1.Protective Mechanism of Electroacupuncture on Peripheral Neurotoxicity Induced by Oxaliplatin in Rats.
Feng-Jiao WANG ; She SHI ; Yong-Qiang WANG ; Ke WANG ; Shen-Dong FAN ; Ya-Nan ZHANG ; Chen-Chen FENG ; Zi-Yong JU
Chinese journal of integrative medicine 2022;28(9):833-839
OBJECTIVE:
To study the effect of electroacupuncture (EA) on oxaliplatin-induced peripheral neuropathy (OIPN) in rats.
METHODS:
Male Sprague-Dawley rats were equally divided into 3 groups using a random number table: the control group, the OIPN group, and the EA (OIPN + EA) group, with 10 rats in each. The time courses of mechanical, cold sensitivity, and microcirculation blood flow intensity were determined. The morphology of the dorsal root ganglion (DRG) was observed by electron microscopic examination. The protein levels of nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and the transient receptor potential (TRP) protein family in DRGs were assayed by Western blot.
RESULTS:
EA treatment significantly reduced mechanical allodynia and cold allodynia in OIPN rats (P<0.01). Notably, oxaliplatin treatment resulted in impaired microcirculatory blood flow and pathomorphological defects in DRGs (P<0.01). EA treatment increased the microcirculation blood flow and attenuated the pathological changes induced by oxaliplatin (P<0.01). In addition, the expression levels of Nrf2 and HO-1 were down-regulated, and the TRP protein family was over-expressed in the DRGs of OIPN rats (P<0.01). EA increased the expression levels of Nrf2 and HO-1 and decreased the level of TRP protein family in DRG (P<0.05 or P<0.01).
CONCLUSION
EA may be a potential alternative therapy for OIPN, and its mechanism may be mainly mediated by restoring the Nrf2/HO-1 signaling pathway.
Animals
;
Electroacupuncture/methods*
;
Hyperalgesia/therapy*
;
Male
;
Microcirculation
;
NF-E2-Related Factor 2
;
Oxaliplatin/adverse effects*
;
Peripheral Nervous System Diseases/chemically induced*
;
Rats
;
Rats, Sprague-Dawley
2.Hippocampus is involved in 17β-estradiol exacerbating experimental occlusal inter- ference-induced chronic masseter hyperalgesia in ovariectomized rats.
Ying Ying FAN ; Yun LIU ; Ye CAO ; Qiu Fei XIE
Journal of Peking University(Health Sciences) 2022;54(1):40-47
OBJECTIVE:
To investigate the influence of chronic masseter hyperalgesia induced by 17β-estradiol (E2) and experimental occlusal interference (EOI) on underlying mechanism in hippocampus of ovariectomized (OVX) rats.
METHODS:
In the study, 32 OVX rats were randomly divided into 4 groups (8 rats/group): The control group was OVX group, and 0 μg/d E2 (vehicle) injection was started 7 d after OVX without EOI; in the experimental group (1) OVX + E2 group, 80 μg/d E2 injection was started 7 d after OVX without EOI; in the experimental group (2) OVX + EOI group, vehicle injection was started 7 d after OVX and EOI was applied 17 d after OVX; in the experimental group (3) OVX + E2 + EOI group, 80 μg/d E2 injection was started 7 d after OVX and EOI was applied 17 d after OVX. Bilateral masseter muscle mechanical withdrawal thresholds were measured before OVX, 7 days after OVX (before E2 injection), 17 days after OVX (10 days after E2 injection and before EOI) and 24 days after OVX (7 days after EOI). Immunofluorescence staining was used to reveal phospho-extracellular signal regulated kinase 1/2 (p-ERK1/2)-positive neurons in CA3 of hippocampus. The protein expression of p-ERK1/2 in hippocampus was detected using Western Blot.
