1.Metabolic Dysfunction-Associated Steatotic Liver Disease and All-Cause and Cause-Specific Mortality
Rosa OH ; Seohyun KIM ; So Hyun CHO ; Jiyoon KIM ; You-Bin LEE ; Sang-Man JIN ; Kyu Yeon HUR ; Gyuri KIM ; Jae Hyeon KIM
Diabetes & Metabolism Journal 2025;49(1):80-91
Background:
Given the association between nonalcoholic fatty liver disease and metabolic risks, a new term, metabolic dysfunction- associated steatotic liver disease (MASLD) has been proposed. We aimed to explore the association between MASLD and all-cause, cause-specific mortalities.
Methods:
We included individuals with steatotic liver disease (SLD) from the Korean National Health Insurance Service. Moreover, SLD was defined as a fatty liver index ≥30. Furthermore, MASLD, metabolic alcohol-associated liver disease (MetALD), and alcoholic liver disease (ALD) with metabolic dysfunction (MD) were categorized based on alcohol consumption and MD. We also analyzed all-cause, liver-, cancer-, hepatocellular carcinoma (HCC)- and cardiovascular (CV)-related mortalities.
Results:
This retrospective nationwide cohort study included 1,298,993 individuals aged 40 to 79 years for a mean follow-up duration of 9.04 years. The prevalence of MASLD, MetALD, and ALD with MD was 33.11%, 3.93%, and 1.00%, respectively. Relative to the “no SLD” group, multivariable analysis identified that MASLD (adjusted hazard ratio [aHR], 1.28; 95% confidence interval [CI], 1.26 to 1.31), MetALD (aHR, 1.38; 95% CI, 1.32 to 1.44), and ALD with MD group (aHR, 1.80; 95% CI, 1.68 to 1.93) have a significantly higher risk of all-cause mortality. Furthermore, MASLD, MetALD, ALD with MD groups showed higher liver-, cancer- and HCC-related mortality than “no SLD” group. While all-cause specific mortalities increase from MASLD to MetALD to ALD with MD, the MetALD group shows a lower risk of CV-related mortality compared to MASLD. However, ALD with MD group still have a higher risk of CV-related mortality compared to MASLD.
Conclusion
SLD is associated with an increased risk of all-cause, liver-, cancer-, HCC-, and CV-related mortalities.
2.Plasma C-Peptide Levels and the Continuous Glucose Monitoring-Defined Coefficient of Variation in Risk Prediction for Hypoglycemia in Korean People with Diabetes Having Normal and Impaired Kidney Function
So Yoon KWON ; Jiyun PARK ; So Hee PARK ; You-Bin LEE ; Gyuri KIM ; Kyu Yeon HUR ; Jae Hyeon KIM ; Sang-Man JIN
Endocrinology and Metabolism 2025;40(2):268-277
Background:
We aimed to investigate the predictive values of plasma C-peptide levels and the continuous glucose monitoring (CGM)-defined coefficient of variation (CV) in risk prediction for hypoglycemia in Korean people with diabetes with normal and impaired kidney function.
Methods:
We analyzed data from 1,185 participants diagnosed with type 1 and type 2 diabetes who underwent blinded professional CGM between January 2009 and May 2021 at outpatient clinics. We explored correlations among CGM-defined CV, plasma C-peptide levels, and time below range at <70 and 54 mg/dL across different kidney function categories.
Results:
In patients with chronic kidney disease (CKD) stages 1–2 (n=934), 89.3% who had a random plasma C-peptide level higher than 600 pmol/L exhibited a CV of ≤36%. Among those in CKD stage 3 (n=161) with a random plasma C-peptide level exceeding 600 pmol/L, 66.7% showed a CV of ≤36%. In stages 4–5 of CKD (n=90), the correlation between random C-peptide levels and CV was not significant (r=–0.05, P=0.640), including cases with a CV greater than 36% despite very high random plasma C-peptide levels. Random plasma C-peptide levels and CGM-assessed CV significantly predicted hypoglycemia in CKD stages 1–2 and 1–5, respectively.
