1.Suppression of Glioblastoma Stem Cell Potency and Tumor Growth via LRRK2 Inhibition
Saewhan PARK ; Kyung-Hee KIM ; Yun-Hee BAE ; Young Taek OH ; Hyemi SHIN ; Hyung Joon KWON ; Chan Il KIM ; Sung Soo KIM ; Hwan-Geun CHOI ; Jong Bae PARK ; Byoung Dae LEE
International Journal of Stem Cells 2024;17(3):319-329
Leucine-rich repeat kinase 2 (LRRK2), a large GTP-regulated serine/threonine kinase, is well-known for its mutations causing late-onset Parkinson’s disease. However, the role of LRRK2 in glioblastoma (GBM) carcinogenesis has not yet been fully elucidated. Here, we discovered that LRRK2 was overexpressed in 40% of GBM patients, according to tissue microarray analysis, and high LRRK2 expression correlated with poor prognosis in GBM patients. LRRK2 and stemness factors were highly expressed in various patient-derived GBM stem cells, which are responsible for GBM initiation. Canonical serum-induced differentiation decreased the expression of both LRRK2 and stemness factors.Given that LRRK2 is a key regulator of glioma stem cell (GSC) stemness, we developed DNK72, a novel LRRK2 kinase inhibitor that penetrates the blood-brain barrier. DNK72 binds to the phosphorylation sites of active LRRK2 and dramatically reduced cell proliferation and stemness factors expression in in vitro studies. Orthotopic patient-derived xenograft mouse models demonstrated that LRRK2 inhibition with DNK72 effectively reduced tumor growth and increased survival time. We propose that LRRK2 plays a significant role in regulating the stemness of GSCs and that suppression of LRRK2 kinase activity leads to reduced GBM malignancy and proliferation. In the near future, targeting LRRK2 in patients with high LRRK2-expressing GBM could offer a superior therapeutic strategy and potentially replace current clinical treatment methods.
2.Diagnostic Accuracy of Magnetic Resonance Imaging Features and Tumor-to-Nipple Distance for the Nipple-Areolar Complex Involvement of Breast Cancer:A Systematic Review and Meta-Analysis
Jung Hee BYON ; Seungyong HWANG ; Hyemi CHOI ; Eun Jung CHOI
Korean Journal of Radiology 2023;24(8):739-751
Objective:
This systematic review and meta-analysis evaluated the accuracy of preoperative breast magnetic resonance imaging (MRI) features and tumor-to-nipple distance (TND) for diagnosing occult nipple-areolar complex (NAC) involvement in breast cancer.
Materials and Methods:
The MEDLINE, Embase, and Cochrane databases were searched for articles published until March 20, 2022, excluding studies of patients with clinically evident NAC involvement or those treated with neoadjuvant chemotherapy.Study quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 tool. Two reviewers independently evaluated studies that reported the diagnostic performance of MRI imaging features such as continuity to the NAC, unilateral NAC enhancement, non-mass enhancement (NME) type, mass size (> 20 mm), and TND. Summary estimates of the sensitivity and specificity curves and the summary receiver operating characteristic (SROC) curve of the MRI features for NAC involvement were calculated using random-effects models. We also calculated the TND cutoffs required to achieve predetermined specificity values.
Results:
Fifteen studies (n = 4002 breast lesions) were analyzed. The pooled sensitivity and specificity (with 95% confidence intervals) for NAC involvement diagnosis were 71% (58–81) and 94% (91–96), respectively, for continuity to the NAC; 58% (45–70) and 97% (95–99), respectively, for unilateral NAC enhancement; 55% (46–64) and 83% (75–88), respectively, for NME type; and 88% (68–96) and 58% (40–75), respectively, for mass size (> 20 mm). TND had an area under the SROC curve of 0.799 for NAC involvement. A TND of 11.5 mm achieved a predetermined specificity of 85% with a sensitivity of 64%, and a TND of 12.3 mm yielded a predetermined specificity of 83% with a sensitivity of 65%.
Conclusion
Continuity to the NAC and unilateral NAC enhancement may help predict occult NAC involvement in breast cancer. To achieve the desired diagnostic performance with TND, a suitable cutoff value should be considered.
