA plays pro/anti-oxidative and pro-inflammatory roles in vivo. The specific role of UA in stroke, which may have both neuroprotective and damaging effects, remains unclear. There is a U-shaped association between serum uric acid (SUA) levels and ischemic stroke (IS). UA therapy provides neuroprotection during reperfusion therapy for acute ischemic stroke (AIS). Urate-lowering therapy (ULT) plays a protective role in IS with hyperuricemia or gout. SUA levels are associated with the cerebrovascular injury mechanism, risk, and outcomes of hemorrhagic stroke. In this review, we summarize the current research on the role of UA in stroke, providing potential targets for its prediction and treatment.
Humans
;
Uric Acid/metabolism*
;
Stroke/drug therapy*
;
Animals
;
Hyperuricemia/drug therapy*
;
Ischemic Stroke/blood*
;
Biomarkers/blood*
3.Association between gut microbiota and hyperuricemia: insights into innovative therapeutic strategies.
Shujuan ZHANG ; Xiaoqiu LIU ; Yuxin ZHONG ; Yu FU
Chinese Journal of Biotechnology 2025;41(6):2290-2309
Uric acid (UA) is the final metabolite of purines in the human body. An imbalance in UA production and excretion that disrupts homeostasis leads to elevated blood UA levels and the development of hyperuricemia (HUA). Approximately one-third of UA is excreted through the intestinal tract. As a crucial component of the intestinal microenvironment, the gut microbiota plays a pivotal role in regulating blood UA levels. Alterations or imbalances in gut microbiota composition are linked to the onset of HUA, which implies the potential of gut microbiota as a novel target for the prevention and treatment of HUA. This review introduces the occurrence mechanism and damage of hyperuricemia, examines the association between HUA and the gut microbiota and their metabolites, and explores the molecular mechanisms underlying gut microbiota-targeted therapies for HUA. Furthermore, it discusses the potential applications of probiotics, prebiotics, and traditional Chinese medicine (including both single herbs and compound formulas) with UA-lowering effects, along with cutting-edge technologies such as fecal microbiota transplantation and machine learning in HUA treatment. This review provides valuable perspectives and strategies for improving the prevention and treatment of HUA.
Hyperuricemia/microbiology*
;
Humans
;
Gastrointestinal Microbiome/physiology*
;
Probiotics/therapeutic use*
;
Uric Acid/blood*
;
Fecal Microbiota Transplantation
;
Prebiotics
;
Medicine, Chinese Traditional
4.Oral gavage of Lactococcus lactis expressing urate oxidase regulates serum uric acid level in mice.
Hao CHENG ; Guoqing XIONG ; Jiazhen CUI ; Zhili CHEN ; Chen ZHU ; Na SONG ; Qingyang WANG ; Xianghua XIONG ; Gang LIU ; Huipeng CHEN
Chinese Journal of Biotechnology 2024;40(11):4111-4119
Urate oxidase (Uox) plays a pivotal role in uric acid (UA) degradation, and it has been applied in controlling serum UA level in clinical treatment of hyperuricemia (HUA). However, because Uox is a heterogenous protein to the human body, the immune rejections typically occur after intravenous administration, which greatly hampers the application of Uox-based agents. In this study, we used Lactococcus lactis NZ9000, a food-grade bacterium, as a host to express exogenous Uox genes, to generate the Uox-expressing engineered strains to treat HUA. Aspergillus flavus-derived Uox (aUox) and the "resurrected" human-derived Uox (hUox) were cloned into vector and expressed in NZ9000, to generate engineered strains, respectively. The engineered NZ9000 strains were confirmed to express Uox and showed UA-lowering activity in a time-dependent manner in vitro. Next, in an HUA mice model established by oral gavage of yeast paste, the UA levels were increased by 85.4% and 106.2% at day 7 and day 14. By contrast, in mice fed with NZ9000-aUox, the UA levels were increased by 39.5% and 48.3% while in mice fed with NZ9000-hUox were increased by 57.0% and 82.9%, suggesting a UA-lowering activity of both engineered strains. Furthermore, compared with allopurinol, the first-line agent for HUA treatment, mice fed with NZ9000-aUox exhibited comparable liver safety but better kidney safety than allopurinol, indicating that the use of engineered NZ9000 strains not only alleviated kidney injury caused by HUA, but could also avoided the risk of kidney injury elicited by using allopurinol. Collectively, our study offers an effective and safe therapeutic approach for HUA long-term treatment and controlling.
