1.The role of iron-uptake factor PiuB in pathogenicity of soybean pathogen Xanthomonas axonopodis pv. glycines.
Ruyi SU ; Luojia JIN ; Jiangling XU ; Huiya GENG ; Xiao CHEN ; Siyi LIN ; Wei GUO ; Zhiyuan JI
Chinese Journal of Biotechnology 2024;40(1):177-189
Iron is an essential element for living organisms that plays critical roles in the process of bacterial growth and metabolism. However, it remains to be elucidated whether piuB encoding iron-uptake factor is involved in iron uptake and pathogenicity of Xanthomonas axonopodis pv. glycines (Xag). To investigate the function of piuB, we firstly generated a piuB deletion mutant (ΔpiuB) by homologous recombination. Compared with the wild-type, the piuB mutant exhibited significantly reduced growth and virulence in host soybean. The mutant displayed markedly increased siderophore secretory volume, and its sensitivity to Fe3+, Cu2+, Zn2+ and Mn2+ was significantly enhanced. Additionally, the H2O2 resistance, exopolysaccharide yield, biofilm formation, and cell mobility of ΔpiuB were significantly diminished compared to that of the wild-type. The addition of exogenous Fe3+ cannot effectively restore the above characteristics of ΔpiuB. However, expressing piuB in trans rescued the properties lost by ΔpiuB to the levels in the wild-type. Taken together, our results demonstrated that PiuB is a potential factor for Xag to assimilate Fe3+, and is necessary for Xag to be pathogenic in host soybean.
Iron
;
Glycine max
;
Virulence
;
Xanthomonas axonopodis/genetics*
;
Hydrogen Peroxide
2.Nucleobase-substituted ponatinib analogues: Molecular docking, short molecular dynamics, and drug-likeness profiling
Vince Lambert H. Padilla ; Glenn V. Alea
Philippine Journal of Health Research and Development 2024;28(2):56-66
Objectives:
This study aims to assess the drug-likeness and binding of nucleobase-substituted ponatinib analogues towards wild-type and T315I mutant BCR-ABL tyrosine kinases.
Methodology:
A total of 415 ponatinib analogues, encompassing single and combinatorial modifications on five parts of the drug
were generated, profiled in SwissADME, and subjected to molecular docking using AutoDock4. Complexes formed by the top
analogues then underwent a 100-ns molecular dynamics simulation with GROMACS.
Results:
Analogues featuring the replacement of the imidazo[1,2b]pyridazine with adenine and cytosine exhibited promising binding
free energies, attributed to the presence of primary amines that facilitate crucial hydrogen bond interactions in the hinge region.
RMSD, RMSF, and atomic distance analyses of the MD trajectories revealed that the six top analogues formed stable complexes in
their inactive DFG-out conformations. Changes in the MMPBSA and MMGBSA-calculated free energies were mainly driven by
changes in hydrogen bonds. Furthermore, drug-likeness predictions supported the formulation of most analogues for oral
administration.
Conclusion
Among the top analogues, VP10004 and VP81014 exhibited the most favorable binding free energies and interactions
with the target models, while VP10312 was identified as the most feasible candidate for synthesis.
Hydrogen Bonding
;
Molecular Dynamics Simulation
;
Molecular Docking Simulation
3.One-year clinical observation of the effect of internal bleaching on pulpless discolored teeth.
Bibo PENG ; Jialin HUANG ; Jian WANG
West China Journal of Stomatology 2023;41(2):190-196
OBJECTIVES:
This study aimed to observe the color rebound and rebound rates of non-pulp discolored teeth within 1 year after routine internal bleaching to guide clinical practice and prompt prognosis.
METHODS:
In this work, the efficacy of bleaching was observed in 20 patients. The color of discolored teeth was measured by using a computerized colorimeter before bleaching; immediately after bleaching; and at the 1st, 3rd, 6th, 9th, and 12th months after bleaching. The L*, a*, and b* values of the color of cervical, mesial, and incisal parts of the teeth were obtained, and the color change amounts ΔE*, ΔL*, Δa*, and Δb* were calculated. The overall rebound rate (P*) and the color rebound velocity (V*) were also analyzed over time.
RESULTS:
In 20 patients following treatment, the average ΔE* of tooth color change was 14.99. After bleaching, the neck and middle of the teeth ΔE* and ΔL* decreased in the 1st, 3rd, 6th, 9th, and 12th months, and the differences were statistically significant. Meanwhile, from the 9th month after bleaching, the rebound speed was lower than that in the 1st month, and the difference was statistically significant. The incisal end of the tooth ΔE* and ΔL* decreased in the 6th, 9th, and 12th months after bleaching, and the differences were statistically significant. No significant difference was found in the rebound speed between time points. However, this rate settled after the 9th month, with an average color rebound rate of 30.11% in 20 patients.