Conclusion
The established C-peptide criteria in Western populations are applicable to Korean people with diabetes for hypoglycemic risk prediction, unless kidney function is impaired equivalent to CKD stage 3–5. The CGM-defined CV is informative for hypoglycemic risk prediction regardless of kidney function.
3.Metabolic Dysfunction-Associated Steatotic Liver Disease and All-Cause and Cause-Specific Mortality
Rosa OH ; Seohyun KIM ; So Hyun CHO ; Jiyoon KIM ; You-Bin LEE ; Sang-Man JIN ; Kyu Yeon HUR ; Gyuri KIM ; Jae Hyeon KIM
Diabetes & Metabolism Journal 2025;49(1):80-91
Background:
Given the association between nonalcoholic fatty liver disease and metabolic risks, a new term, metabolic dysfunction- associated steatotic liver disease (MASLD) has been proposed. We aimed to explore the association between MASLD and all-cause, cause-specific mortalities.
Methods:
We included individuals with steatotic liver disease (SLD) from the Korean National Health Insurance Service. Moreover, SLD was defined as a fatty liver index ≥30. Furthermore, MASLD, metabolic alcohol-associated liver disease (MetALD), and alcoholic liver disease (ALD) with metabolic dysfunction (MD) were categorized based on alcohol consumption and MD. We also analyzed all-cause, liver-, cancer-, hepatocellular carcinoma (HCC)- and cardiovascular (CV)-related mortalities.
Results:
This retrospective nationwide cohort study included 1,298,993 individuals aged 40 to 79 years for a mean follow-up duration of 9.04 years. The prevalence of MASLD, MetALD, and ALD with MD was 33.11%, 3.93%, and 1.00%, respectively. Relative to the “no SLD” group, multivariable analysis identified that MASLD (adjusted hazard ratio [aHR], 1.28; 95% confidence interval [CI], 1.26 to 1.31), MetALD (aHR, 1.38; 95% CI, 1.32 to 1.44), and ALD with MD group (aHR, 1.80; 95% CI, 1.68 to 1.93) have a significantly higher risk of all-cause mortality. Furthermore, MASLD, MetALD, ALD with MD groups showed higher liver-, cancer- and HCC-related mortality than “no SLD” group. While all-cause specific mortalities increase from MASLD to MetALD to ALD with MD, the MetALD group shows a lower risk of CV-related mortality compared to MASLD. However, ALD with MD group still have a higher risk of CV-related mortality compared to MASLD.
Conclusion
SLD is associated with an increased risk of all-cause, liver-, cancer-, HCC-, and CV-related mortalities.
4.Plasma C-Peptide Levels and the Continuous Glucose Monitoring-Defined Coefficient of Variation in Risk Prediction for Hypoglycemia in Korean People with Diabetes Having Normal and Impaired Kidney Function
So Yoon KWON ; Jiyun PARK ; So Hee PARK ; You-Bin LEE ; Gyuri KIM ; Kyu Yeon HUR ; Jae Hyeon KIM ; Sang-Man JIN
Endocrinology and Metabolism 2025;40(2):268-277
Background:
We aimed to investigate the predictive values of plasma C-peptide levels and the continuous glucose monitoring (CGM)-defined coefficient of variation (CV) in risk prediction for hypoglycemia in Korean people with diabetes with normal and impaired kidney function.
Methods:
We analyzed data from 1,185 participants diagnosed with type 1 and type 2 diabetes who underwent blinded professional CGM between January 2009 and May 2021 at outpatient clinics. We explored correlations among CGM-defined CV, plasma C-peptide levels, and time below range at <70 and 54 mg/dL across different kidney function categories.