3.Feasibility of artificial intelligence-driven interfractional monitoring of organ changes by mega-voltage computed tomography in intensity-modulated radiotherapy of prostate cancer
Yohan LEE ; Hyun Joon CHOI ; Hyemi KIM ; Sunghyun KIM ; Mi Sun KIM ; Hyejung CHA ; Young Ju EUM ; Hyosung CHO ; Jeong Eun PARK ; Sei Hwan YOU
Radiation Oncology Journal 2023;41(3):186-198
Purpose:
High-dose radiotherapy (RT) for localized prostate cancer requires careful consideration of target position changes and adjacent organs-at-risk (OARs), such as the rectum and bladder. Therefore, daily monitoring of target position and OAR changes is crucial in minimizing interfractional dosimetric uncertainties. For efficient monitoring of the internal condition of patients, we assessed the feasibility of an auto-segmentation of OARs on the daily acquired images, such as megavoltage computed tomography (MVCT), via a commercial artificial intelligence (AI)-based solution in this study.
Materials and Methods:
We collected MVCT images weekly during the entire course of RT for 100 prostate cancer patients treated with the helical TomoTherapy system. Based on the manually contoured body outline, the bladder including prostate area, and rectal balloon regions for the 100 MVCT images, we trained the commercially available fully convolutional (FC)-DenseNet model and tested its auto-contouring performance.
Results:
Based on the optimally determined hyperparameters, the FC-DenseNet model successfully auto-contoured all regions of interest showing high dice similarity coefficient (DSC) over 0.8 and a small mean surface distance (MSD) within 1.43 mm in reference to the manually contoured data. With this well-trained AI model, we have efficiently monitored the patient's internal condition through six MVCT scans, analyzing DSC, MSD, centroid, and volume differences.
Conclusion
We have verified the feasibility of utilizing a commercial AI-based model for auto-segmentation with low-quality daily MVCT images. In the future, we will establish a fast and accurate auto-segmentation and internal organ monitoring system for efficiently determining the time for adaptive replanning.
4.The Value of the Illness-Death Model for Predicting Outcomes in Patients with Non–Small Cell Lung Cancer
Kum Ju CHAE ; Hyemi CHOI ; Won Gi JEONG ; Jinheum KIM
Cancer Research and Treatment 2022;54(4):996-1004
Purpose:
The illness-death model (IDM) is a comprehensive approach to evaluate the relationship between relapse and death. This study aimed to illustrate the value of the IDM for identifying risk factors and evaluating predictive probabilities for relapse and death in patients with non–small cell lung cancer (NSCLC) in comparison with the disease-free survival (DFS) model.
Materials and Methods:
We retrospectively analyzed 612 NSCLC patients who underwent a curative operation. Using the IDM, the risk factors and predictive probabilities for relapse, death without relapse, and death after relapse were simultaneously evaluated and compared to those obtained from a DFS model.
Results:
The IDM provided more detailed risk factors according to the patient’s disease course, including relapse, death without relapse, and death after relapse, in patients with resected lung cancer. In the IDM, history of malignancy (other than lung cancer) was related to relapse and smoking history was associated with death without relapse; both were indistinguishable in the DFS model. In addition, the IDM was able to evaluate the predictive probability and risk factors for death after relapse; this information could not be obtained from the DFS model.
Conclusion
Compared to the DFS model, we found that the IDM provides more comprehensive information on transitions between states and disease stages and provides deeper insights with respect to understanding the disease process among lung cancer patients.
5.Clinical Targeted Next-Generation sequencing Panels for Detection of Somatic Variants in Gliomas
Hyemi SHIN ; Jason K. SA ; Joon Seol BAE ; Harim KOO ; Seonwhee JIN ; Hee Jin CHO ; Seung Won CHOI ; Jong Min KYOUNG ; Ja Yeon KIM ; Yun Jee SEO ; Je-Gun JOUNG ; Nayoung K. D. KIM ; Dae-Soon SON ; Jongsuk CHUNG ; Taeseob LEE ; Doo-Sik KONG ; Jung Won CHOI ; Ho Jun SEOL ; Jung-Il LEE ; Yeon-Lim SUH ; Woong-Yang PARK ; Do-Hyun NAM
Cancer Research and Treatment 2020;52(1):41-50
Purpose:
Targeted next-generation sequencing (NGS) panels for solid tumors have been useful in clinical framework for accurate tumor diagnosis and identifying essential molecular aberrations. However, most cancer panels have been designed to address a wide spectrum of pan-cancer models, lacking integral prognostic markers that are highly specific to gliomas.
Materials and Methods:
To address such challenges, we have developed a glioma-specific NGS panel, termed “GliomaSCAN,” that is capable of capturing single nucleotide variations and insertion/deletion, copy number variation, and selected promoter mutations and structural variations that cover a subset of intron regions in 232 essential glioma-associated genes. We confirmed clinical concordance rate using pairwise comparison of the identified variants from whole exome sequencing (WES), immunohistochemical analysis, and fluorescence in situ hybridization.