RESULTS:
Compared with the control group [left side: (135.3±8.5) g, right side: (135.4±10.8) g], bilateral masseter muscle mechanical withdrawal thresholds of OVX+E2 group [left side: (113.3±5.6) g, right side: (112.5 ± 5.6) g] and OVX+EOI group [left side: (93.3±5.4) g, right side: 90.8±5.5) g] were decreased (P < 0.01). Bilateral masseter muscle mechanical withdrawal thresholds were significantly lower in OVX+E2+EOI group [left side: (81.2±6.2) g, right side: 79.8±7.7) g] than in the control, OVX+E2 and OVX+EOI groups (P < 0.05). The proportion of p-ERK1/2 positive neurons in the CA3 region of the hippocampus was increased in the control, OVX+E2, OVX+EOI and OVX+E2+EOI groups in turn, and the difference between the groups was statistically significant (P < 0.05). p-ERK1/2 protein expression was increased in the control, OVX+E2 and OVX+EOI groups in turn, but the difference was not statistically significant (P>0.05). p-ERK1/2 expression was significantly higher in OVX+E2+EOI group than in the other three groups (P < 0.05).
CONCLUSION
High concentration of E2 could exacerbated EOI-induced chronic masseter hyperalgesia in ovariectomized rats, and its central mechanism may be related to the upregulation of the phosphorylation of ERK1/2 in hippocampus.
Animals
;
Estradiol
;
Female
;
Hippocampus
;
Humans
;
Hyperalgesia/chemically induced*
;
Masseter Muscle
;
Ovariectomy
;
Rats
;
Rats, Sprague-Dawley
3.Neonatal Maternal Deprivation Followed by Adult Stress Enhances Adrenergic Signaling to Advance Visceral Hypersensitivity.
Wan-Jie DU ; Shufen HU ; Xin LI ; Ping-An ZHANG ; Xinghong JIANG ; Shan-Ping YU ; Guang-Yin XU
Neuroscience Bulletin 2019;35(1):4-14
The pathophysiology of visceral pain in patients with irritable bowel syndrome remains largely unknown. Our previous study showed that neonatal maternal deprivation (NMD) does not induce visceral hypersensitivity at the age of 6 weeks in rats. The aim of this study was to determine whether NMD followed by adult stress at the age of 6 weeks induces visceral pain in rats and to investigate the roles of adrenergic signaling in visceral pain. Here we showed that NMD rats exhibited visceral hypersensitivity 6 h and 24 h after the termination of adult multiple stressors (AMSs). The plasma level of norepinephrine was significantly increased in NMD rats after AMSs. Whole-cell patch-clamp recording showed that the excitability of dorsal root ganglion (DRG) neurons from NMD rats with AMSs was remarkably increased. The expression of β adrenergic receptors at the protein and mRNA levels was markedly higher in NMD rats with AMSs than in rats with NMD alone. Inhibition of β adrenergic receptors with propranolol or butoxamine enhanced the colorectal distention threshold and application of butoxamine also reversed the enhanced hypersensitivity of DRG neurons. Overall, our data demonstrate that AMS induces visceral hypersensitivity in NMD rats, in part due to enhanced NE-β adrenergic signaling in DRGs.
Adrenergic Agents
;
pharmacology
;
Animals
;
Ganglia, Spinal
;
drug effects
;
Hyperalgesia
;
drug therapy
;
physiopathology
;
Hypersensitivity
;
drug therapy
;
Male
;
Maternal Deprivation
;
Neurons
;
drug effects
;
Patch-Clamp Techniques
;
methods
;
Rats, Sprague-Dawley
;
Signal Transduction
;
drug effects
;
Stress, Physiological
;
physiology
;
Visceral Pain
;
chemically induced
;
metabolism
4.Spinal CCL2 Promotes Central Sensitization, Long-Term Potentiation, and Inflammatory Pain via CCR2: Further Insights into Molecular, Synaptic, and Cellular Mechanisms.