Results:
In patients with chronic kidney disease (CKD) stages 1–2 (n=934), 89.3% who had a random plasma C-peptide level higher than 600 pmol/L exhibited a CV of ≤36%. Among those in CKD stage 3 (n=161) with a random plasma C-peptide level exceeding 600 pmol/L, 66.7% showed a CV of ≤36%. In stages 4–5 of CKD (n=90), the correlation between random C-peptide levels and CV was not significant (r=–0.05, P=0.640), including cases with a CV greater than 36% despite very high random plasma C-peptide levels. Random plasma C-peptide levels and CGM-assessed CV significantly predicted hypoglycemia in CKD stages 1–2 and 1–5, respectively.
Conclusion
The established C-peptide criteria in Western populations are applicable to Korean people with diabetes for hypoglycemic risk prediction, unless kidney function is impaired equivalent to CKD stage 3–5. The CGM-defined CV is informative for hypoglycemic risk prediction regardless of kidney function.
5.Metabolic Dysfunction-Associated Steatotic Liver Disease and All-Cause and Cause-Specific Mortality
Rosa OH ; Seohyun KIM ; So Hyun CHO ; Jiyoon KIM ; You-Bin LEE ; Sang-Man JIN ; Kyu Yeon HUR ; Gyuri KIM ; Jae Hyeon KIM
Diabetes & Metabolism Journal 2025;49(1):80-91
Background:
Given the association between nonalcoholic fatty liver disease and metabolic risks, a new term, metabolic dysfunction- associated steatotic liver disease (MASLD) has been proposed. We aimed to explore the association between MASLD and all-cause, cause-specific mortalities.
Methods:
We included individuals with steatotic liver disease (SLD) from the Korean National Health Insurance Service. Moreover, SLD was defined as a fatty liver index ≥30. Furthermore, MASLD, metabolic alcohol-associated liver disease (MetALD), and alcoholic liver disease (ALD) with metabolic dysfunction (MD) were categorized based on alcohol consumption and MD. We also analyzed all-cause, liver-, cancer-, hepatocellular carcinoma (HCC)- and cardiovascular (CV)-related mortalities.
Results:
This retrospective nationwide cohort study included 1,298,993 individuals aged 40 to 79 years for a mean follow-up duration of 9.04 years. The prevalence of MASLD, MetALD, and ALD with MD was 33.11%, 3.93%, and 1.00%, respectively. Relative to the “no SLD” group, multivariable analysis identified that MASLD (adjusted hazard ratio [aHR], 1.28; 95% confidence interval [CI], 1.26 to 1.31), MetALD (aHR, 1.38; 95% CI, 1.32 to 1.44), and ALD with MD group (aHR, 1.80; 95% CI, 1.68 to 1.93) have a significantly higher risk of all-cause mortality. Furthermore, MASLD, MetALD, ALD with MD groups showed higher liver-, cancer- and HCC-related mortality than “no SLD” group. While all-cause specific mortalities increase from MASLD to MetALD to ALD with MD, the MetALD group shows a lower risk of CV-related mortality compared to MASLD. However, ALD with MD group still have a higher risk of CV-related mortality compared to MASLD.
Conclusion
SLD is associated with an increased risk of all-cause, liver-, cancer-, HCC-, and CV-related mortalities.
6.Plasma C-Peptide Levels and the Continuous Glucose Monitoring-Defined Coefficient of Variation in Risk Prediction for Hypoglycemia in Korean People with Diabetes Having Normal and Impaired Kidney Function
So Yoon KWON ; Jiyun PARK ; So Hee PARK ; You-Bin LEE ; Gyuri KIM ; Kyu Yeon HUR ; Jae Hyeon KIM ; Sang-Man JIN
Endocrinology and Metabolism 2025;40(2):268-277
Background:
We aimed to investigate the predictive values of plasma C-peptide levels and the continuous glucose monitoring (CGM)-defined coefficient of variation (CV) in risk prediction for hypoglycemia in Korean people with diabetes with normal and impaired kidney function.
Methods:
We analyzed data from 1,185 participants diagnosed with type 1 and type 2 diabetes who underwent blinded professional CGM between January 2009 and May 2021 at outpatient clinics. We explored correlations among CGM-defined CV, plasma C-peptide levels, and time below range at <70 and 54 mg/dL across different kidney function categories.