Results:
Our panel demonstrated high sensitivity in detecting potential genomic variants that were present in the standard materials. To ensure the accuracy of our targeted sequencing panel, we compared our targeted panel to WES. The comparison results demonstrated a high correlation. Furthermore, we evaluated clinical utility of our panel in 46 glioma patients to assess the detection capacity of potential actionable mutations. Thirty-two patients harbored at least one recurrent somatic mutation in clinically actionable gene.
Conclusion
We have established a glioma-specific cancer panel. GliomaSCAN highly excelled in capturing somatic variations in terms of both sensitivity and specificity and provided potential clinical implication in facilitating genome-based clinical trials. Our results could provide conceptual advance towards improving the response of genomically guided molecularly targeted therapy in glioma patients.
6.Prediction of Axillary Lymph Node Metastasis in Early Breast Cancer Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging and Diffusion-Weighted Imaging
Eun Ha JEONG ; Eun Jung CHOI ; Hyemi CHOI ; Eun Hae PARK ; Ji Soo SONG
Investigative Magnetic Resonance Imaging 2019;23(2):125-135
PURPOSE: The purpose of this study was to evaluate dynamic contrast-enhanced breast magnetic resonance imaging (DCE-MRI), and diffusion-weighted imaging (DWI) variables, for axillary lymph node (ALN) metastasis in the early stage of breast cancer. MATERIALS AND METHODS: January 2011–April 2015, 787 patients with early stage of breast cancer were retrospectively reviewed. Only cases of invasive ductal carcinoma, were included in the patient population. Among them, 240 patients who underwent 3.0-T DCE-MRI, including DWI with b value 0 and 800 s/mm² were enrolled. MRI variables (adjacent vessel sign, whole-breast vascularity, initial enhancement pattern, quantitative kinetic parameters, signal enhancement ratio (SER), tumor apparent diffusion coefficient (ADC), peritumoral ADC, and peritumor-tumor ADC ratio) clinico-pathologic variables (age, T stage, multifocality, extensive intraductal carcinoma component (EIC), estrogen receptor, progesterone receptor, HER-2 status, Ki-67, molecular subtype, histologic grade, and nuclear grade) were compared between patients with axillary lymph node metastasis and those with no lymph node metastasis. Multivariate regression analysis was performed, to determine independent variables associated with ALN metastasis, and the area under the receiver operating characteristic curve (AUC), for predicting ALN metastasis was analyzed, for those variables. RESULTS: On breast MRI, moderate or prominent ipsilateral whole-breast vascularity (moderate, odds ratio [OR] 3.45, 95% confidence interval [CI] 1.28–9.51 vs. prominent, OR = 15.59, 95% CI 2.52–96.46), SER (OR = 1.68, 95% CI 1.09–2.59), and peritumor-tumor ADC ratio (OR = 6.77, 95% CI 2.41–18.99), were independently associated with ALN metastasis. Among clinico-pathologic variables, HER-2 positivity was independently associated, with ALN metastasis (OR = 23.71, 95% CI 10.50–53.54). The AUC for combining selected MRI variables and clinico-pathologic variables, was higher than that of clinico-pathologic variables (P < 0.05). CONCLUSION: SER, moderate or prominent increased whole breast vascularity, and peritumor-tumor ADC ratio on breast MRI, are valuable in predicting ALN metastasis, in patients with early stage of breast cancer.
Area Under Curve
;
Breast Neoplasms
;
Breast
;
Carcinoma, Ductal
;
Carcinoma, Intraductal, Noninfiltrating
;
Diffusion
;
Diffusion Magnetic Resonance Imaging
;
Estrogens
;
Humans
;
Lymph Nodes
;
Magnetic Resonance Imaging
;
Neoplasm Metastasis
;
Odds Ratio
;
Receptors, Progesterone
;
Retrospective Studies
;
ROC Curve
7.Prediction of itching diagnostic marker through RNA sequencing of contact hypersensitivity and skin scratching stimulation mice models.
