1.Critical role of mitochondrial dynamics in chronic respiratory diseases and new therapeutic directions.
Xiaomei WANG ; Ziming ZHU ; Haocheng JIA ; Xueyi LU ; Yingze ZHANG ; Yingxin ZHU ; Jinzheng WANG ; Yanfang WANG ; Rubin TAN ; Jinxiang YUAN
Chinese Medical Journal 2025;138(15):1783-1793
Chronic obstructive pulmonary disease (COPD) and pulmonary hypertension (PH) are both chronic progressive respiratory diseases that cannot be completely cured. COPD is characterized by irreversible airflow limitation, chronic airway inflammation, and gradual decline in lung function, whereas PH is characterized by pulmonary vasoconstriction, remodeling, and infiltration of inflammatory cells. These diseases have similar pathological features, such as vascular hyperplasia, arteriolar contraction, and inflammatory infiltration. Despite these well-documented observations, the exact mechanisms underlying the occurrence and development of COPD and PH remain unclear. Evidence that mitochondrial dynamics imbalance is one major factor in the development of COPD and PH. Mitochondrial dynamics is precisely regulated by mitochondrial fusion proteins and fission proteins. When mitochondrial dynamics equilibrium is disrupted, it causes mitochondrial and even cell morphological dysfunction. Mitochondrial dynamics participates in various pathological processes for heart and lung disease. Mitochondrial dynamics may be different in the early and late stages of COPD and PH. In the early stages of the disease, mitochondrial fusion increases, inhibiting fission, and thereby compensatorily increasing adenosine triphosphate (ATP) production. With the development of the disease, mitochondria decompensation causes excessive fission. Mitochondrial dynamics is involved in the development of COPD and PH in a spatiotemporal manner. Based on this understanding, treatment strategies for mitochondrial dynamics abnormalities may be different at different stages of COPD and PH disease. This article will provide new ideas for the potential treatment of related diseases.
Humans
;
Mitochondrial Dynamics/physiology*
;
Pulmonary Disease, Chronic Obstructive/metabolism*
;
Hypertension, Pulmonary/metabolism*
;
Mitochondria/metabolism*
;
Animals
2.NAD+ metabolism in cardiovascular diseases.
Zhao-Zhi WEN ; Yi-Hang YANG ; Dong LIU ; Chong-Xu SHI
Acta Physiologica Sinica 2025;77(2):345-360
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Nicotinamide adenine dinucleotide (NAD+) is a central and pleiotropic metabolite involved in multiple cellular energy metabolism, such as cell signaling, DNA repair, protein modifications, and so on. Evidence suggests that NAD+ levels decline with age, obesity, and hypertension, which are all significant CVD risk factors. In addition, the therapeutic elevation of NAD+ levels reduces chronic low-grade inflammation, reactivates autophagy and mitochondrial biogenesis, and enhances antioxidation and metabolism in vascular cells of humans with vascular disorders. In preclinical animal models, NAD+ boosting also extends the health span, prevents metabolic syndrome, and decreases blood pressure. Moreover, NAD+ storage by genetic, pharmacological, or natural dietary NAD+-increasing strategies has recently been shown to be effective in improving the pathophysiology of cardiac and vascular health in different animal models and humans. Here, we discuss NAD+-related mechanisms pivotal for vascular health and summarize recent research on NAD+ and its association with vascular health and disease, including hypertension, atherosclerosis, and coronary artery disease. This review also assesses various NAD+ precursors for their clinical efficacy and the efficiency of NAD+ elevation in the prevention or treatment of major CVDs, potentially guiding new therapeutic strategies.
Humans
;
Cardiovascular Diseases/physiopathology*
;
NAD/metabolism*
;
Animals
;
Hypertension/metabolism*
3.Protective effect of aliskiren on renal injury in AGT-REN double transgenic hypertensive mice.