Animals
;
Lactococcus lactis/metabolism*
;
Urate Oxidase/genetics*
;
Mice
;
Uric Acid/blood*
;
Hyperuricemia
;
Humans
;
Administration, Oral
;
Aspergillus flavus/genetics*
;
Male
5.Associations Between Insulin Resistance Indexes and Hyperuricemia in Hypertensive Population.
Fang XIONG ; Chao YU ; Ling-Juan ZHU ; Tao WANG ; Wei ZHOU ; Hui-Hui BAO ; Xiao-Shu CHENG
Acta Academiae Medicinae Sinicae 2023;45(3):390-398
Objective To explore the relationship between insulin resistance (IR) indexes and hyperuricemia (HUA) among the people with hypertension. Methods From July to August in 2018,hypertension screening was carried out in Wuyuan county,Jiangxi province,and the data were collected through questionnaire survey,physical measurement,and biochemical test.Logistic regression was performed to analyze the relationship between HUA and IR indexes including metabolic score for IR (METS-IR),triglyceride-glucose (TyG) index,TyG-body mass index (BMI),TyG-waist circumference (WC),visceral adiposity index (VAI),triglyceride (TG)/high-density lipoprotein cholesterol (HDL-C),and lipid accumulation product (LAP).The penalty spline method was used for the curve fitting between IR indexes and HUA.The area under the receiver operating characteristic curve (AUC) was employed to reveal the correlation between each index and HUA. Results The 14 220 hypertension patients included 6 713 males and 7 507 females,with the average age of (63.8±9.4) years old,the average uric acid level of (418.9±120.6) mmol/L,and the HUA detection rate of 44.4%.The HUA group had higher proportions of males,current drinking,current smoking,diabetes,and using antihypertensive drugs,older age,higher diastolic blood pressure,WC,BMI,homocysteine,total cholesterol,TG,low-density lipoprotein cholesterol,blood urea nitrogen,creatinine,aspartate aminotransferase,alanine aminotransferase,total protein,albumin,total bilirubin,direct bilirubin, METS-IR, TyG, TyG-BMI, TyG-WC, VAI, TG/HDL-C, and LAP, and lower systolic blood pressure and HDL-C than the normal uric acid group (all P<0.05).Multivariate Logistic regression showed that METS-IR (OR=1.049,95%CI=1.038-1.060, P<0.001), TyG (OR=1.639,95%CI=1.496-1.797, P<0.001), TyG-BMI (OR=1.008,95%CI=1.006-1.010, P<0.001), TyG-WC (OR=1.003,95%CI=1.002-1.004, P<0.001), lnVAI (OR=1.850, 95%CI=1.735-1.973, P<0.001), ln(TG/HDL-C) (OR=1.862,95%CI=1.692-2.048, P<0.001),and lnLAP (OR=1.503,95%CI=1.401-1.613,P<0.001) were associated with the risk of HUA.Curve fitting indicated that METS-IR,TyG,TYG-BMI,TYG-WC,lnVAI,ln(TG/HDL-C),and lnLAP were positively correlated with HUA (all P<0.001),and the AUC of TyG index was higher than that of other IR indexes (all P<0.05). Conclusion Increased IR indexes,especially TyG,were associated with the risk of HUA among people with hypertension.