Results:
In patients with chronic kidney disease (CKD) stages 1–2 (n=934), 89.3% who had a random plasma C-peptide level higher than 600 pmol/L exhibited a CV of ≤36%. Among those in CKD stage 3 (n=161) with a random plasma C-peptide level exceeding 600 pmol/L, 66.7% showed a CV of ≤36%. In stages 4–5 of CKD (n=90), the correlation between random C-peptide levels and CV was not significant (r=–0.05, P=0.640), including cases with a CV greater than 36% despite very high random plasma C-peptide levels. Random plasma C-peptide levels and CGM-assessed CV significantly predicted hypoglycemia in CKD stages 1–2 and 1–5, respectively.
Conclusion
The established C-peptide criteria in Western populations are applicable to Korean people with diabetes for hypoglycemic risk prediction, unless kidney function is impaired equivalent to CKD stage 3–5. The CGM-defined CV is informative for hypoglycemic risk prediction regardless of kidney function.
7.Metabolic Dysfunction-Associated Steatotic Liver Disease and All-Cause and Cause-Specific Mortality
Rosa OH ; Seohyun KIM ; So Hyun CHO ; Jiyoon KIM ; You-Bin LEE ; Sang-Man JIN ; Kyu Yeon HUR ; Gyuri KIM ; Jae Hyeon KIM
Diabetes & Metabolism Journal 2025;49(1):80-91
Background:
Given the association between nonalcoholic fatty liver disease and metabolic risks, a new term, metabolic dysfunction- associated steatotic liver disease (MASLD) has been proposed. We aimed to explore the association between MASLD and all-cause, cause-specific mortalities.
Methods:
We included individuals with steatotic liver disease (SLD) from the Korean National Health Insurance Service. Moreover, SLD was defined as a fatty liver index ≥30. Furthermore, MASLD, metabolic alcohol-associated liver disease (MetALD), and alcoholic liver disease (ALD) with metabolic dysfunction (MD) were categorized based on alcohol consumption and MD. We also analyzed all-cause, liver-, cancer-, hepatocellular carcinoma (HCC)- and cardiovascular (CV)-related mortalities.
Results:
This retrospective nationwide cohort study included 1,298,993 individuals aged 40 to 79 years for a mean follow-up duration of 9.04 years. The prevalence of MASLD, MetALD, and ALD with MD was 33.11%, 3.93%, and 1.00%, respectively. Relative to the “no SLD” group, multivariable analysis identified that MASLD (adjusted hazard ratio [aHR], 1.28; 95% confidence interval [CI], 1.26 to 1.31), MetALD (aHR, 1.38; 95% CI, 1.32 to 1.44), and ALD with MD group (aHR, 1.80; 95% CI, 1.68 to 1.93) have a significantly higher risk of all-cause mortality. Furthermore, MASLD, MetALD, ALD with MD groups showed higher liver-, cancer- and HCC-related mortality than “no SLD” group. While all-cause specific mortalities increase from MASLD to MetALD to ALD with MD, the MetALD group shows a lower risk of CV-related mortality compared to MASLD. However, ALD with MD group still have a higher risk of CV-related mortality compared to MASLD.
Conclusion
SLD is associated with an increased risk of all-cause, liver-, cancer-, HCC-, and CV-related mortalities.
8.Plasma C-Peptide Levels and the Continuous Glucose Monitoring-Defined Coefficient of Variation in Risk Prediction for Hypoglycemia in Korean People with Diabetes Having Normal and Impaired Kidney Function
So Yoon KWON ; Jiyun PARK ; So Hee PARK ; You-Bin LEE ; Gyuri KIM ; Kyu Yeon HUR ; Jae Hyeon KIM ; Sang-Man JIN
Endocrinology and Metabolism 2025;40(2):268-277
Background:
We aimed to investigate the predictive values of plasma C-peptide levels and the continuous glucose monitoring (CGM)-defined coefficient of variation (CV) in risk prediction for hypoglycemia in Korean people with diabetes with normal and impaired kidney function.
