1.Pulmonary hypertension and right sided heart failure in a patient with eosinophilic granulomatosis with polyangiitis: A case report
Rachel Anne Monteclaro ; Cheryl Anne A. Dela cruz-tan
Philippine Journal of Internal Medicine 2025;63(3):114-121
INTRODUCTION
Eosinophilic Granulomatosis Polyangiitis (EGPA) is the rarest among the ANCA-associated vasculitis with an incidence of seven per million individuals. Cardiac involvement occurs in 15-60% of patients and is the most severe manifestation associated with poor prognosis and mortality. EGPA typically affects the left side of the heart. There is only one published study to date that describes a case of right sided heart failure from pulmonary arterial hypertension.
CASEA 40-year-old, Filipino, female, complained of rash, wheezing and right sided heart failure symptoms. After a thorough work-up, she was managed as a case of EGPA based on palpable, erythematous, nonpruritic rash on the lower extremities, peripheral eosinophilia (54%), adult-onset asthma, mononeuritis multiplex, cardiac symptoms, (+) p-ANCA and leukocytoclastic vasculitis with eosinophils and early granuloma formation on skin punch biopsy. The 2D-echocardiography showed an elevated estimated pulmonary pressure with signs of right sided volume overload. Chest computed tomography with contrast revealed right atrial and biventricular enlargement, hepatomegaly and unremarkable pulmonary findings. Methylprednisolone along with intravenous cyclophosphamide pulse therapy were initiated which resulted in the resolution of symptoms with normalization of blood eosinophils. Repeat 2D-echocardiogram had unremarkable findings as well. With the improvement noted, she was then maintained on glucocorticoids and mycophenolate mofetil.
DISCUSSIONAlthough EGPA commonly presents with symptoms of asthma, rhinosinusitis and/or peripheral eosinophilia, one uncommon presentation would be cardiac manifestations, specifically progressive pulmonary arterial hypertension with subsequent right sided heart failure. High dose glucocorticoids along with other immunosuppressants such as cyclophosphamide, are the treatment options in managing life-threatening conditions. Early detection is crucial in the prevention of grave outcomes.
Human ; Female ; Adult: 25-44 Yrs Old ; Heart Failure ; Hypertension, Pulmonary ; Vasculitis
2.Cardiovascular-obstetric state-of-the-art review: pulmonary hypertension in pregnancy.
Joy Yi Shan ONG ; Jeannie Jing Yi YAP ; Mahesh CHOOLANI ; Kian-Keong POH ; Pradip DASHRAATH ; Ting-Ting LOW
Singapore medical journal 2025;66(3):130-140
Pulmonary hypertension in pregnancy has been associated with negative maternal and fetal outcomes over the past decades. With the emergence of novel treatment modalities, morbidity and mortality of women who have pulmonary hypertension in pregnancy have improved. In this review, we aim to explore the contemporary updates in the management of pre-capillary and post-capillary pulmonary hypertension in pregnancy.
Humans
;
Pregnancy
;
Female
;
Hypertension, Pulmonary/physiopathology*
;
Pregnancy Complications, Cardiovascular/diagnosis*
;
Pregnancy Outcome
;
Antihypertensive Agents/therapeutic use*
3.Burden of pulmonary arterial hypertension in Asia from 1990 to 2021: Findings from Global Burden of Disease Study 2021.
Shenshen HUANG ; Jiayong QIU ; Anyi WANG ; Yuejiao MA ; Peiwen WANG ; Dong DING ; Luhong QIU ; Shuangping LI ; Mengyi LIU ; Jiexin ZHANG ; Yimin MAO ; Yi YAN ; Xiqi XU ; Zhicheng JING
Chinese Medical Journal 2025;138(11):1324-1333
BACKGROUND:
Pulmonary arterial hypertension (PAH) presents a significant health burden in Asia and remains a critical challenge. This study aims to delineate the PAH burden in Asia from 1990 to 2021.
METHODS:
Using the latest data from the Global Burden of Disease 2021, we evaluated and analyzed the distributions and patterns of PAH disease burden among various age groups, sexes, regions, and countries in Asia. Additionally, we examined the associations between PAH disease burden and key health system indicators, including the socio-demographic index (SDI) and the universal health coverage (UHC) index.