Male
;
Female
;
Humans
;
Middle Aged
;
Aged
;
Insulin Resistance
;
Hyperuricemia
;
Uric Acid
;
Hypertension/complications*
;
Glucose
;
Obesity, Abdominal/epidemiology*
;
Triglycerides
;
Bilirubin
;
Cholesterol
;
Blood Glucose/metabolism*
6.The Relationship between Hyperuricemia and Triglyceride Glucose Index: Based on 2016 Korean National Health and Nutrition Examination Survey
Joon Suk BYUN ; Ju No KIM ; Yu Shin SONG ; Yong Kyun ROH ; Min Kyu CHOI
Korean Journal of Family Practice 2019;9(3):266-271
BACKGROUND: Hyperuricemia refers to an excess of uric acid in the blood and is associated with gouty arthritis, hypertension, metabolic syndrome, atrial fibrillation, kidney stones, insulin resistance (IR), and type 2 diabetes mellitus. Previous studies have used the homeostatic model assessment of IR (HOMA-IR), a well-known index of IR, to investigation the correlation between serum uric acid levels and IR. However, difficulty with measuring insulin levels limits the clinical applicability of the HOMA-IR index. This study investigated the correlation between hyperuricemia and the triglyceride glucose (TyG) index.METHODS: We used data from the Seventh Korea National Health and Nutrition Examination Survey, 2016. The study population included adults without diabetes aged >19 years. The TyG index, which serves as an indicator of IR, was calculated using fasting serum glucose and triglyceride levels to investigate the correlation between the TyG index and hyperuricemia. Pearson's correlation coefficient and analysis of covariance were used for statistical analysis, which was performed using IBM SPSS software.RESULTS: A statistically significant correlation was observed between serum uric acid levels and the TyG index. After adjustment for factors that may affect IR (age, body mass index, waist circumference, and systolic and diastolic blood pressures), we observed that the TyG index was significantly higher in the hyperuricemia than in the non-hyperuricemia group (8.96 vs. 8.54, P < 0.001).CONCLUSION: Serum uric acid levels were significantly correlated with IR assessed using the TyG index in adults without diabetes aged >19 years.
Adult
;
Arthritis, Gouty
;
Atrial Fibrillation
;
Blood Glucose
;
Body Mass Index
;
Diabetes Mellitus, Type 2
;
Fasting
;
Glucose
;
Humans
;
Hypertension
;
Hyperuricemia
;
Insulin
;
Insulin Resistance
;
Kidney Calculi
;
Korea
;
Nutrition Surveys
;
Triglycerides
;
Uric Acid
;
Waist Circumference
7.Effects of Polygonum cuspidatum on AMPK-FOXO3α Signaling Pathway in Rat Model of Uric Acid-Induced Renal Damage.
Wei-Guo MA ; Jie WANG ; Xiang-Wei BU ; Hong-Hong ZHANG ; Jian-Ping ZHANG ; Xiao-Xu ZHANG ; Yu-Xi HE ; Da-Li WANG ; Zheng-Ju ZHANG ; Feng-Xian MENG
Chinese journal of integrative medicine 2019;25(3):182-189
BACKGROUND:
To observe the effects of Chinese medicine (CM) Polygonum cuspidatum (PC) on adenosine 5'-monophosphate-activated protein kinase (AMPK), forkhead box O3α (FOXO3α), Toll-like receptor-4 (TLR4), NACHT, LRR and PYD domains-containing protein 3 (NLRP3), and monocyte chemoattractant protein-1 (MCP-1) expression in a rat model of uric acid-induced renal damage and to determine the molecular mechanism.
METHODS:
A rat model of uric acid-induced renal damage was established, and rats were randomly divided into a model group, a positive drug group, and high-, medium-, and low-dose PC groups (n=12 per group). A normal group (n=6) was used as the control. Rats in the normal and model groups were administered distilled water (10 mL•kg) by intragastric infusion. Rats in the positive drug group and the high-, medium-, and low-dose PC groups were administered allopurinol (23.33 mg•kg), and 7.46, 3.73, or 1.87 g•kg•d PC by intragastric infusion, respectively for 6 to 8 weeks. After the intervention, reverse transcription polymerase chain reaction, Western blot, enzyme linked immunosorbent assay, and immunohistochemistry were used to detect AMPK, FOXO3α, TLR4, NLRP3, and MCP-1 mRNA and protein levels in renal tissue or serum.
