1.Indoxyl sulfate induces apoptotic cell death by inhibiting glycolysis in human astrocytes
Seung-Hyun JEONG ; Samel PARK ; Jae-sung CHOI ; Nam-Jun CHO ; Jong-Seok MOON ; Hyo-Wook GIL
Kidney Research and Clinical Practice 2024;43(6):774-784
Neurologic complications, such as cognitive and emotional dysfunction, have frequently been observed in chronic kidney disease (CKD) patients. Previous research shows that uremic toxins play a role in the pathogenesis of CKD-associated cognitive impairment. Since astrocytes contribute to the protection and survival of neurons, astrocyte function and brain metabolism may contribute to the pathogenesis of neurodegeneration. Indoxyl sulfate (IS) is the most popular uremic toxin. However, how IS-induced astrocyte injury brings about neurologic complications in CKD patients has not been elucidated. Methods: The rate of extracellular acidification was measured in astrocytes when IS (0.5–3 mM, 4 or 7 days) treatment was applied. The hexokinase 1 (HK1), pyruvate kinase isozyme M2 (PKM2), pyruvate dehydrogenase (PDH), and phosphofructokinase (PFKP) protein levels were also measured. The activation of the apoptotic pathway was investigated using a confocal microscope, fluorescence- activated cell sorting, and cell three-dimensional imaging was used. Results: In astrocytes, IS affected glycolysis in not only dose-dependently but also time-dependently. Additionally, HK1, PKM2, PDH, and PFKP levels were decreased in IS-treated group when compared to the control. The results were prominent in cases with higher doses and longer exposure duration. The apoptotic features after IS treatment were also observed. Conclusion: Our results showed that the inhibition of glycolysis by IS in astrocytes leads to cell death via apoptosis. Specifically, longterm and higher-dose exposures had more serious effects on astrocytes. Our results suggest that the glycolysis pathway and related targets could provide a novel approach to cognitive dysfunction in CKD patients.
2.Indoxyl sulfate induces apoptotic cell death by inhibiting glycolysis in human astrocytes
Seung-Hyun JEONG ; Samel PARK ; Jae-sung CHOI ; Nam-Jun CHO ; Jong-Seok MOON ; Hyo-Wook GIL
Kidney Research and Clinical Practice 2024;43(6):774-784
Neurologic complications, such as cognitive and emotional dysfunction, have frequently been observed in chronic kidney disease (CKD) patients. Previous research shows that uremic toxins play a role in the pathogenesis of CKD-associated cognitive impairment. Since astrocytes contribute to the protection and survival of neurons, astrocyte function and brain metabolism may contribute to the pathogenesis of neurodegeneration. Indoxyl sulfate (IS) is the most popular uremic toxin. However, how IS-induced astrocyte injury brings about neurologic complications in CKD patients has not been elucidated. Methods: The rate of extracellular acidification was measured in astrocytes when IS (0.5–3 mM, 4 or 7 days) treatment was applied. The hexokinase 1 (HK1), pyruvate kinase isozyme M2 (PKM2), pyruvate dehydrogenase (PDH), and phosphofructokinase (PFKP) protein levels were also measured. The activation of the apoptotic pathway was investigated using a confocal microscope, fluorescence- activated cell sorting, and cell three-dimensional imaging was used. Results: In astrocytes, IS affected glycolysis in not only dose-dependently but also time-dependently. Additionally, HK1, PKM2, PDH, and PFKP levels were decreased in IS-treated group when compared to the control. The results were prominent in cases with higher doses and longer exposure duration. The apoptotic features after IS treatment were also observed. Conclusion: Our results showed that the inhibition of glycolysis by IS in astrocytes leads to cell death via apoptosis. Specifically, longterm and higher-dose exposures had more serious effects on astrocytes. Our results suggest that the glycolysis pathway and related targets could provide a novel approach to cognitive dysfunction in CKD patients.