Rou-Gang XIE ; Yong-Jing GAO ; Chul-Kyu PARK ; Ning LU ; Ceng LUO ; Wen-Ting WANG ; Sheng-Xi WU ; Ru-Rong JI
Neuroscience Bulletin 2018;34(1):13-21
Mounting evidence supports an important role of chemokines, produced by spinal cord astrocytes, in promoting central sensitization and chronic pain. In particular, CCL2 (C-C motif chemokine ligand 2) has been shown to enhance N-methyl-D-aspartate (NMDA)-induced currents in spinal outer lamina II (IIo) neurons. However, the exact molecular, synaptic, and cellular mechanisms by which CCL2 modulates central sensitization are still unclear. We found that spinal injection of the CCR2 antagonist RS504393 attenuated CCL2- and inflammation-induced hyperalgesia. Single-cell RT-PCR revealed CCR2 expression in excitatory vesicular glutamate transporter subtype 2-positive (VGLUT2) neurons. CCL2 increased NMDA-induced currents in CCR2/VGLUT2 neurons in lamina IIo; it also enhanced the synaptic NMDA currents evoked by dorsal root stimulation; and furthermore, it increased the total and synaptic NMDA currents in somatostatin-expressing excitatory neurons. Finally, intrathecal RS504393 reversed the long-term potentiation evoked in the spinal cord by C-fiber stimulation. Our findings suggest that CCL2 directly modulates synaptic plasticity in CCR2-expressing excitatory neurons in spinal lamina IIo, and this underlies the generation of central sensitization in pathological pain.
Animals
;
Benzoxazines
;
pharmacology
;
therapeutic use
;
Chemokine CCL2
;
antagonists & inhibitors
;
genetics
;
metabolism
;
pharmacology
;
Excitatory Amino Acid Agents
;
pharmacology
;
Excitatory Amino Acid Agonists
;
pharmacology
;
Female
;
Freund's Adjuvant
;
toxicity
;
Hyperalgesia
;
chemically induced
;
metabolism
;
prevention & control
;
Long-Term Potentiation
;
drug effects
;
physiology
;
Luminescent Proteins
;
genetics
;
metabolism
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Mice, Transgenic
;
Myelitis
;
chemically induced
;
drug therapy
;
metabolism
;
Neurons
;
drug effects
;
Pain Management
;
Somatostatin
;
genetics
;
metabolism
;
Spinal Cord
;
cytology
;
Spiro Compounds
;
pharmacology
;
therapeutic use
;
Vesicular Glutamate Transport Protein 2
;
genetics
;
metabolism
;
Vesicular Inhibitory Amino Acid Transport Proteins
;
genetics
;
metabolism
5.Expressions of TRPV1 and TRPA1 in the dorsal root ganglion in the rat model of orchialgia.
Jing-Wei YU ; Jie-Hong HUANG ; Kun-Long LÜ ; Ming-Kuan ZHOU ; Xin FENG ; Kun TIAN ; Jin-Tao ZHUANG ; Wen-Liang ZHOU ; Chun-Hua DENG ; Xiang-An TU
National Journal of Andrology 2017;23(4):296-301
Objective:
To explore the expressions of transient receptor potential vanilloid 1 (TRPV1) and TRP ankyrin 1 (TRPA1) in the dorsal root ganglion (DRG) and their action mechanisms in the rat model of orchialgia.
METHODS:
The models of orchialgia were established in male SD rats by injection of 2% acetic acid into the testis. Then the number of spontaneous pain responses and withdrawal latency in the model rats were recorded by behavioral tests and the expressions of TRPV1 and TRPA1 in T13-L1 DRGs determined by RT-qPCR, Western blot and immunofluorescence staining.
RESULTS:
Compared with the normal control rats, the orchialgia models showed a significant increase in the number of spontaneous pain responses (0.13 ± 0.35 vs 22.63 ± 3.42, P<0.01) and a decrease in the withdrawal latency at 4 hours after injection ([12.75 ± 1.50] vs [4.85 ± 1.00] s, P<0.05). The mRNA expressions of both TRPV1 and TRPA1 were observed in the membrane of the neurons in the DRG, the former increased by 1.77 times and the latter by 1.75 times that of the control (P<0.05).
CONCLUSIONS
The expressions of TRPV1 and TRPA1 were up-regulated in the DRG of the rat models of orchialgia, which may be involved in the allodynia and hyperalgesia of the rats.