CONCLUSIONS
The results indicated that internal bleaching could cause a noticeable color change on pulpless teeth. The color rebound after bleaching was mainly caused by lightness (L*), which gradually decreased with time, and it was slightly related to a* and b*. The color of the teeth after internal bleaching rebounded to a certain extent with time, but the color rebound speed became stable from the 9th month. Clinically, secondary internal bleaching can be considered at this time according to whether the colors of the affected tooth and the adjacent tooth are coordinated and depending on the patient's needs.
Humans
;
Tooth Bleaching/methods*
;
Tooth, Nonvital/drug therapy*
;
Color
;
Tooth Discoloration/drug therapy*
;
Tooth
;
Hydrogen Peroxide/therapeutic use*
;
Tooth Bleaching Agents/therapeutic use*
4.A new biosynthesis route for production of 5-aminovalanoic acid, a biobased plastic monomer.
Yaqi KANG ; Ruoshi LUO ; Fanzhen LIN ; Jie CHENG ; Zhen ZHOU ; Dan WANG
Chinese Journal of Biotechnology 2023;39(5):2070-2080
5-aminovalanoic acid (5AVA) can be used as the precursor of new plastics nylon 5 and nylon 56, and is a promising platform compound for the synthesis of polyimides. At present, the biosynthesis of 5-aminovalanoic acid generally is of low yield, complex synthesis process and high cost, which hampers large-scale industrial production. In order to achieve efficient biosynthesis of 5AVA, we developed a new pathway mediated by 2-keto-6-aminohexanoate. By combinatory expression of L-lysine α-oxidase from Scomber japonicus, α-ketoacid decarcarboxylase from Lactococcus lactis and aldehyde dehydrogenase from Escherichia coli, the synthesis of 5AVA from L-lysine in Escherichia coli was achieved. Under the initial conditions of glucose concentration of 55 g/L and lysine hydrochloride of 40 g/L, the final consumption of 158 g/L glucose and 144 g/L lysine hydrochloride, feeding batch fermentation to produce 57.52 g/L of 5AVA, and the molar yield is 0.62 mol/mol. The new 5AVA biosynthetic pathway does not require ethanol and H2O2, and achieved a higher production efficiency as compared to the previously reported Bio-Chem hybrid pathway mediated by 2-keto-6-aminohexanoate.
Nylons
;
Lysine/metabolism*
;
Hydrogen Peroxide/metabolism*
;
Metabolic Engineering
;
Plastics/metabolism*
;
Fermentation
;
Escherichia coli/metabolism*
;
Aminocaproates/metabolism*
5.Efficient biosynthesis of γ-aminobutyric acid by rationally engineering the catalytic pH range of a glutamate decarboxylase from Lactobacillus plantarum.
Jiewen XIAO ; Jin HAN ; Zhina QIAO ; Guodong ZHANG ; Wujun HUANG ; Kai QIAN ; Meijuan XU ; Xian ZHANG ; Taowei YANG ; Zhiming RAO
Chinese Journal of Biotechnology 2023;39(6):2108-2125
γ-aminobutyric acid can be produced by a one-step enzymatic reaction catalyzed by glutamic acid decarboxylase. The reaction system is simple and environmentally friendly. However, the majority of GAD enzymes catalyze the reaction under acidic pH at a relatively narrow range. Thus, inorganic salts are usually needed to maintain the optimal catalytic environment, which adds additional components to the reaction system. In addition, the pH of solution will gradually rise along with the production of γ-aminobutyric acid, which is not conducive for GAD to function continuously. In this study, we cloned the glutamate decarboxylase LpGAD from a Lactobacillus plantarum capable of efficiently producing γ-aminobutyric acid, and rationally engineered the catalytic pH range of LpGAD based on surface charge. A triple point mutant LpGADS24R/D88R/Y309K was obtained from different combinations of 9 point mutations. The enzyme activity at pH 6.0 was 1.68 times of that of the wild type, suggesting the catalytic pH range of the mutant was widened, and the possible mechanism underpinning this increase was discussed through kinetic simulation. Furthermore, we overexpressed the Lpgad and LpgadS24R/D88R/Y309K genes in Corynebacterium glutamicum E01 and optimized the transformation conditions. An optimized whole cell transformation process was conducted under 40 ℃, cell mass (OD600) 20, 100 g/L l-glutamic acid substrate and 100 μmol/L pyridoxal 5-phosphate. The γ-aminobutyric acid titer of the recombinant strain reached 402.8 g/L in a fed-batch reaction carried out in a 5 L fermenter without adjusting pH, which was 1.63 times higher than that of the control. This study expanded the catalytic pH range of and increased the enzyme activity of LpGAD. The improved production efficiency of γ-aminobutyric acid may facilitate its large-scale production.