3.Indoxyl sulfate induces apoptotic cell death by inhibiting glycolysis in human astrocytes
Seung-Hyun JEONG ; Samel PARK ; Jae-sung CHOI ; Nam-Jun CHO ; Jong-Seok MOON ; Hyo-Wook GIL
Kidney Research and Clinical Practice 2024;43(6):774-784
Neurologic complications, such as cognitive and emotional dysfunction, have frequently been observed in chronic kidney disease (CKD) patients. Previous research shows that uremic toxins play a role in the pathogenesis of CKD-associated cognitive impairment. Since astrocytes contribute to the protection and survival of neurons, astrocyte function and brain metabolism may contribute to the pathogenesis of neurodegeneration. Indoxyl sulfate (IS) is the most popular uremic toxin. However, how IS-induced astrocyte injury brings about neurologic complications in CKD patients has not been elucidated. Methods: The rate of extracellular acidification was measured in astrocytes when IS (0.5–3 mM, 4 or 7 days) treatment was applied. The hexokinase 1 (HK1), pyruvate kinase isozyme M2 (PKM2), pyruvate dehydrogenase (PDH), and phosphofructokinase (PFKP) protein levels were also measured. The activation of the apoptotic pathway was investigated using a confocal microscope, fluorescence- activated cell sorting, and cell three-dimensional imaging was used. Results: In astrocytes, IS affected glycolysis in not only dose-dependently but also time-dependently. Additionally, HK1, PKM2, PDH, and PFKP levels were decreased in IS-treated group when compared to the control. The results were prominent in cases with higher doses and longer exposure duration. The apoptotic features after IS treatment were also observed. Conclusion: Our results showed that the inhibition of glycolysis by IS in astrocytes leads to cell death via apoptosis. Specifically, longterm and higher-dose exposures had more serious effects on astrocytes. Our results suggest that the glycolysis pathway and related targets could provide a novel approach to cognitive dysfunction in CKD patients.
4.Indoxyl sulfate induces apoptotic cell death by inhibiting glycolysis in human astrocytes
Seung-Hyun JEONG ; Samel PARK ; Jae-sung CHOI ; Nam-Jun CHO ; Jong-Seok MOON ; Hyo-Wook GIL
Kidney Research and Clinical Practice 2024;43(6):774-784
Neurologic complications, such as cognitive and emotional dysfunction, have frequently been observed in chronic kidney disease (CKD) patients. Previous research shows that uremic toxins play a role in the pathogenesis of CKD-associated cognitive impairment. Since astrocytes contribute to the protection and survival of neurons, astrocyte function and brain metabolism may contribute to the pathogenesis of neurodegeneration. Indoxyl sulfate (IS) is the most popular uremic toxin. However, how IS-induced astrocyte injury brings about neurologic complications in CKD patients has not been elucidated. Methods: The rate of extracellular acidification was measured in astrocytes when IS (0.5–3 mM, 4 or 7 days) treatment was applied. The hexokinase 1 (HK1), pyruvate kinase isozyme M2 (PKM2), pyruvate dehydrogenase (PDH), and phosphofructokinase (PFKP) protein levels were also measured. The activation of the apoptotic pathway was investigated using a confocal microscope, fluorescence- activated cell sorting, and cell three-dimensional imaging was used. Results: In astrocytes, IS affected glycolysis in not only dose-dependently but also time-dependently. Additionally, HK1, PKM2, PDH, and PFKP levels were decreased in IS-treated group when compared to the control. The results were prominent in cases with higher doses and longer exposure duration. The apoptotic features after IS treatment were also observed. Conclusion: Our results showed that the inhibition of glycolysis by IS in astrocytes leads to cell death via apoptosis. Specifically, longterm and higher-dose exposures had more serious effects on astrocytes. Our results suggest that the glycolysis pathway and related targets could provide a novel approach to cognitive dysfunction in CKD patients.
5.A machine learning-based approach for predicting renal function recovery in general ward patients with acute kidney injury
Nam-Jun CHO ; Inyong JEONG ; Yeongmin KIM ; Dong Ok KIM ; Se-Jin AHN ; Sang-Hee KANG ; Hyo-Wook GIL ; Hwamin LEE
Kidney Research and Clinical Practice 2024;43(4):538-547
Acute kidney injury (AKI) is a significant challenge in healthcare. While there are considerable researches dedicated to AKI patients, a crucial factor in their renal function recovery, is often overlooked. Thus, our study aims to address this issue through the development of a machine learning model to predict restoration of kidney function in patients with AKI. Methods: Our study encompassed data from 350,345 cases, derived from three hospitals. AKI was classified in accordance with the Kidney Disease: Improving Global Outcomes. Criteria for recovery were established as either a 33% decrease in serum creatinine levels at AKI onset, which was initially employed for the diagnosis of AKI. We employed various machine learning models, selecting 43 pertinent features for analysis. Results: Our analysis contained 7,041 and 2,929 patients’ data from internal cohort and external cohort respectively. The Categorical Boosting Model demonstrated significant predictive accuracy, as evidenced by an internal area under the receiver operating characteristic (AUROC) of 0.7860, and an external AUROC score of 0.7316, thereby confirming its robustness in predictive performance. SHapley Additive exPlanations (SHAP) values were employed to explain key factors impacting recovery of renal function in AKI patients. Conclusion: This study presented a machine learning approach for predicting renal function recovery in patients with AKI. The model performance was assessed across distinct hospital settings, which revealed its efficacy. Although the model exhibited favorable outcomes, the necessity for further enhancements and the incorporation of more diverse datasets is imperative for its application in real- world.