Acetic Acid
;
Animals
;
Ganglia, Spinal
;
metabolism
;
Hyperalgesia
;
chemically induced
;
metabolism
;
Male
;
Membrane Glycoproteins
;
Oxidoreductases
;
Rats
;
Rats, Sprague-Dawley
;
TRPA1 Cation Channel
;
metabolism
;
TRPV Cation Channels
;
metabolism
;
Testicular Diseases
;
chemically induced
;
metabolism
;
Up-Regulation
6.Effects of blockade of 5-HT2A receptors in inflammatory site on complete Freund's adjuvant-induced chronic hyperalgesia and neuropeptide Y expression in the spinal dorsal horn in rats.
Bing-Qing HUANG ; Bing WU ; Yanguo HONG ; Wei HU
Acta Physiologica Sinica 2015;67(5):463-469
5-hydroxytryptamine (5-HT) released in inflammatory tissues plays a pivotal role in pain hypersensitivity. However, it is not clear whether 5-HT2A receptors in the inflamed tissues mediate this effect. The present study investigated the contribution of 5-HT2A receptors in the periphery to chronic inflammatory pain. Complete Freund's adjuvant (CFA) was injected subcutaneously in the hindpaw of rats. The selective 5-HT2A receptor antagonist ketanserin was given in the inflamed site. Paw withdrawal latency responding to heat or mechanical stimuli was measured. Expression of neuropeptide Y (NPY) in the spinal dorsal horn and dorsal root ganglia (DRG) was assayed using immunohistochemistry technique. The results showed that ketanserin administered in the inflamed site inhibited thermal hyperalgesia in a dose-dependent manner (20, 40 and 80 µg) induced by the intraplantar injection of CFA. Ketanserin given once per day at a dose of 80 µg abolished heat hyperalgesia and also attenuated mechanical allodynia on the third day. CFA injection increased the expression of NPY in superficial laminae of the spinal cord, but not in the DRG. The local treatment of ketanserin completely inhibited CFA-induced increase in NPY expression in superficial laminae of the spinal cord. These results indicated that activation of 5-HT2A receptors in the inflamed tissues was involved in the pathogenesis of inflammatory pain and the blockade of 5-HT2A receptors in the periphery could relieve pain hypersensitivity and normalize the cellular disorder in the spinal dorsal horn associated with pathological pain. The present study suggests that the peripheral 5-HT2A receptors can be a promising target for pharmaceutical therapy to treat chronic inflammatory pain without central nervous system side effects.
Animals
;
Freund's Adjuvant
;
adverse effects
;
Ganglia, Spinal
;
metabolism
;
Hot Temperature
;
Hyperalgesia
;
chemically induced
;
drug therapy
;
Inflammation
;
drug therapy
;
Ketanserin
;
pharmacology
;
Neuropeptide Y
;
metabolism
;
Pain
;
drug therapy
;
Pain Measurement
;
Rats
;
Receptor, Serotonin, 5-HT2A
;
metabolism
;
Serotonin
;
Serotonin 5-HT2 Receptor Antagonists
;
pharmacology
;
Spinal Cord Dorsal Horn
;
metabolism
7.Selective class I histone deacetylase inhibitors suppress persistent spontaneous nociception and thermal hypersensitivity in a rat model of bee venom-induced inflammatory pain.
Fan YANG ; Yan YANG ; Yan WANG ; Fei YANG ; Chun-Li LI ; Xiao-Liang WANG ; Zhen LI ; Jun CHEN
Acta Physiologica Sinica 2015;67(5):447-454
To confirm whether class I histone deacetylase inhibitors (HDACIs) are effective in relief of peripheral inflammatory pain, the effects of two selective inhibitors, MS-275 and MGCD0103, were studied in rats inflamed by subcutaneous (s.c.) injection of bee venom (BV). The BV test is characterized by displaying both persistent spontaneous nociception (PSN) and primary hypersensitivity. Intrathecal (i.t.) pre-treatment of either MS-275 or MGCD0103 with a single dose of 60 nmol/20 μL resulted in profound suppression of both PSN and primary thermal hypersensitivity but without significant influence upon the primary mechanical hypersensitivity and mirror-image thermal hypersensitivity. Moreover, the up-regulation of both HDAC1 and HDAC2 induced by s.c. BV injection was completely suppressed by i.t. pre-treatment of MS-275. The present results provide with another new line of evidence showing involvement of epigenetic regulation of chromatin structure by HDAC1/2-mediated histone hypoacetylation in the BV-induced PSN and thermal hypersensitivity and demonstrate the beneficial effects of class I HDACIs in prevention of peripheral inflammatory pain from occurring.