RESULTS:
In 2021, there were 25,989 new PAH cases, 103,382 existing cases, 13,909 PAH-associated deaths, and 385,755 DALYs attributed to PAH in Asia, which accounted for approximately 60% of global PAH cases. The age-standardized rates (ASRs) for prevalence and deaths were 2.05 (95% uncertainty interval [UI]: 1.66-2.52) per 100,000 population and 0.31 (95% UI: 0.23-0.38) per 100,000 population, respectively. From 1990 to 2021, Asia reported the lowest ASRs for PAH prevalence but the highest ASRs for deaths compared to other continents. While the ASRs for prevalence increased slightly, ASRs for mortality and DALYs decreased over time. This increasing burden of PAH was primarily driven by population growth and aging. The burden was especially pronounced among individuals aged ≥60 years and <9 years, who collectively accounted for the majority of deaths and DALYs. Moreover, higher SDI and UHC levels were linked to reduced incidence, but higher prevalence rates.
CONCLUSIONS
Although progress has been made in reducing PAH-related mortality and DALYs, the disease continues to impose a substantial burden in Asia, particularly among older adults and young children. Region-specific health policies should focus on improving early diagnosis, expanding access to treatment, and effectively addressing the growing PAH burden in the region.
Humans
;
Global Burden of Disease
;
Male
;
Female
;
Middle Aged
;
Adult
;
Asia/epidemiology*
;
Prevalence
;
Aged
;
Pulmonary Arterial Hypertension/mortality*
;
Adolescent
;
Young Adult
;
Child
;
Child, Preschool
;
Infant
;
Hypertension, Pulmonary/epidemiology*
4.Critical role of mitochondrial dynamics in chronic respiratory diseases and new therapeutic directions.
Xiaomei WANG ; Ziming ZHU ; Haocheng JIA ; Xueyi LU ; Yingze ZHANG ; Yingxin ZHU ; Jinzheng WANG ; Yanfang WANG ; Rubin TAN ; Jinxiang YUAN
Chinese Medical Journal 2025;138(15):1783-1793
Chronic obstructive pulmonary disease (COPD) and pulmonary hypertension (PH) are both chronic progressive respiratory diseases that cannot be completely cured. COPD is characterized by irreversible airflow limitation, chronic airway inflammation, and gradual decline in lung function, whereas PH is characterized by pulmonary vasoconstriction, remodeling, and infiltration of inflammatory cells. These diseases have similar pathological features, such as vascular hyperplasia, arteriolar contraction, and inflammatory infiltration. Despite these well-documented observations, the exact mechanisms underlying the occurrence and development of COPD and PH remain unclear. Evidence that mitochondrial dynamics imbalance is one major factor in the development of COPD and PH. Mitochondrial dynamics is precisely regulated by mitochondrial fusion proteins and fission proteins. When mitochondrial dynamics equilibrium is disrupted, it causes mitochondrial and even cell morphological dysfunction. Mitochondrial dynamics participates in various pathological processes for heart and lung disease. Mitochondrial dynamics may be different in the early and late stages of COPD and PH. In the early stages of the disease, mitochondrial fusion increases, inhibiting fission, and thereby compensatorily increasing adenosine triphosphate (ATP) production. With the development of the disease, mitochondria decompensation causes excessive fission. Mitochondrial dynamics is involved in the development of COPD and PH in a spatiotemporal manner. Based on this understanding, treatment strategies for mitochondrial dynamics abnormalities may be different at different stages of COPD and PH disease. This article will provide new ideas for the potential treatment of related diseases.
Humans
;
Mitochondrial Dynamics/physiology*
;
Pulmonary Disease, Chronic Obstructive/metabolism*
;
Hypertension, Pulmonary/metabolism*
;
Mitochondria/metabolism*
;
Animals
5.Hydrogen sulfide ameliorates hypoxic pulmonary hypertension in rats by inhibiting aerobic glycolysis-pyroptosis.