Xiao-Ling YANG ; Yan-Yan CHEN ; Hua ZHAO ; Bo-Yang ZHANG ; Xiao-Fu ZHANG ; Xiao-Jie LI ; Xiu-Hong YANG
Acta Physiologica Sinica 2025;77(3):408-418
This study aims to investigate the effects of renin inhibitor aliskiren on kidney injury in human angiotensinogen-renin (AGT-REN) double transgenic hypertensive (dTH) mice and explore its possible mechanism. The dTH mice were divided into hypertension group (HT group) and aliskiren intervention group (HT+Aliskiren group), while wild-type C57BL/6 mice were served as the control group (WT group). Blood pressure data of mice in HT+Aliskiren group were collected after 28 d of subcutaneous penetration of aliskiren (20 mg/kg), and the damage of renal tissue structure and collagen deposition were observed by HE, Masson and PAS staining. The ultrastructure of kidney was observed by transmission electron microscope. Coomassie bright blue staining and biochemical analyzer were used to detect renal function injury. The expression of renin-angiotensin system (RAS) was determined by ELISA and immunohistochemistry. The contents of superoxide dismutase (SOD) and malondialdehyde (MDA) in kidney were determined by chemiluminescence method. The content of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit p47phox, inducible nitric oxide synthase (iNOS), 3-nitrotyrosine (3-NT), NADPH oxidase 2 (NOX2) and NADPH oxidase 4 (NOX4) were detected by Western blot analysis. The results showed that compared with WT group, the blood pressure of mice in HT group was significantly increased. The renal tissue structure in HT group showed glomerular sclerosis, severe interstitial tubular injury, and increased collagen deposition. In addition, 24 h urinary protein, serum creatinine and urea levels increased. Serum and renal tissue levels of angiotensin II (Ang II) were increased, serum angiotensin-(1-7) [Ang-(1-7)] expression was decreased, and renal Ang-(1-7) expression was elevated. The expressions of ACE, Ang II type 1 receptor (AT1R) and MasR in renal tissue were increased, while the expression of ACE2 was decreased. MDA content increased, SOD content decreased, and the expressions of p47phox, iNOS, 3-NT, NOX2 and NOX4 were increased. However, aliskiren reduced blood pressure in dTH mice, improved renal structure and renal function, reduced Ang II and Ang-(1-7) levels in serum and renal tissue, reduced the expression of ACE and AT1R in renal tissue, increased the expression of ACE2 and MasR in renal tissue, and decreased the above levels of oxidative stress indexes in dTH mice. These results suggest that aliskiren may play a protective role in hypertensive renal injury by regulating the balance between ACE-Ang II-AT1R and ACE2-Ang-(1-7)-MasR axes and inhibiting oxidative stress.
Animals
;
Fumarates/therapeutic use*
;
Mice
;
Renin/antagonists & inhibitors*
;
Amides/therapeutic use*
;
Mice, Inbred C57BL
;
Hypertension/physiopathology*
;
Mice, Transgenic
;
Kidney/pathology*
;
Angiotensinogen/genetics*
;
Renin-Angiotensin System/drug effects*
;
NADPH Oxidases/metabolism*
;
Male
;
Antihypertensive Agents/pharmacology*
;
Humans
;
Superoxide Dismutase/metabolism*
;
NADPH Oxidase 4
4.Hydrogen sulfide ameliorates hypoxic pulmonary hypertension in rats by inhibiting aerobic glycolysis-pyroptosis.