6.Genome-wide association study and fine-mapping on Korean biobank to discover renal trait-associated variants
Dong-Jin LEE ; Jong-Seok MOON ; Dae Kwon SONG ; Yong Seok LEE ; Dong-Sub KIM ; Nam-Jun CHO ; Hyo-Wook GIL ; Eun Young LEE ; Samel PARK
Kidney Research and Clinical Practice 2024;43(3):299-312
Chronic kidney disease is a significant health burden worldwide, with increasing incidence. Although several genome- wide association studies (GWAS) have investigated single nucleotide polymorphisms (SNP) associated with kidney trait, most studies were focused on European ancestry. Methods: We utilized clinical and genetic information collected from the Korean Genome and Epidemiology Study (KoGES). Results: More than five million SNPs from 58,406 participants were analyzed. After meta-GWAS, 1,360 loci associated with estimated glomerular filtration rate (eGFR) at a genome-wide significant level (p = 5 × 10–8) were identified. Among them, 399 loci were validated with at least one other biomarker (blood urea nitrogen [BUN] or eGFRcysC) and 149 loci were validated using both markers. Among them, 18 SNPs (nine known ones and nine novel ones) with 20 putative genes were found. The aggregated effect of genes estimated by MAGMA gene analysis showed that these significant genes were enriched in kidney-associated pathways, with the kidney and liver being the most enriched tissues. Conclusion: In this study, we conducted GWAS for more than 50,000 Korean individuals and identified several variants associated with kidney traits, including eGFR, BUN, and eGFRcysC. We also investigated functions of relevant genes using computational methods to define putative causal variants.
7.Machine learning approaches toward an understanding of acute kidney injury: current trends and future directions
Inyong JEONG ; Nam-Jun CHO ; Se-Jin AHN ; Hwamin LEE ; Hyo-Wook GIL
The Korean Journal of Internal Medicine 2024;39(6):882-897
Acute kidney injury (AKI) is a significant health challenge associated with adverse patient outcomes and substantial economic burdens. Many authors have sought to prevent and predict AKI. Here, we comprehensively review recent advances in the use of artificial intelligence (AI) to predict AKI, and the associated challenges. Although AI may detect AKI early and predict prognosis, integration of AI-based systems into clinical practice remains challenging. It is difficult to identify AKI patients using retrospective data; information preprocessing and the limitations of existing models pose problems. It is essential to embrace standardized labeling criteria and to form international multi-institutional collaborations that foster high-quality data collection. Additionally, existing constraints on the deployment of evolving AI technologies in real-world healthcare settings and enhancement of the reliabilities of AI outputs are crucial. Such efforts will improve the clinical applicability, performance, and reliability of AKI Clinical Support Systems, ultimately enhancing patient prognoses.
8.Clinical Practice Guidelines for Oropharyngeal Dysphagia
Seoyon YANG ; Jin-Woo PARK ; Kyunghoon MIN ; Yoon Se LEE ; Young-Jin SONG ; Seong Hee CHOI ; Doo Young KIM ; Seung Hak LEE ; Hee Seung YANG ; Wonjae CHA ; Ji Won KIM ; Byung-Mo OH ; Han Gil SEO ; Min-Wook KIM ; Hee-Soon WOO ; Sung-Jong PARK ; Sungju JEE ; Ju Sun OH ; Ki Deok PARK ; Young Ju JIN ; Sungjun HAN ; DooHan YOO ; Bo Hae KIM ; Hyun Haeng LEE ; Yeo Hyung KIM ; Min-Gu KANG ; Eun-Jae CHUNG ; Bo Ryun KIM ; Tae-Woo KIM ; Eun Jae KO ; Young Min PARK ; Hanaro PARK ; Min-Su KIM ; Jungirl SEOK ; Sun IM ; Sung-Hwa KO ; Seong Hoon LIM ; Kee Wook JUNG ; Tae Hee LEE ; Bo Young HONG ; Woojeong KIM ; Weon-Sun SHIN ; Young Chan LEE ; Sung Joon PARK ; Jeonghyun LIM ; Youngkook KIM ; Jung Hwan LEE ; Kang-Min AHN ; Jun-Young PAENG ; JeongYun PARK ; Young Ae SONG ; Kyung Cheon SEO ; Chang Hwan RYU ; Jae-Keun CHO ; Jee-Ho LEE ; Kyoung Hyo CHOI
Journal of the Korean Dysphagia Society 2023;13(2):77-106
Objective:
Dysphagia is a common clinical condition characterized by difficulty in swallowing. It is sub-classified into oropharyngeal dysphagia, which refers to problems in the mouth and pharynx, and esophageal dysphagia, which refers to problems in the esophageal body and esophagogastric junction. Dysphagia can have a significant negative impact one’s physical health and quality of life as its severity increases. Therefore, proper assessment and management of dysphagia are critical for improving swallowing function and preventing complications. Thus a guideline was developed to provide evidence-based recommendations for assessment and management in patients with dysphagia.