Young Won KIM ; Tong ZHOU ; Eun A KO ; Seongtae KIM ; Donghee LEE ; Yelim SEO ; Nahee KWON ; Taeyeon CHOI ; Heejung LIM ; Sungvin CHO ; Gwanhui BAE ; Yuseong HWANG ; Dojin KIM ; Hyewon PARK ; Minjae LEE ; Eunkyung JANG ; Jeongyoon CHOI ; Hyemi BAE ; Inja LIM ; Hyoweon BANG ; Jae Hong KO
The Korean Journal of Physiology and Pharmacology 2019;23(2):151-159
Pruritus (itching) is classically defined as an unpleasant cutaneous sensation that leads to scratching behavior. Although the scientific criteria of classification for pruritic diseases are not clear, it can be divided as acute or chronic by duration of symptoms. In this study, we investigated whether skin injury caused by chemical (contact hypersensitivity, CHS) or physical (skin-scratching stimulation, SSS) stimuli causes initial pruritus and analyzed gene expression profiles systemically to determine how changes in skin gene expression in the affected area are related to itching. In both CHS and SSS, we ranked the Gene Ontology Biological Process terms that are generally associated with changes. The factors associated with upregulation were keratinization, inflammatory response and neutrophil chemotaxis. The Kyoto Encyclopedia of Genes and Genomes pathway shows the difference of immune system, cell growth and death, signaling molecules and interactions, and signal transduction pathways. Il1a , Il1b and Il22 were upregulated in the CHS, and Tnf, Tnfrsf1b, Il1b, Il1r1 and Il6 were upregulated in the SSS. Trpc1 channel genes were observed in representative itching-related candidate genes. By comparing and analyzing RNA-sequencing data obtained from the skin tissue of each animal model in these characteristic stages, it is possible to find useful diagnostic markers for the treatment of itching, to diagnose itching causes and to apply customized treatment.
Animals
;
Biological Processes
;
Chemotaxis
;
Classification
;
Cytokines
;
Dermatitis, Contact*
;
Gene Expression
;
Gene Ontology
;
Genome
;
Hypersensitivity
;
Immune System
;
Interleukin-6
;
Mice*
;
Models, Animal
;
Neutrophils
;
Pruritus*
;
RNA*
;
Sensation
;
Sequence Analysis, RNA*
;
Signal Transduction
;
Skin*
;
Transcriptome
;
Transient Receptor Potential Channels
;
Up-Regulation
;
Wound Healing
8.Far-infrared radiation stimulates platelet-derived growth factor mediated skeletal muscle cell migration through extracellular matrix-integrin signaling.
Donghee LEE ; Yelim SEO ; Young Won KIM ; Seongtae KIM ; Hyemi BAE ; Jeongyoon CHOI ; Inja LIM ; Hyoweon BANG ; Jung Ha KIM ; Jae Hong KO
The Korean Journal of Physiology and Pharmacology 2019;23(2):141-150
Despite increased evidence of bio-activity following far-infrared (FIR) radiation, susceptibility of cell signaling to FIR radiation-induced homeostasis is poorly understood. To observe the effects of FIR radiation, FIR-radiated materials-coated fabric was put on experimental rats or applied to L6 cells, and microarray analysis, quantitative real-time polymerase chain reaction, and wound healing assays were performed. Microarray analysis revealed that messenger RNA expressions of rat muscle were stimulated by FIR radiation in a dose-dependent manner in amount of 10% and 30% materials-coated. In 30% group, 1,473 differentially expressed genes were identified (fold change [FC] > 1.5), and 218 genes were significantly regulated (FC > 1.5 and p < 0.05). Microarray analysis showed that extracellular matrix (ECM)-receptor interaction, focal adhesion, and cell migration-related pathways were significantly stimulated in rat muscle. ECM and platelet-derived growth factor (PDGF)-mediated cell migration-related genes were increased. And, results showed that the relative gene expression of actin beta was increased. FIR radiation also stimulated actin subunit and actin-related genes. We observed that wound healing was certainly promoted by FIR radiation over 48 h in L6 cells. Therefore, we suggest that FIR radiation can penetrate the body and stimulate PDGF-mediated cell migration through ECM-integrin signaling in rats.