Yuan CHENG ; Yun-Na TIAN ; Man HUANG ; Jun-Peng XU ; Wen-Jie CAO ; Xu-Guang JIA ; Li-Yi YOU ; Wan-Tie WANG
Acta Physiologica Sinica 2025;77(3):465-471
The present study aimed to explore whether hydrogen sulfide (H2S) improved hypoxic pulmonary hypertension (HPH) in rats by inhibiting aerobic glycolysis-pyroptosis. Male Sprague-Dawley (SD) rats were randomly divided into normal group, normal+NaHS group, hypoxia group, and hypoxia+NaHS group, with 6 rats in each group. The control group rats were placed in a normoxic (21% O2) environment and received daily intraperitoneal injections of an equal volume of normal saline. The normal+NaHS group rats were placed in a normoxic environment and intraperitoneally injected with 14 μmol/kg NaHS daily. The hypoxia group rats were placed in a hypoxia chamber, and the oxygen controller inside the chamber maintained the oxygen concentration at 9% to 10% by controlling the N2 flow rate. An equal volume of normal saline was injected intraperitoneally every day. The hypoxia+NaHS group rats were also placed in an hypoxia chamber and intraperitoneally injected with 14 μmol/kg NaHS daily. After the completion of the four-week modeling, the mean pulmonary artery pressure (mPAP) of each group was measured using right heart catheterization technique, and the right ventricular hypertrophy index (RVHI) was weighed and calculated. HE staining was used to observe pathological changes in lung tissue, Masson staining was used to observe fibrosis of lung tissue, and Western blot was used to detect protein expression levels of hexokinase 2 (HK2), pyruvate dehydrogenase (PDH), pyruvate kinase isozyme type M2 (PKM2), nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), GSDMD-N-terminal domain (GSDMD-N), Caspase-1, interleukin-1β (IL-1β) and IL-18 in lung tissue. ELISA was used to detect contents of IL-1β and IL-18 in lung tissue. The results showed that, compared with the normal control group, there were no significant changes in all indexes in the normal+NaHS group, while the hypoxia group exhibited significantly increased mPAP and RVHI, thickened pulmonary vascular wall, narrowed lumen, increased collagen fibers, up-regulated expression levels of aerobic glycolysis-related proteins (HK2 and PKM2), up-regulated expression levels of pyroptosis-related proteins (NLRP3, GSDMD-N, Caspase-1, IL-1β, and IL-18), and increased contents of IL-1β and IL-18. These changes of the above indexes in the hypoxia group were significantly reversed by NaHS. These results suggest that H2S can improve rat HPH by inhibiting aerobic glycolysis-pyroptosis.
Animals
;
Rats, Sprague-Dawley
;
Male
;
Hypertension, Pulmonary/metabolism*
;
Glycolysis/drug effects*
;
Hydrogen Sulfide/therapeutic use*
;
Hypoxia/complications*
;
Rats
;
Pyroptosis/drug effects*
5.Mechanism of L-perilla alcohol in intervening hypoxic pulmonary hypertension based on network pharmacology and experimental verification.
Yu-Rong WANG ; Yang YU ; Zhuo-Sen LIANG ; Li TONG ; Dian-Xiang LU ; Xing-Mei NAN
China Journal of Chinese Materia Medica 2025;50(1):209-217
The mechanism of L-perilla alcohol(L-POH) in intervening hypoxic pulmonary hypertension(HPAH) was discussed based on network pharmacology, and experimental verification. The active components and potential targets of the volatile oil of Rhodiola tangutica(VORA) in the intervention of HPAH were screened by network pharmacology. The biological process of Gene Ontology(GO) and the signaling pathway enrichment of Kyoto Encyclopedia of Genes and Genomes(KEGG) were analyzed for the core targets, and a "component-common target-disease" network was constructed. Four active components were screened from VORA: L-POH, linalool, geraniol, and(-)-myrtenol. The core targets for treating HPAH were HSP90AA1, AKT1, ESR1, PIK3CA, EP300, EGFR, and JAK2. GO enrichment analysis mainly involved biological processes such as reaction to hypoxia, heme binding, and steroid binding. KEGG enrichment analysis mainly involved hypoxia-inducing factor 1(HIF-1) signaling pathway, phosphatidylinositol 3-kinase/protein kinase B(PI3K/AKT) signaling pathway, and Janus kinase/activator of signal transduction and transcription(JAK/STAT) signaling pathway. The vasodilation effects of the four active components were screened by perfusion experiment of extracorporeal vascular rings, and the mechanism of the main active component L-POH was studied by channel blockers. The inhibitory effects of the four active components on the proliferation of pulmonary artery smooth muscle cells(PASMCs) induced by hypoxia were screened by cell proliferation experiment, and the mechanism of the main active component L-POH was studied by flow cytometry, cell cycle experiment, and Western blot. The results showed that L-POH could directly act on vascular smooth muscle to relax pulmonary arterioles, induce ATP-sensitive potassium channels to open, and inhibit extracellular Ca~(2+) influx through voltage-gated calcium channels to relax blood vessels. In addition, L-POH could inhibit the abnormal proliferation of PASMCs induced by hypoxia and promote its apoptosis, and its mechanism may be related to the increase in Bax protein expression and the decrease in p-JAK2, p-STAT3, Bcl-2, and cyclinA2 protein expression. In summary, L-POH can interfere with HPAH by relaxing pulmonary arterioles and inhibiting the proliferation of smooth muscle cells.