Animals
;
Bee Venoms
;
administration & dosage
;
Benzamides
;
pharmacology
;
Epigenesis, Genetic
;
Histone Deacetylase 1
;
genetics
;
metabolism
;
Histone Deacetylase 2
;
genetics
;
metabolism
;
Histone Deacetylase Inhibitors
;
pharmacology
;
Hot Temperature
;
Hyperalgesia
;
drug therapy
;
Inflammation
;
drug therapy
;
Injections, Subcutaneous
;
Nociception
;
Pain
;
chemically induced
;
drug therapy
;
Pain Measurement
;
Pyridines
;
pharmacology
;
Pyrimidines
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Up-Regulation
8.Spinal 5-HT3AR contributes to BmK I-induced inflammatory pain in rats.
Jin FU ; Yun-Lu JIAO ; Zheng-Wei LI ; Yong-Hua JI
Acta Physiologica Sinica 2015;67(3):283-294
Subcutaneous injection of BmK I could be adopted to well establish a novel pain model. Moreover, 5-hydroxytryptamine (serotonin, 5-HT) receptor is involved in regulating animal pain-related behaviors. However, the underlying mechanism of 5-HT3R on BmK I-induced pain remains unclear. Animal behavioral testing, RT-PCR and Western blotting were used to yield the following results: first, intraplantar (i.pl.) injection of BmK I (10 μg) induced elevated mRNA and protein levels of 5-HT3AR in bilateral L4-L5 spinal cord; Second, intrathecal (i.t.) injection of ondansetron (a specific antagonist of 5-HT3AR) reduced spontaneous pain responses, attenuated unilateral thermal and bilateral mechanical hypersensitivity elicited by BmK I; Microglia could be activated by BmK I (i.pl.) in both sides of L4-L5 spinal cord, and this effect was reversed by intrathecal pre-treatment with 5-HT3AR antagonist. Meanwhile, the 5-HT3AR in L4-L5 spinal cord was almost co-localized with NeuN (a marker of nerve cell), but not co-expressed with Iba-1 (a marker of microglia). Finally, the expression level of CX3CL1 and CX3CR1 was reduced by intrathecal pre-treatment with ondansetron. Our results indicate that both 5-HT3AR signaling pathway and microglia are activated in the process of induction and maintenance of BmK I-induced pain nociception. Meanwhile, our results suggest that the neuronal 5-HT3AR may communicate with microglia indirectly via CX3CL1 which is involved in regulating the BmK I-induced hyperalgesia and sensitization.
Animals
;
Behavior, Animal
;
Chemokine CX3CL1
;
metabolism
;
Hyperalgesia
;
chemically induced
;
Inflammation
;
physiopathology
;
Injections, Spinal
;
Microglia
;
drug effects
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Serotonin, 5-HT3
;
metabolism
;
Scorpion Venoms
;
adverse effects
;
Spinal Cord
;
metabolism
;
physiopathology
9.The changes of monocarboxylate transporter-2 in spinal cord horn in a rat model of chronic inflammatory pain.
Jian-hua HE ; Li XU ; Yu SHEN ; Ming-jian KONG ; Lin-yu SHI ; Zheng-liang MA
Chinese Journal of Applied Physiology 2015;31(1):19-22
OBJECTIVETo investigate the changes in the levels of monocarboxylate transporter-2 in spinal cord horn in a rat model of chronic inflammatory pain.
METHODSMale SD rats weighting 180 - 220 g were randomly divided into two groups(n = 48): normal saline group (NS group), complete Freund's adjuvant group (CFA group). Rats were given injections of CFA 100 µl in left hind paw in group CFA, and an equal volume of saline was given injection in group NS. Mechanical withdraw threshold(MWT) and thermal withdraw latency(TWL) were measured at before injection(T0 and 3 h, 1 d, 3 d, 7 d, 14 d, and 21 d after injection(T1-7). Four rats were chosen from each group at T0-7 and sacrificed, and L4-5 segments of the spinal cord horn were removed for measurement of the expression of monocarboxylate transporter-2 by Western blot analysis.