Glutamate Decarboxylase/genetics*
;
Lactobacillus plantarum/genetics*
;
Catalysis
;
gamma-Aminobutyric Acid
;
Hydrogen-Ion Concentration
;
Glutamic Acid
6.Oxidative stress induces autophagy to inhibit the proliferation and apoptosis of human bone marrow mesenchymal stem cells (hBMSCs).
Zhijun LIU ; Shaojin LIU ; Weipeng ZHENG ; Hewei WEI ; Zhihao LIAO ; Sheng CHEN
Chinese Journal of Cellular and Molecular Immunology 2023;39(7):626-632
Objective To investigate the effect of H2O2-induced oxidative stress on autophagy and apoptosis of human bone marrow mesenchymal stem cells (hBMSCs). Methods hBMSCs were isolated and cultured. The cells were divided into control group, 3-MA group, H2O2 group, H2O2 combined with 3-MA group. DCFH-DA staining was used to analyze the level of reactive oxygen species (ROS). hBMSCs were treated with 0, 50, 100, 200, 400 μmol/L H2O2, and then the cell viability was detected by CCK-8 assay. The level of autophagy was detected by monodansylcadaverine (MDC) staining and LysoTracker Red staining. The cell apoptosis was detected by flow cytometry. Western blotting was used to detect the expression of beclin 1, mTOR, phosphorylated mTOR (p-mTOR), cleaved caspase-3(c-caspase-3) and caspase-3 proteins. Results Compared with the control group and 3-MA group, ROS level and autophagosomes were increased and the proliferation and apoptosis were decreased in H2O2 group. The protein expression of beclin 1, mTOR, c-caspase-3 was up-regulated, while the p-mTOR was down-regulated. Compared with the 3-MA group, the H2O2 combined with 3-MA group also had an increased ROS level and autophagosomes, but not with significantly increased apoptosis rate; The protein expression of beclin 1, mTOR, c-caspase-3 was up-regulated, and the p-mTOR was down-regulated. Conclusion H2O2 can induce hMSCs to trigger oxidative stress response. It enhances the autophagy and inhibits the proliferation and apoptosis of hBMSCs.
Humans
;
Beclin-1/metabolism*
;
Caspase 3/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Hydrogen Peroxide/pharmacology*
;
Apoptosis
;
TOR Serine-Threonine Kinases/metabolism*
;
Oxidative Stress
;
Autophagy
;
Mesenchymal Stem Cells/metabolism*
;
Cell Proliferation
7.Preparation, characterization and biocompatibility of calcium peroxide-loaded polycaprolactone microparticles.
Leidong LIAN ; Zechen SUN ; Jinhao ZHANG ; Shirong GU ; Chenjie XIA ; Kaifeng GAN
Journal of Zhejiang University. Medical sciences 2023;52(3):296-305
OBJECTIVES:
To explore the physicochemical characteristics and biocompatibility of calcium peroxide (CPO)-loaded polycaprolactone (PCL) microparticle.
METHODS:
The CPO/PCL particles were prepared. The morphology and elemental distribution of CPO, PCL and CPO/PCL particles were observed with scanning electron microscopy and energy dispersive spectroscopy, respectively. Rat adipose mesenchymal stem cells were isolated and treated with different concentrations (0.10%, 0.25%, 0.50%, 1.00%) of CPO or CPO/PCL particles. The mesenchymal stem cells were cultured in normal media or osteogenic differentiation media under the hypoxia/normoxia conditions, and the amount of released O2 and H2O2 after CPO/PCL treatment were detected. The gene expressions of alkaline phosphatase (ALP), Runt-associated transcription factor 2 (RUNX2), osteopontin (OPN) and osteocalcin (OCN) were detected by realtime RT-PCR. SD rats were subcutaneously injected with 1.00% CPO/PCL particles and the pathological changes and infiltration of immune cells were observed with HE staining and immunohistochemistry at day 7 and day 14 after injection.