Network Pharmacology
;
Animals
;
Hypertension, Pulmonary/physiopathology*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Hypoxia/metabolism*
;
Rhodiola/chemistry*
;
Signal Transduction/drug effects*
;
Humans
;
Monoterpenes/chemistry*
;
Male
;
Cell Proliferation/drug effects*
;
Rats, Sprague-Dawley
6.Effects of total extract of Anthriscus sylvestris on immune inflammation and thrombosis in rats with pulmonary arterial hypertension based on TGF-β1/Smad3 signaling pathway.
Ya-Juan ZHENG ; Pei-Pei YUAN ; Zhen-Kai ZHANG ; Yan-Ling LIU ; Sai-Fei LI ; Yuan RUAN ; Yi CHEN ; Yang FU ; Wei-Sheng FENG ; Xiao-Ke ZHENG
China Journal of Chinese Materia Medica 2025;50(9):2472-2483
This study aimed to explore the effects and mechanisms of total extracts from Anthriscus sylvestris on pulmonary hypertension in rats. Sixty male SD rats were divided into normal(NC) group, model(M) group, positive drug sildenafil(Y) group, low-dose A. sylvestris(ES-L) group, medium-dose A. sylvestris(ES-M) group, and high-dose A. sylvestris(ES-H) group. On day 1, rats were intraperitoneally injected with monocrotaline(60 mg·kg~(-1)) to induce pulmonary hypertension, and the rat model was established on day 28. From days 15 to 28, intragastric administration of the respective treatments was performed. After modeling and treatment, small animal echocardiography was used to detect the right heart function of the rats. Arterial blood gas was measured using a blood gas analyzer. Hematoxylin and eosin(HE) staining and Masson staining were performed to observe cardiopulmonary pathological damage. Flow cytometry was used to detect apoptosis in the lung and myocardial tissues and reactive oxygen species(ROS) levels. Western blot was applied to detect the expression levels of transforming growth factor-β1(TGF-β1), phosphorylated mothers against decapentaplegic homolog 3(p-Smad3), Smad3, tissue plasminogen activator(t-PA), and plasminogen activator inhibitor-1(PAI-1) in lung tissue. A blood routine analyzer was used to measure inflammatory immune cell levels in the blood. Enzyme-linked immunosorbent assay(ELISA) was used to detect the expression levels of P-selectin and thromboxane A2(TXA2) in plasma. The results showed that, compared with the NC group, right heart hypertrophy index, right ventricular free wall thickness, right heart internal diameter, partial carbon dioxide pressure(PaCO_2), apoptosis in cardiopulmonary tissue, and ROS levels were significantly increased in the M group. In contrast, the ratio of pulmonary blood flow acceleration time(PAT)/ejection time(PET), right cardiac output, change rate of right ventricular systolic area, systolic displacement of the tricuspid ring, oxygen partial pressure(PaO_2), and blood oxygen saturation(SaO_2) were significantly decreased in the M group. After administration of the total extract of A. sylvestris, right heart function and blood gas levels were significantly improved, while apoptosis in cardiopulmonary tissue and ROS levels significantly decreased. Further testing revealed that the total extract of A. sylvestris significantly decreased the levels of interleukin-1β(IL-1β), interleukin-6(IL-6), and PAI-1 proteins in lung tissue, while increasing the expression of t-PA. Additionally, the extract reduced the levels of inflammatory cells such as leukocytes, lymphocytes, granulocytes, and monocytes in the blood, as well as the levels of P-selectin and TXA2 in plasma. Metabolomics results showed that the total extract of A. sylvestris significantly affected metabolic pathways, including arginine biosynthesis, tyrosine metabolism, and taurine and hypotaurine metabolism. In conclusion, the total extract of A. sylvestris may exert an anti-pulmonary hypertension effect by inhibiting the TGF-β1/Smad3 signaling pathway, thereby alleviating immune-inflammatory responses and thrombosis.