Yuan CHENG ; Yun-Na TIAN ; Man HUANG ; Jun-Peng XU ; Wen-Jie CAO ; Xu-Guang JIA ; Li-Yi YOU ; Wan-Tie WANG
Acta Physiologica Sinica 2025;77(3):465-471
The present study aimed to explore whether hydrogen sulfide (H2S) improved hypoxic pulmonary hypertension (HPH) in rats by inhibiting aerobic glycolysis-pyroptosis. Male Sprague-Dawley (SD) rats were randomly divided into normal group, normal+NaHS group, hypoxia group, and hypoxia+NaHS group, with 6 rats in each group. The control group rats were placed in a normoxic (21% O2) environment and received daily intraperitoneal injections of an equal volume of normal saline. The normal+NaHS group rats were placed in a normoxic environment and intraperitoneally injected with 14 μmol/kg NaHS daily. The hypoxia group rats were placed in a hypoxia chamber, and the oxygen controller inside the chamber maintained the oxygen concentration at 9% to 10% by controlling the N2 flow rate. An equal volume of normal saline was injected intraperitoneally every day. The hypoxia+NaHS group rats were also placed in an hypoxia chamber and intraperitoneally injected with 14 μmol/kg NaHS daily. After the completion of the four-week modeling, the mean pulmonary artery pressure (mPAP) of each group was measured using right heart catheterization technique, and the right ventricular hypertrophy index (RVHI) was weighed and calculated. HE staining was used to observe pathological changes in lung tissue, Masson staining was used to observe fibrosis of lung tissue, and Western blot was used to detect protein expression levels of hexokinase 2 (HK2), pyruvate dehydrogenase (PDH), pyruvate kinase isozyme type M2 (PKM2), nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), GSDMD-N-terminal domain (GSDMD-N), Caspase-1, interleukin-1β (IL-1β) and IL-18 in lung tissue. ELISA was used to detect contents of IL-1β and IL-18 in lung tissue. The results showed that, compared with the normal control group, there were no significant changes in all indexes in the normal+NaHS group, while the hypoxia group exhibited significantly increased mPAP and RVHI, thickened pulmonary vascular wall, narrowed lumen, increased collagen fibers, up-regulated expression levels of aerobic glycolysis-related proteins (HK2 and PKM2), up-regulated expression levels of pyroptosis-related proteins (NLRP3, GSDMD-N, Caspase-1, IL-1β, and IL-18), and increased contents of IL-1β and IL-18. These changes of the above indexes in the hypoxia group were significantly reversed by NaHS. These results suggest that H2S can improve rat HPH by inhibiting aerobic glycolysis-pyroptosis.
Animals
;
Rats, Sprague-Dawley
;
Male
;
Hypertension, Pulmonary/metabolism*
;
Glycolysis/drug effects*
;
Hydrogen Sulfide/therapeutic use*
;
Hypoxia/complications*
;
Rats
;
Pyroptosis/drug effects*
6.Mechanism of L-perilla alcohol in intervening hypoxic pulmonary hypertension based on network pharmacology and experimental verification.