Actins
;
Animals
;
Cell Movement*
;
Extracellular Matrix
;
Focal Adhesions
;
Gene Expression
;
Homeostasis
;
Infrared Rays
;
Integrins
;
Microarray Analysis
;
Muscle, Skeletal*
;
Platelet-Derived Growth Factor*
;
Rats
;
Real-Time Polymerase Chain Reaction
;
RNA, Messenger
;
Wound Healing
9.Neurocysticercosis: Clinical Characteristics and Changes from 26 Years of Experience in an University Hospital in Korea
Hyo Ju SON ; Min Jae KIM ; Kyung Hwa JUNG ; Sungim CHOI ; Jiwon JUNG ; Yong Pil CHONG ; Sung Han KIM ; Sang Oh LEE ; Sang Ho CHOI ; Yang Soo KIM ; Jun Hee WOO ; Bong Kwang JUNG ; Hyemi SONG ; Jong Yil CHAI
The Korean Journal of Parasitology 2019;57(3):265-271
The prevalence of human taeniasis has decreased in Korea. The stool egg positive proportion decreased from 1.9% in 1971 to 0% in 2004 in nationwide surveys. The neurocysticercosis (NCC) is also presumed to decrease. However, detailed information regarding the recent status of NCC in Korea is lacking. We retrospectively reviewed NCC cases from 1990 to 2016 at Asan Medical Center, a 2700-bed tertiary referral hospital in Korea. We identified patients based on clinical symptoms, brain imaging, pathology and serological assay. The cases were classified as parenchymal, extraparenchymal, and mixed NCC. Eighty-one patients were included in the analysis. The mean age was 54.5 years, and 79.0% were male. The number of NCC cases was highest from 1995 to 1999, and continuously decreased thereafter. Forty (49.4%) patients had parenchymal NCC, while 25 (30.9%) patients had extraparenchymal NCC, and 16 (19.8%) patients had mixed NCC. The seizure and headache were most common symptom of parenchymal NCC and extraparenchymal NCC respectively. Hydrocephalus was more common in extraparenchymal NCC, and patients with extraparenchymal NCC were more likely to require a ventriculoperitoneal shunt. Cases of NCC are decreasing accordingly with human taeniasis and lesion location was the most important determinant of clinical presentation and outcome of NCC in Korea.
Chungcheongnam-do
;
Headache
;
Humans
;
Hydrocephalus
;
Korea
;
Male
;
Neurocysticercosis
;
Neuroimaging
;
Ovum
;
Pathology
;
Prevalence
;
Retrospective Studies
;
Seizures
;
Taenia solium
;
Taeniasis
;
Tertiary Care Centers
;
Ventriculoperitoneal Shunt
10.Profiling of remote skeletal muscle gene changes resulting from stimulation of atopic dermatitis disease in NC/Nga mouse model
Donghee LEE ; Yelim SEO ; Young Won KIM ; Seongtae KIM ; Jeongyoon CHOI ; Sung Hee MOON ; Hyemi BAE ; Hui Sok KIM ; Hangyeol KIM ; Jae Hyun KIM ; Tae Young KIM ; Eunho KIM ; Suemin YIM ; Inja LIM ; Hyoweon BANG ; Jung Ha KIM ; Jae Hong KO
The Korean Journal of Physiology and Pharmacology 2019;23(5):367-379
Although atopic dermatitis (AD) is known to be a representative skin disorder, it also affects the systemic immune response. In a recent study, myoblasts were shown to be involved in the immune regulation, but the roles of muscle cells in AD are poorly understood. We aimed to identify the relationship between mitochondria and atopy by genome-wide analysis of skeletal muscles in mice. We induced AD-like symptoms using house dust mite (HDM) extract in NC/Nga mice. The transcriptional profiles of the untreated group and HDM-induced AD-like group were analyzed and compared using microarray, differentially expressed gene and functional pathway analyses, and protein interaction network construction. Our microarray analysis demonstrated that immune response-, calcium handling-, and mitochondrial metabolism-related genes were differentially expressed. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology pathway analyses, immune response pathways involved in cytokine interaction, nuclear factor-kappa B, and T-cell receptor signaling, calcium handling pathways, and mitochondria metabolism pathways involved in the citrate cycle were significantly upregulated. In protein interaction network analysis, chemokine family-, muscle contraction process-, and immune response-related genes were identified as hub genes with many interactions. In addition, mitochondrial pathways involved in calcium signaling, cardiac muscle contraction, tricarboxylic acid cycle, oxidation-reduction process, and calcium-mediated signaling were significantly stimulated in KEGG and Gene Ontology analyses. Our results provide a comprehensive understanding of the genome-wide transcriptional changes of HDM-induced AD-like symptoms and the indicated genes that could be used as AD clinical biomarkers.
Animals
;
Biomarkers
;
Calcium
;
Calcium Signaling
;
Citric Acid
;
Citric Acid Cycle
;
Cytokines
;
Dermatitis, Atopic
;
Gene Ontology
;
Genome
;
Metabolism
;
Mice
;
Microarray Analysis
;
Mitochondria
;
Muscle Cells
;
Muscle Contraction
;
Muscle, Skeletal
;
Myoblasts
;
Myocardium
;
Oxidation-Reduction
;
Protein Interaction Maps
;
Pyroglyphidae
;
Receptors, Antigen, T-Cell
;
Skin

Result Analysis
Print
Save
E-mail