Animals
;
Male
;
Smad3 Protein/metabolism*
;
Transforming Growth Factor beta1/metabolism*
;
Rats, Sprague-Dawley
;
Rats
;
Signal Transduction/drug effects*
;
Hypertension, Pulmonary/genetics*
;
Thrombosis/immunology*
;
Drugs, Chinese Herbal/administration & dosage*
;
Humans
;
Apoptosis/drug effects*
7.Mechanism of Sangqi Qingxuan Liquid in Alleviating Vascular Endothelial Injury in Hypertension Focuses on β-Catenin.
Wei-Quan REN ; Xin ZENG ; Jiang-Quan LIAO ; Li HUANG ; Lin LI
Chinese journal of integrative medicine 2025;31(8):726-734
OBJECTIVE:
To explore the main components and potential mechanisms of Sangqi Qingxuan Liquid in the treatment of arterial vascular endothelial cells (AVECs) injury in hypertension through network pharmacology.
METHODS:
Traditional Chinese Medicine Systems Pharmacology and Analysis Platform (TCMSP) and Traditional Chinese Medicine Integrated Database (TCMID) were used to screen the active components of Sangqi Qingxuan Liquid (SQQX), which met the oral utilization rate and drug similarity criteria. An active component-target network was constructed using Cytoscape 3.6 software. A protein-protein interaction (PPI) network of targets associated with SQQX treatment for hypertension was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. The Metascape database was used to perform enrichment analysis of gene ontology biological functions and MSigDB pathway enrichment analysis of proteins in the PPI network. Further analysis of the main components of SQQX was performed using UPLC-MS. Based on the results of network pharmacology, the mechanism of SQQX to improve the injury of AVECs in hypertension was verified through lentiviral transfection by Wnt/ β -catenin signaling pathway. AVECs induced by angiotensin II (Ang II ) was used to establish a model of endothelial function injury in hypertension. Cell viability, intracellular nitric oxide content, malonaldehyde content, and superoxide dismutase activity were measured to determine the optimal induction conditions. The optimal intervention conditions for SQQX were determined based on cell viability, cellular DNA activity, and the gradient method. The cells were further divided into blank, model, overexpression lentivirus negative control, overexpression lentivirus, overexpression lentivirus + SQQX intervention (2.47 mg/mL, 12 h), inhibition lentivirus negative control, inhibition lentivirus, and inhibition lentivirus + SQQX intervention (2.47 mg/mL, 12 h) groups. Finally, quantitative real-time PCR and Western blotting were performed to analyze the molecular mechanisms of SQQX in the Wnt/ β -catenin signaling pathway.
RESULTS:
The main SQQX components were betaine, buddleoside, and chlorogenic acid, in descending order. Network pharmacology analysis screened 12 pathways associated with the hypertensive vascular endothelium. The results showed that 1 µ mol/L for 12 h was the optimal condition for Ang II to induce AVECs injury, and 2.47 mg/mL SQQX intervention for 12 h was the optimal condition for treating AVECs injury. In the experimental validation based on the interaction network of the Wnt/ β -catenin signaling pathway, SQQX significantly decreased the expressions of β -catenin, Smad2, peroxisome proliferator-activated receptors (PPARs), endothelial nitric oxide synthase (eNOS), and endothelin-1 (ET-1) caused by the β -catenin overexpression lentivirus (P<0.05 or P<0.01). The function of vascular endothelial cells can be improved by the β -catenin inhibition lentivirus, and no obvious changes were observed after further intervention with SQQX.
CONCLUSION
SQQX may protect against AVECs injury by regulating the Wnt/β -catenin signaling pathway.
Drugs, Chinese Herbal/therapeutic use*
;
beta Catenin/metabolism*
;
Hypertension/metabolism*
;
Endothelial Cells/metabolism*
;
Protein Interaction Maps/drug effects*
;
Humans
;
Wnt Signaling Pathway/drug effects*
;
Network Pharmacology
;
Endothelium, Vascular/injuries*
;
Cell Survival/drug effects*
;
Angiotensin II/pharmacology*
;
Nitric Oxide/metabolism*
8.Vascular Protection of Neferine on Attenuating Angiotensin II-Induced Blood Pressure Elevation by Integrated Network Pharmacology Analysis and RNA-Sequencing Approach.