Yu-Rong WANG ; Yang YU ; Zhuo-Sen LIANG ; Li TONG ; Dian-Xiang LU ; Xing-Mei NAN
China Journal of Chinese Materia Medica 2025;50(1):209-217
The mechanism of L-perilla alcohol(L-POH) in intervening hypoxic pulmonary hypertension(HPAH) was discussed based on network pharmacology, and experimental verification. The active components and potential targets of the volatile oil of Rhodiola tangutica(VORA) in the intervention of HPAH were screened by network pharmacology. The biological process of Gene Ontology(GO) and the signaling pathway enrichment of Kyoto Encyclopedia of Genes and Genomes(KEGG) were analyzed for the core targets, and a "component-common target-disease" network was constructed. Four active components were screened from VORA: L-POH, linalool, geraniol, and(-)-myrtenol. The core targets for treating HPAH were HSP90AA1, AKT1, ESR1, PIK3CA, EP300, EGFR, and JAK2. GO enrichment analysis mainly involved biological processes such as reaction to hypoxia, heme binding, and steroid binding. KEGG enrichment analysis mainly involved hypoxia-inducing factor 1(HIF-1) signaling pathway, phosphatidylinositol 3-kinase/protein kinase B(PI3K/AKT) signaling pathway, and Janus kinase/activator of signal transduction and transcription(JAK/STAT) signaling pathway. The vasodilation effects of the four active components were screened by perfusion experiment of extracorporeal vascular rings, and the mechanism of the main active component L-POH was studied by channel blockers. The inhibitory effects of the four active components on the proliferation of pulmonary artery smooth muscle cells(PASMCs) induced by hypoxia were screened by cell proliferation experiment, and the mechanism of the main active component L-POH was studied by flow cytometry, cell cycle experiment, and Western blot. The results showed that L-POH could directly act on vascular smooth muscle to relax pulmonary arterioles, induce ATP-sensitive potassium channels to open, and inhibit extracellular Ca~(2+) influx through voltage-gated calcium channels to relax blood vessels. In addition, L-POH could inhibit the abnormal proliferation of PASMCs induced by hypoxia and promote its apoptosis, and its mechanism may be related to the increase in Bax protein expression and the decrease in p-JAK2, p-STAT3, Bcl-2, and cyclinA2 protein expression. In summary, L-POH can interfere with HPAH by relaxing pulmonary arterioles and inhibiting the proliferation of smooth muscle cells.
Network Pharmacology
;
Animals
;
Hypertension, Pulmonary/physiopathology*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Hypoxia/metabolism*
;
Rhodiola/chemistry*
;
Signal Transduction/drug effects*
;
Humans
;
Monoterpenes/chemistry*
;
Male
;
Cell Proliferation/drug effects*
;
Rats, Sprague-Dawley
7.Connotation of deficiency-induced chest impediment and Renshen Decoction based on severe cases and modern pathophysiological mechanisms and its application in treatment of coronary heart disease, rheumatic heart disease, heart failure, hypotension, pulmonary arterial hypertension, and other critical illnesses.
China Journal of Chinese Materia Medica 2025;50(6):1706-1714
Renshen Decoction is derived from the Synopsis of the Golden Chamber and is also known as Lizhong Pills or Lizhong Decoction, with the effects of warming the middle, dispelling cold, tonifying Qi, and strengthening the spleen, primarily treating spleen-stomach deficiency-cold syndrome. In modern clinical practice, Lizhong Pills and Lizhong Decoction are more frequently used, while Renshen Decoction is less common. Currently, this decoction is often applied in the treatment of gastric ulcers, infantile rotavirus diarrhea, chronic nephritis, autoimmune diabetes, allergic rhinitis, and other conditions, but reports on its use for coronary heart disease and angina pectoris are limited. Research has shown that in the original text, chest impediment(chest pain and stuffiness) includes not only coronary heart disease but also conditions such as coronary microcirculation disorders, X syndrome, coronary artery bridge, cardiomyopathy, heart valve disease, heart failure, chronic obstructive pulmonary disease, pulmonary heart disease, pulmonary arterial hypertension, hypotension, arrhythmia, and other diseases characterized by chest tightness. The name Renshen Decoction focuses on Panax ginseng without mentioning "Lizhong", indicating that its primary target is not the middle energizer but rather the deficiency of vital Qi and the collapse of the heart vessel. "Qi counterflow from the hypochondrium and rushing up to chest" encompasses acute inferior myocardial infarction combined with gastrointestinal irritation, and diseases with chest tightness as the main clinical manifestation combined with slow arrhythmias associated with vagus nerve excitement, nausea, and vomiting. Renshen Decoction is formulated for the deficiency-induced chest impediment, corresponding to the complication stage of coronary heart disease in modern clinical practice, which includes acute myocardial infarction with hypotension, cardiogenic shock, heart failure, and bradyarrhythmia. This differs from the excess-induced chest impediment addressed by Zhishi Xiebai Guizhi Decoction in the same article. The chest impediment treated by Renshen Decoction includes both the acute critical stage of cardiovascular diseases and the recovery phase of major illnesses. Pathophysiologically, the syndrome associated with Renshen Decoction may be closely related to ischemia, heart failure, hypotension, shock, and bradycardia. In terms of formula differentiation, Renshen Decoction must be distinguished from Zhishi Xiebai Guizhi Decoction and Chaihu Jia Longgu Muli Decoction. Renshen Decoction represents the ancient "Cardiac Triple Therapy".