Methods:
Nineteen key questions on dysphagia were developed. These questions dealt with various aspects of problems related to dysphagia, including assessment, management, and complications. A literature search for relevant articles was conducted using Pubmed, Embase, the Cochrane Library, and one domestic database of KoreaMed, until April 2021. The level of evidence and recommendation grade were established according to the Grading of Recommendation Assessment, Development and Evaluation methodology.
Results:
Early screening and assessment of videofluoroscopic swallowing were recommended for assessing the presence of dysphagia. Therapeutic methods, such as tongue and pharyngeal muscle strengthening exercises and neuromuscular electrical stimulation with swallowing therapy, were effective in improving swallowing function and quality of life in patients with dysphagia. Nutritional intervention and an oral care program were also recommended.
Conclusion
This guideline presents recommendations for the assessment and management of patients with oropharyngeal dysphagia, including rehabilitative strategies.
9.Inflammatory cytokines in patients with pesticide poisoning: a pilot study
Hyun Joon KIM ; Wook-Joon KIM ; Dong Wook LEE ; Seung-Hyun JUNG ; Nam-Jun CHO ; Samel PARK ; Eun Young LEE ; Hyo-Wook GIL
Journal of The Korean Society of Clinical Toxicology 2022;20(1):15-21
Purpose:
Acute pesticide poisoning is lethal and can lead to death. A few studies about the effects of acute pesticide poisoning have focused on the immune system. In the current study, we preliminarily investigated the changes in blood inflammatory cytokine levels in acute pesticide poisoning patients.
Methods:
In this study, we prospectively investigated the inflammatory cytokines in patients with acute pesticide poisoning. This study included patients admitted from February 2021 to November 2021 with a diagnosis of intentional poisoning by pesticide ingestion. The inflammatory cytokines measured were IFN-γ, IL-1β, IL-6, and TNF-α.
Results:
Totally, 27 patients were enrolled in this study. The types of pesticide ingested were glufosinate (n=6), glyphosate (n=8), organophosphate (n=4), pyrethroid (n=2), and others (n=7). The levels of inflammatory cytokines obtained were as follows: IFN-γ 2.78±8.03 pg/ml, IL-1β2.62±2.03 pg/ml, IL-6 44.58±80.16 pg/ml, and TNF-α11.80±15.60 pg/ml. The overall mortality rate was 11.1% (3/27), and levels of IL-1βand TNF-αwere significantly higher in the death group compared to the survival group.
Conclusion
Increased levels of IL-6 and TNF-αwere observed in patients with acute pesticide poisoning. IL-1βand TNF-αwere significantly higher in the death group as compared to the survival group. Our results indicate the occurrence of an inflammatory response due to the activation of immune cells by pesticide poisoning. Future large-scale studies need to be conducted to investigate the application of inflammatory cytokines as predictors and therapeutic targets.
10.Pericoronary fat attenuation index in computed tomography angiography is associated with mortality in end-stage renal disease
Nam-Jun CHO ; Bo Da NAM ; Samel PARK ; Hyoungnae KIM ; Hyunjin NOH ; Jin Seok JEON ; Dong Cheol HAN ; Eun Young LEE ; Hyo-Wook GIL ; Soon Hyo KWON
Kidney Research and Clinical Practice 2022;41(1):66-76
An increased pericoronary fat attenuation index (FAI) on computed tomography angiography (CTA) is associated with increased all-cause and cardiac mortality in the general population. However, the ability of pericoronary FAI to predict long-term outcomes in chronic kidney disease (CKD) patients is unknown. Methods: In this single-center retrospective longitudinal cohort study, we assessed the utility of CTA-based pericoronary FAI measurement to predict mortality of CKD patients, including those with end-stage renal disease (ESRD). Mapping and analysis of pericoronary FAI involved three major proximal coronary arteries. The prognostic value of pericoronary FAI for long-term mortality was assessed with multivariable Cox regression models. Results: Among 268 CKD participants who underwent coronary CTA, 209 participants with left anterior descending artery (LAD) FAI measurements were included. The pericoronary FAI measured at the LAD was not significantly associated with adjusted risk of allcause mortality (hazard ratio [HR], 2.08; 95% confidence interval [CI], 0.94–3.51) in any CKD group. However, ESRD patients with elevated pericoronary FAI values had a greater adjusted risk of all-cause mortality compared with the low-FAI group (HR, 2.26; 95% CI, 1.11–4.61). Conclusion: The pericoronary FAI measured at the LAD predicted long-term mortality in patients with ESRD, which could provide an opportunity for early primary intervention in ESRD patients.

Result Analysis
Print
Save
E-mail