RESULTS:
Compared with the normal group, the mRNA transcription levels of AMPK and FOXO3α in the model group were significantly down-regulated, and protein levels of AMPKα1, pAMPKα1 and FOXO3α were significantly down-regulated at the 6th and 8th weeks (P<0.01 or P<0.05). The mRNA transcription and protein levels of TLR4, NLRP3 and MCP-1 were significantly up-regulated (P<0.01 or P<0.05). Compared with the model group, at the 6th week, the mRNA transcription levels of AMPK in the high- and medium-dose groups, and protein expression levels of AMPKα1, pAMPKα1 and FOXO3α in the high-dose PC group, AMPKα1 and pAMPKα1 in the mediumdose PC group, and pAMPKα1 in the low-dose PC group were significantly up-regulated (P<0.01 or P<0.05); the mRNA transcription and protein levels of TLR4 and NLRP3 in the 3 CM groups, and protein expression levels of MCP-1 in the medium- and low-dose PC groups were down-regulated (P<0.01 or P<0.05). At the 8th week, the mRNA transcription levels of AMPK in the high-dose PC group and FOXO3α in the medium-dose PC group, and protein levels of AMPKα1, pAMPKα1 and FOXO3α in the 3 CM groups were significantly up-regulated (P<0.01 or P<0.05); the mRNA transcription levels of TLR4 in the medium- and low-dose PC groups, NLRP3 in the high- and low-dose PC groups and MCP-1 in the medium- and low-dose PC groups, and protein expression levels of TLR4, NLRP3 and MCP-1 in the 3 CM groups were down-regulated (P<0.01 or P<0.05).
CONCLUSION
PC up-regulated the expression of AMPK and its downstream molecule FOXO3α and inhibited the biological activity of TLR4, NLRP3, and MCP-1, key signal molecules in the immunoinflammatory network pathway, which may be the molecular mechanism of PC to improve hyperuricemia-mediated immunoinflflammatory metabolic renal damage.
AMP-Activated Protein Kinases
;
physiology
;
Animals
;
Chemokine CCL2
;
blood
;
Disease Models, Animal
;
Fallopia japonica
;
Forkhead Box Protein O3
;
physiology
;
Hyperuricemia
;
complications
;
Kidney Diseases
;
drug therapy
;
etiology
;
Male
;
Plant Extracts
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction
;
drug effects
;
Uric Acid
8.Metabolic syndrome: prevalence and risk factors in Korean gout patients.
Jae Hyun JUNG ; Gwan Gyu SONG ; Jong Dae JI ; Young Ho LEE ; Jae Hoon KIM ; Young Ho SEO ; Sung Jae CHOI
The Korean Journal of Internal Medicine 2018;33(4):815-822
BACKGROUND/AIMS: We performed this study to investigate associations between metabolic syndrome, chronic kidney disease (CKD), and gout. METHODS: We reviewed the medical records of 151 patients with gout at the Department of Rheumatology in Korea University Ansan Hospital. The following measures were examined: waist circumference, blood pressure, alcohol consumption, and levels of triglyceride, high density lipoprotein cholesterol, fasting serum glucose, serum uric acid (SUA), creatinine, insulin, and C-peptide. We assessed metabolic syndrome by the homeostasis model assessment of insulin resistance (HOMA-IR) index and renal function by the Modification of Diet in Renal Disease equation; patients were classified according to World Health Organization Asia-Pacific obesity criteria. RESULTS: The prevalence of metabolic syndrome in gout patients (50.8%) was higher than in non-gout patients. The mean SUA level was significantly higher in gout patients with metabolic syndrome (9.13 ± 3.15 mg/dL) than in gout patients without metabolic syndrome (8.14 ± 2.07 mg/dL). The mean SUA level was also significantly higher in patients with gout and CKD (9.55 ± 2.86 mg/dL) than in patients with gout but no CKD (7.74 ± 2.27 mg/dL). In gout patients, HOMA-IR was positively correlated with waist circumference (r = 0.409, p = 0.001). CONCLUSIONS: The prevalence of metabolic syndrome in patients with gout was 50.8%, which is higher than the prevalence in the general Korean population. Hyperuricemia in gout patients was correlated with metabolic syndrome and CKD. Insulin resistance may provide clues to better understand the relationship between metabolic syndrome, CKD, and gout.