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
Coronary Disease/physiopathology*
;
Heart Failure/physiopathology*
;
Hypertension, Pulmonary/physiopathology*
;
Hypotension/physiopathology*
8.Effects of total extract of Anthriscus sylvestris on immune inflammation and thrombosis in rats with pulmonary arterial hypertension based on TGF-β1/Smad3 signaling pathway.
Ya-Juan ZHENG ; Pei-Pei YUAN ; Zhen-Kai ZHANG ; Yan-Ling LIU ; Sai-Fei LI ; Yuan RUAN ; Yi CHEN ; Yang FU ; Wei-Sheng FENG ; Xiao-Ke ZHENG
China Journal of Chinese Materia Medica 2025;50(9):2472-2483
This study aimed to explore the effects and mechanisms of total extracts from Anthriscus sylvestris on pulmonary hypertension in rats. Sixty male SD rats were divided into normal(NC) group, model(M) group, positive drug sildenafil(Y) group, low-dose A. sylvestris(ES-L) group, medium-dose A. sylvestris(ES-M) group, and high-dose A. sylvestris(ES-H) group. On day 1, rats were intraperitoneally injected with monocrotaline(60 mg·kg~(-1)) to induce pulmonary hypertension, and the rat model was established on day 28. From days 15 to 28, intragastric administration of the respective treatments was performed. After modeling and treatment, small animal echocardiography was used to detect the right heart function of the rats. Arterial blood gas was measured using a blood gas analyzer. Hematoxylin and eosin(HE) staining and Masson staining were performed to observe cardiopulmonary pathological damage. Flow cytometry was used to detect apoptosis in the lung and myocardial tissues and reactive oxygen species(ROS) levels. Western blot was applied to detect the expression levels of transforming growth factor-β1(TGF-β1), phosphorylated mothers against decapentaplegic homolog 3(p-Smad3), Smad3, tissue plasminogen activator(t-PA), and plasminogen activator inhibitor-1(PAI-1) in lung tissue. A blood routine analyzer was used to measure inflammatory immune cell levels in the blood. Enzyme-linked immunosorbent assay(ELISA) was used to detect the expression levels of P-selectin and thromboxane A2(TXA2) in plasma. The results showed that, compared with the NC group, right heart hypertrophy index, right ventricular free wall thickness, right heart internal diameter, partial carbon dioxide pressure(PaCO_2), apoptosis in cardiopulmonary tissue, and ROS levels were significantly increased in the M group. In contrast, the ratio of pulmonary blood flow acceleration time(PAT)/ejection time(PET), right cardiac output, change rate of right ventricular systolic area, systolic displacement of the tricuspid ring, oxygen partial pressure(PaO_2), and blood oxygen saturation(SaO_2) were significantly decreased in the M group. After administration of the total extract of A. sylvestris, right heart function and blood gas levels were significantly improved, while apoptosis in cardiopulmonary tissue and ROS levels significantly decreased. Further testing revealed that the total extract of A. sylvestris significantly decreased the levels of interleukin-1β(IL-1β), interleukin-6(IL-6), and PAI-1 proteins in lung tissue, while increasing the expression of t-PA. Additionally, the extract reduced the levels of inflammatory cells such as leukocytes, lymphocytes, granulocytes, and monocytes in the blood, as well as the levels of P-selectin and TXA2 in plasma. Metabolomics results showed that the total extract of A. sylvestris significantly affected metabolic pathways, including arginine biosynthesis, tyrosine metabolism, and taurine and hypotaurine metabolism. In conclusion, the total extract of A. sylvestris may exert an anti-pulmonary hypertension effect by inhibiting the TGF-β1/Smad3 signaling pathway, thereby alleviating immune-inflammatory responses and thrombosis.