Methods:
We analyzed data from 1,185 participants diagnosed with type 1 and type 2 diabetes who underwent blinded professional CGM between January 2009 and May 2021 at outpatient clinics. We explored correlations among CGM-defined CV, plasma C-peptide levels, and time below range at <70 and 54 mg/dL across different kidney function categories.
Results:
In patients with chronic kidney disease (CKD) stages 1–2 (n=934), 89.3% who had a random plasma C-peptide level higher than 600 pmol/L exhibited a CV of ≤36%. Among those in CKD stage 3 (n=161) with a random plasma C-peptide level exceeding 600 pmol/L, 66.7% showed a CV of ≤36%. In stages 4–5 of CKD (n=90), the correlation between random C-peptide levels and CV was not significant (r=–0.05, P=0.640), including cases with a CV greater than 36% despite very high random plasma C-peptide levels. Random plasma C-peptide levels and CGM-assessed CV significantly predicted hypoglycemia in CKD stages 1–2 and 1–5, respectively.
Conclusion
The established C-peptide criteria in Western populations are applicable to Korean people with diabetes for hypoglycemic risk prediction, unless kidney function is impaired equivalent to CKD stage 3–5. The CGM-defined CV is informative for hypoglycemic risk prediction regardless of kidney function.
9.Activatable PROTAC nanoassembly for photodynamic PTP1B proteolysis enhances glioblastoma immunotherapy.
Yeongji JANG ; Jiwoong CHOI ; Byeongmin PARK ; Jung Yeon PARK ; Jae-Hyeon LEE ; Jagyeong GOO ; Dongwon SHIN ; Sun Hwa KIM ; Yongju KIM ; Hyun Kyu SONG ; Jooho PARK ; Kwangmeyung KIM ; Yoosoo YANG ; Man Kyu SHIM
Acta Pharmaceutica Sinica B 2025;15(9):4886-4899
In light of the burgeoning successes of cancer immunotherapy, glioblastoma (GBM) remains refractory due to an immunosuppressive microenvironment originating from its molecular heterogeneity. Thus, identifying promising therapeutic targets for treating GBM and discovering methodologies to effectively regulate them is still a tremendous challenge. Here we describe photodynamic protein tyrosine phosphatase 1B (PTP1B) proteolysis mediated by a proteolysis-targeting chimera (PROTAC) nanoassembly. The PTP1B-targeting PROTAC is conjugated with a photosensitizer via a cathepsin B (Cat B)-cleavable peptide, which spontaneously forms nanoassemblies due to intermolecular π-π stacking interactions. In GBM models, PROTAC nanoassemblies significantly accumulate in the tumor region across the disrupted blood-brain barrier (BBB), triggering a burst release of the photosensitizer and active PROTAC by Cat B-mediated enzymatic cleavage. Upon laser irradiation, photodynamic therapy (PDT) synergizes with PROTAC-mediated PTP1B proteolysis to induce potent immunogenic cell death (ICD) in tumor cells. Subsequently, persistent PTP1B degradation by nanoassemblies in Cat B-overexpressed intratumoral T cells downregulates exhaustion markers, reinvigorating their functionality. These sequential processes of photodynamic PTP1B proteolysis ultimately augment T cell-mediated antitumor immunity as well as protective immunity, completely eradicating the primary GBM and preventing its recurrence. Overall, our findings underscore the therapeutic potential of combining PDT with PROTAC activity for GBM immunotherapy.
10.The First Case of Congenital Nephrogenic Diabetes Insipidus Caused by AVPR2 Disruption Because of 4q25 Insertional Translocation
Boram KIM ; Yo Han AHN ; Jae Hyeon PARK ; Han Sol LIM ; Seung Won CHAE ; Jee-Soo LEE ; Hee Gyung KANG ; Man Jin KIM ; Moon-Woo SEONG
Annals of Laboratory Medicine 2024;44(3):303-305

Result Analysis
Print
Save
E-mail