RESULTSIn CFA group, mechanical hyperalgesia and allodynia appeared on the 3 h after CFA injection, then until the day 14. The expression of monocarboxylate transporter-2 in the spinal dorsal horn of rats in CFA group was significantly higher than that in normal control group at T1-6(P <0.05). The protein level of monocarboxylate transporter-2 was apparently correlated with MWT and TWL(P <0.01 and P <0.05) in CFA group.
CONCLUSIONThe level of monocarboxylate transporter-2 in spinal dorsal horn is significantly increased in a rat model of chronic inflammatory pain and the change may involve in the formation and maintenance of central sensitization in spinal cord of chronic inflammatory uain.
Animals ; Disease Models, Animal ; Freund's Adjuvant ; Hyperalgesia ; chemically induced ; Inflammation ; chemically induced ; metabolism ; Male ; Monocarboxylic Acid Transporters ; metabolism ; Pain ; chemically induced ; metabolism ; Rats ; Rats, Sprague-Dawley ; Spinal Cord ; metabolism ; physiopathology
10.Prophylactic effects of asiaticoside-based standardized extract of Centella asiatica (L.) Urban leaves on experimental migraine: Involvement of 5HT1A/1B receptors.
Vijeta BOBADE ; Subhash L BODHANKAR ; Urmila ASWAR ; Mohan VISHWARAMAN ; Prasad THAKURDESAI
Chinese Journal of Natural Medicines (English Ed.) 2015;13(4):274-282
The present study aimed at evaluation of prophylactic efficacy and possible mechanisms of asiaticoside (AS) based standardized extract of Centella asiatica (L.) Urban leaves (INDCA) in animal models of migraine. The effects of oral and intranasal (i.n.) pretreatment of INDCA (acute and 7-days subacute) were evaluated against nitroglycerine (NTG, 10 mg·kg(-1), i.p.) and bradykinin (BK, 10 μg, intra-arterial) induced hyperalgesia in rats. Tail flick latencies (from 0 to 240 min) post-NTG treatment and the number of vocalizations post-BK treatment were recorded as a measure of hyperalgesia. Separate groups of rats for negative (Normal) and positive (sumatriptan, 42 mg·kg(-1), s.c.) controls were included. The interaction of INDCA with selective 5-HT1A, 5-HT1B, and 5-HT1D receptor antagonists (NAN-190, Isamoltane hemifumarate, and BRL-15572 respectively) against NTG-induced hyperalgesia was also evaluated. Acute and sub-acute pre-treatment of INDCA [10 and 30 mg·kg(-1) (oral) and 100 μg/rat (i.n.) showed significant anti-nociception activity, and reversal of the NTG-induced hyperalgesia and brain 5-HT concentration decline. Oral pre-treatment with INDCA (30 mg·kg(-1), 7 d) showed significant reduction in the number of vocalization. The anti-nociceptive effects of INDCA were blocked by 5-HT1A and 5-HT1B but not 5-HT1D receptor antagonists. In conclusion, INDCA demonstrated promising anti-nociceptive effects in animal models of migraine, probably through 5-HT1A/1B medicated action.
Administration, Intranasal
;
Administration, Oral
;
Animals
;
Bradykinin
;
Female
;
Hyperalgesia
;
chemically induced
;
prevention & control
;
Male
;
Migraine Disorders
;
chemically induced
;
prevention & control
;
Models, Animal
;
Nitroglycerin
;
Nociception
;
drug effects
;
Plant Leaves
;
chemistry
;
Pre-Exposure Prophylaxis
;
Rats
;
Rats, Wistar
;
Reaction Time
;
Receptors, Serotonin, 5-HT1
;
drug effects
;
Serotonin 5-HT1 Receptor Antagonists
;
metabolism
;
Tail
;
physiology
;
Triterpenes
;
administration & dosage
;
pharmacology

Result Analysis
Print
Save
E-mail