A-Ling SHEN ; Xiu-Li ZHANG ; Zhi GUO ; Mei-Zhu WU ; Ying CHENG ; Da-Wei LIAN ; Chang-Geng FU ; Jun PENG ; Min YU ; Ke-Ji CHEN
Chinese journal of integrative medicine 2025;31(8):694-706
OBJECTIVE:
To explore the functional roles and underlying mechanisms of neferine in the context of angiotensin II (Ang II)-induced hypertension and vascular dysfunction.
METHODS:
Male mice were infused with Ang II to induce hypertension and randomly divided into treatment groups receiving neferine or a control vehicle based on baseline blood pressure using a random number table method. The hypertensive mouse model was constructed by infusing Ang II via a micro-osmotic pump (500 ng/kg per minute), and neferine (0.1, 1, or 10 mg/kg), valsartan (10 mg/kg), or double distilled water was administered intragastrically once daily for 6 weeks. A non-invasive blood pressure system, ultrasound, and hematoxylin and eosin staining were performed to assess blood pressure and vascular changes. RNA sequencing and network pharmacology were employed to identify differentially expressed transcripts (DETs) and pathways. Vascular ring tension assay was used to test vascular function. A7R5 cells were incubated with neferine for 24 h and then treated with Ang II to record the real-time Ca2+ concentration by confocal microscope. Immunohistochemistry (IHC) and Western blot were used to evaluate vasorelaxation, calcium, and the extracellular signal-regulated kinase (ERK)1/2 pathway.
RESULTS:
Neferine treatment effectively mitigated the elevation in blood pressure, pulse wave velocity, aortic thickening in the abdominal aorta of Ang II-infused mice (P<0.05). RNA sequencing and network pharmacology analysis identified 355 DETs that were significantly reversed by neferine treatment, along with 25 potential target genes, which were further enriched in multiple pathways and biological processes, such as ERK1 and ERK2 cascade regulation, calcium pathway, and vascular smooth muscle contraction. Further investigation revealed that neferine treatment enhanced vasorelaxation and reduced Ca2+-dependent contraction of abdominal aortic rings, independent of endothelium function (P<0.05). The underlying mechanisms were mediated, at least in part, via suppression of receptor-operated channels, store-operated channels, or voltage-operated calcium channels. Neferine pre-treatment demonstrated a reduction in intracellular Ca2+ release in Ang II stimulated A7R5 cells. IHC staining and Western blot confirmed that neferine treatment effectively attenuated the upregulation of p-ERK1/2 both in vivo and in vitro, which was similar with treatment of ERK1/2 inhibitor PD98059 (P<0.05).
CONCLUSIONS
Neferine remarkably alleviates Ang II-induced elevation of blood pressure, vascular dysfunction, and pathological changes in the abdominal aorta. This beneficial effect is mediated by the modulation of multiple pathways, including calcium and ERK1/2 pathways.
Animals
;
Angiotensin II
;
Male
;
Benzylisoquinolines/therapeutic use*
;
Network Pharmacology
;
Blood Pressure/drug effects*
;
Sequence Analysis, RNA
;
Mice
;
Hypertension/chemically induced*
;
Mice, Inbred C57BL
;
Calcium/metabolism*
9.Qingda Granules alleviate brain damage in spontaneously hypertensive rats by modulating the miR-124/STAT3 signaling axis.
Qiaoyan CAI ; Yaoyao XU ; Yuxing LIN ; Haowei LIN ; Junpeng ZHENG ; Weixiang ZHANG ; Chunyu ZHAO ; Yupeng LIN ; Ling ZHANG
Journal of Southern Medical University 2025;45(1):18-26
OBJECTIVES:
To explore the mechanism of Qingda Granules (QDG) for alleviating brain damage in spontaneously hypertensive rats (SHRs).