Animals
;
Male
;
Smad3 Protein/metabolism*
;
Transforming Growth Factor beta1/metabolism*
;
Rats, Sprague-Dawley
;
Rats
;
Signal Transduction/drug effects*
;
Hypertension, Pulmonary/genetics*
;
Thrombosis/immunology*
;
Drugs, Chinese Herbal/administration & dosage*
;
Humans
;
Apoptosis/drug effects*
9.NDUFAF2 gene mutation presenting as primary pulmonary hypertension: a case report.
Xiao-Dan YAN ; Yan-Yan CHEN ; Li TAO
Chinese Journal of Contemporary Pediatrics 2025;27(5):609-612
A male neonate was admitted on postnatal day 1 with persistent pulmonary hypertension. Despite aggressive treatment, the pulmonary hypertension progressively worsened, leading to early right heart failure. Whole-exome sequencing of the family revealed compound heterozygous mutations c.192del and c.192_193del in the NDUFAF2 gene, inherited from each parent, meeting the pathogenic variant criteria of the American College of Medical Genetics and Genomics. Autopsy showed pulmonary artery dilation and myocardial hypertrophy, with no evidence of alveolar capillary dysplasia on lung tissue electron microscopy. Mutations in the NDUFAF2 gene are associated with mitochondrial complex I deficiency. This is the first reported case associating NDUFAF2 mutations with neonatal primary pulmonary hypertension, providing new genetic evidence for this condition and highlighting the importance of genetic and pathological studies in severe neonatal diseases.
Humans
;
Male
;
Mutation
;
Infant, Newborn
;
Hypertension, Pulmonary/genetics*
10.COMPERA 2.0 risk stratification in patients with severe aortic stenosis: implication for group 2 pulmonary hypertension.
Zongye CAI ; Xinrui QI ; Dao ZHOU ; Hanyi DAI ; Abuduwufuer YIDILISI ; Ming ZHONG ; Lin DENG ; Yuchao GUO ; Jiaqi FAN ; Qifeng ZHU ; Yuxin HE ; Cheng LI ; Xianbao LIU ; Jian'an WANG
Journal of Zhejiang University. Science. B 2025;26(11):1076-1085
COMPERA 2.0 risk stratification has been demonstrated to be useful in patients with precapillary pulmonary hypertension (PH). However, its suitability for patients at risk for post-capillary PH or PH associated with left heart disease (PH-LHD) is unclear. To investigate the use of COMPERA 2.0 in patients with severe aortic stenosis (SAS) undergoing transcatheter aortic valve replacement (TAVR), who are at risk for post-capillary PH, a total of 327 eligible SAS patients undergoing TAVR at our institution between September 2015 and November 2020 were included in the study. Patients were classified into four strata before and after TAVR using the COMPERA 2.0 risk score. The primary endpoint was all-cause mortality. Survival analysis was performed using Kaplan-Meier curves, log-rank test, and Cox proportional hazards regression model. The study cohort had a median (interquartile range) age of 76 (70‒80) years and a pulmonary arterial systolic pressure of 33 (27‒43) mmHg (1 mmHg=0.133 kPa) before TAVR. The overall mortality was 11.9% during 26 (15‒47) months of follow-up. Before TAVR, cumulative mortality was higher with an increase in the risk stratum level (log-rank, both P<0.001); each increase in the risk stratum level resulted in an increased risk of death (hazard ratio (HR) 2.53, 95% confidential interval (CI) 1.54‒4.18, P<0.001), which was independent of age, sex, estimated glomerular filtration rate (eGFR), hemoglobin, albumin, and valve type (HR 1.76, 95% CI 1.01‒3.07, P=0.047). Similar results were observed at 30 d after TAVR. COMPERA 2.0 can serve as a useful tool for risk stratification in patients with SAS undergoing TAVR, indicating its potential application in the management of PH-LHD. Further validation is needed in patients with confirmed post-capillary PH by right heart catheterization.
Humans
;
Aortic Valve Stenosis/complications*
;
Aged
;
Hypertension, Pulmonary/mortality*
;
Male
;
Female
;
Transcatheter Aortic Valve Replacement
;
Aged, 80 and over
;
Risk Assessment/methods*
;
Proportional Hazards Models
;
Kaplan-Meier Estimate
;
Retrospective Studies


Result Analysis
Print
Save
E-mail