Alcohol Drinking
;
Blood Glucose
;
Blood Pressure
;
C-Peptide
;
Cholesterol, HDL
;
Creatinine
;
Diet
;
Fasting
;
Gout*
;
Gyeonggi-do
;
Homeostasis
;
Humans
;
Hyperuricemia
;
Insulin
;
Insulin Resistance
;
Korea
;
Medical Records
;
Obesity
;
Obesity, Abdominal
;
Prevalence*
;
Renal Insufficiency, Chronic
;
Rheumatology
;
Risk Factors*
;
Triglycerides
;
Uric Acid
;
Waist Circumference
;
World Health Organization
9.Use of dapagliflozin in patients with advanced diabetic kidney disease.
Hyun Sun PARK ; Youn Joo JUNG ; Dong Young LEE ; Kyoung Hyoub MOON ; Beom KIM ; Hae Won KIM
Kidney Research and Clinical Practice 2018;37(3):292-297
Sodium-glucose cotransporter-2 (SGLT2) inhibitors are effective for overweight diabetic patients through the induction of glucosuria. However, SGLT2 inhibitors are not recommended for patients with advanced chronic kidney disease (CKD) because they may aggravate renal function and thus become less effective in controlling blood glucose in this patient population. We suggest that adequate hydration would be helpful to prevent the side effects of SGLT2 inhibitors in diabetic patients with advanced CKD. In this study, we review five cases of SGLT2 inhibitor therapy, specifically with dapagliflozin, for the treatment of diabetes mellitus in patients with advanced CKD. The patients experienced dramatic weight reduction, improved glucose control, and further benefits without aggravation of renal function.
Albuminuria
;
Blood Glucose
;
Diabetes Mellitus
;
Diabetic Nephropathies*
;
Glucose
;
Humans
;
Hyperuricemia
;
Obesity
;
Overweight
;
Renal Insufficiency, Chronic
;
Weight Loss
10.Prevalence of hyperuricemia in the elderly in 7 areas of China.
R WANG ; Z TANG ; F SUN ; L J DIAO
Chinese Journal of Epidemiology 2018;39(3):286-288
Objective: To investigate the prevalence of hyperuricemia (HUA) in the elderly in China. Methods: A randomized stratified cluster sampling survey was conducted. And 5 376 residents aged ≥60 year in 7 Beijing, Xi'an and Harbin in northern China and Chengdu, Chongqing, Changsha and Shanghai in southern China were surveyed. A unified questionnaire was used to collect their basic information, and blood samples were taken from them to detect the level of plasma uric acid (UA). The differences in hyperuricemia prevalence among different groups were compared with χ(2) test. Results: The mean concentration of plasma UA was 302.8 μmol/L in the elderly surveyed, 329.5 μmol/L in males and 282.7 μmol/L in females, 272.4 μmol/L in rural residents and 315.5 μmol/L in urban residents. Our study showed the prevalence of hyperuricemia was 13.1% in the elderly surveyed. The prevalence of hyperuricemia in women (14.1%) was higher than that in men (12.0%) (P<0.05); and the prevalence of hyperuricemia was higher in urban residents (15.8%) than in rural residents (6.9%) (P<0.01); in southern area (16.0%) than in northern area (11.6%) (P<0.01). Both the plasma UA level and the prevalence of hyperuricemia increased with age in those aged ≥60 years. The average prevalence of hyperuricemia were 9.5%, 11.9%, 14.5%, 16.4% and 21.9% and the plasma UA levels were 287.7, 295.9, 308.1, 311.6 and 323.3 μmol/L respectively in age group ≥60, 65, 70, 75 and 80 years (P<0.01). Conclusion: The result showed that mean concentration of plasma UA was 302.8 μmol/L and the overall prevalence of hyperuricemia was 13.1% in the elderly surveyed in China. The prevalence of hyperuricemia in females was higher than in males, in urban residents than in rural residents and in southern area than in northern area. Both the UA level and prevalence of hyperuricemia increased with age.
Age Distribution
;
Aged
;
Aged, 80 and over
;
Asian People/statistics & numerical data*
;
China/epidemiology*
;
Female
;
Humans
;
Hyperuricemia/ethnology*
;
Male
;
Middle Aged
;
Prevalence
;
Rural Population
;
Sex Distribution
;
Surveys and Questionnaires
;
Urban Population
;
Uric Acid/blood*

Result Analysis
Print
Save
E-mail