METHODS:
Twelve 5-week-old SHRs were randomized into SHR control group and SHR+QDG group treated with QDG by gavage at the daily dose of 0.9 g/kg for 12 weeks. The control rats, along with 6 age-matched WKY rats, were treated with saline only. Blood pressure changes of the rats were monitored, and pathologies and neuronal apoptosis in the cerebral cortex were examined with HE staining and TUNEL staining. Cerebral cortical expressions of miR-124 and STAT3 mRNA were detected using RT-qPCR, and the protein expressions of NeuN, STAT3, Bcl-2, Bax, and cleaved caspase-3 were detected with immunohistochemistry and Western blotting. In a HT22 cell model of oxygen and glucose deprivation/reoxygenation (OGD/R), the effects of QDG on cell viability and apoptosis, expressions of miR-124 and STAT3 mRNA, and protein expressions of STAT3, Bcl-2, Bax, and cleaved caspase-3 were evaluated using CCK8 assay, Hoechst 33342 staining, RT-qPCR, and Western blotting.
RESULTS:
Compared with WKY rats, SHRs had significantly elevated systolic blood pressure, diastolic blood pressure and mean arterial pressure with significantly increased neuronal apoptosis in the cerebral cortex, reduced expressions of NeuN, miR-124 and Bcl-2, and enhanced expressions of STAT3, Bax and cleaved caspase-3 (P<0.05). All these changes in the SHRs were significantly ameliorated by treatment with QDG (P<0.05). In the HT22 cell model, QDG treatment obviously reduced OGD/R-induced cell apoptosis, increased the expressions of miR-124 and Bcl-2, and suppressed the elevation of protein expressions of STAT3, Bax and cleaved caspase-3.
CONCLUSIONS
QDG inhibits cerebral cortical neuronal apoptosis and thereby attenuates brain damage in SHR rats by modulating the miR-124/STAT3 signaling axis.
Animals
;
Rats, Inbred SHR
;
MicroRNAs/metabolism*
;
STAT3 Transcription Factor/metabolism*
;
Signal Transduction/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Rats
;
Apoptosis/drug effects*
;
Rats, Inbred WKY
;
Male
;
Hypertension
10.Hypertension exacerbates postoperative learning and memory impairment in rats possibly due to UCP2 downregulation-mediated mitochondrial dysfunction.
Luyu LIU ; Maowei GONG ; Guosong LIAO ; Weixing ZHAO ; Qiang FU
Journal of Southern Medical University 2025;45(4):725-735
OBJECTIVES:
To explore the correlation of hypertension with postoperative cognitive dysfunction and its possible mechanism.
METHODS:
Twelve-week-old spontaneously hypertensive rats (SHRs) and Wistar-Kyoto (WKY) rats were both randomized into control group and surgical group (n=8). In the latter group, the rats received carotid artery exposure surgery under sevoflurane anesthesia to establish models of postoperative learning and memory impairment. Postoperative cognitive function changes of the rats were evaluated using behavioral tests. The hippocampus of the rats were collected for determining ATP level and mitochondrial membrane potential (MMP) and for detecting expressions of UCP2 and astrocyte markers (GFAP and NOX4) using Western blotting and immunofluorescence staining. Serum levels of ROS, IL-6, IL-1β and TNF‑α were detected using ELISA. Nissl staining was used to examine hippocampal neuronal loss in the CA1 region.
RESULTS:
The SHRs exhibited exacerbated learning and memory deficits following the surgery as shown by significantly reduced performance in novel object recognition tests and context-related and tone-related fear conditioning experiments. Compared with WKY rats, the SHRs had significantly decreased mitochondrial UCP2 expression and MMP in the hippocampus, increased hippocampal ATP level, and markedly increased serum levels of ROS and inflammatory factors, showing also increased activation of hippocampal astrocytes and microglia and reduced number of neurons positive for Nissl staining.
CONCLUSIONS
Hypertension can exacerbate major postoperative learning and memory impairment in rats possibly as a result of UCP2-mediated mitochondrial dysfunction and oxidative stress damage, which further leads to astrocyte overactivation and neuronal damage.
Animals
;
Rats, Inbred SHR
;
Rats
;
Uncoupling Protein 2
;
Rats, Inbred WKY
;
Hypertension/physiopathology*
;
Hippocampus/metabolism*
;
Mitochondria/metabolism*
;
Down-Regulation
;
Male
;
Memory Disorders/etiology*
;
Mitochondrial Proteins/metabolism*

Result Analysis
Print
Save
E-mail