RESULTS:
Scanning electron microscope showed that CPO particles had a polygonal structure, PCL particles were in a small spherical plastic particle state, and CPO/PCL particles had a block-like crystal structure. Energy dispersive spectroscopy revealed that PCL particles showed no calcium mapping, while CPO/PCL particles showed obvious and uniform calcium mapping. The concentrations of O2 and H2O2 released by CPO/PCL particles were lower than those of CPO group, and the oxygen release time was longer. The expressions of Alp, Runx2, Ocn and Opn increased with the higher content of CPO/PCL particles under hypoxia in osteogenic differentiation culture and normal culture, and the induction was more obvious under osteogenic differentiation conditions (all P<0.05). HE staining results showed that the muscle tissue fibers around the injection site were scattered and disorderly distributed, with varying sizes and thicknesses at day 7 after particle injection. Significant vascular congestion, widened gaps, mild interstitial congestion, local edema, inflammatory cell infiltration, and large area vacuolization were observed in some tissues of rats. At day 14 after microparticle injection, the muscle tissue around the injection site and the tissue fibers at the microparticle implantation site were arranged neatly, and the gap size was not thickened, the vascular congestion, local inflammatory cell infiltration, and vacuolization were significantly improved compared with those at day 7. The immunohistochemical staining results showed that the expressions of CD3 and CD68 positive cells significantly increased in the surrounding muscle tissue, and were densely distributed in a large area at day 7 after particle injection. At day 14 of microparticle injection, the numbers of CD3 and CD68 positive cells in peripheral muscle tissue and tissue at the site of particle implantation were lower than those at day 7 (all P<0.01).
CONCLUSIONS
CPO/PCL particles have good oxygen release activity, low damage to tissue, and excellent biocompatibility.
Rats
;
Animals
;
Osteogenesis
;
Core Binding Factor Alpha 1 Subunit
;
Rats, Sprague-Dawley
;
Hydrogen Peroxide/pharmacology*
;
Cell Differentiation
;
Oxygen
;
Hypoxia
;
Cells, Cultured
8.Research on Logic Design of Proton Treatment Control System.
Zhuofan CAI ; Rong XIE ; Jianchun DENG ; Zhiyong YANG
Chinese Journal of Medical Instrumentation 2023;47(4):370-376
The proton treatment control system is the supporting software of the proton therapy device, which specifically coordinates and controls the status and work of each subsystem. In this study, the software architecture and hardware implementation of the proton treatment control system was developed and built a foundation for the overall debugging. Using C# programming language and WPF programming techniques, TCP network communication protocol specified by the proton treatment technical document and MVVM pattern in Windows system, the logic design and implementation of each level were studied. Meanwhile, the communication interface between the subsystems under TCP communication protocol was agreed. The logic design and research of the setup field and treatment field were carried out. And the User Interface was designed and developed using the above technology. The program realizes the communication and interaction between the proton treatment control system and each subsystem, so as to control and monitor the whole treatment process. The proton treatment control system provides a software basis for the remote overall debugging and on-line monitor and control of proton treatment device.
Protons
;
User-Computer Interface
;
Software
;
Computers
;
Logic
9.Berberine inhibits autophagy and promotes apoptosis of fibroblast-like synovial cells from rheumatoid arthritis patients through the ROS/mTOR signaling pathway.
Shiye ZONG ; Jing ZHOU ; Weiwei CAI ; Yun YU ; Ying WANG ; Yining SONG ; Jingwen CHENG ; Yuhui LI ; Yi GAO ; Baihai WU ; He XIAN ; Fang WEI
Journal of Southern Medical University 2023;43(4):552-559
OBJECTIVE:
To evaluate the regulatory effect of berberine on autophagy and apoptosis balance of fibroblast-like synoviocytes (FLSs) from patients with in rheumatoid arthritis (RA) and explore the mechanism.
METHODS:
The inhibitory effect of 10, 20, 30, 40, 50, 60, 70, and 80 μmol/L berberine on RA-FLS proliferation was assessed using CCK-8 method. Annexin V/PI and JC-1 immunofluorescence staining was used to analyze the effect of berberine (30 μmol/L) on apoptosis of 25 ng/mL TNF-α- induced RA-FLSs, and Western blotting was performed to detect the changes in the expression levels of autophagy- and apoptosis-related proteins. The cells were further treated with the autophagy inducer RAPA and the autophagy inhibitor chloroquine to observe the changes in autophagic flow by laser confocal detection of mCherry-EGFP-LC3B. RA-FLSs were treated with the reactive oxygen species (ROS) mimic H2O2 or the ROS inhibitor NAC, and the effects of berberine on ROS, mTOR and p-mTOR levels were observed.
RESULTS:
The results of CCK-8 assay showed that berberine significantly inhibited the proliferation of RA-FLSs in a time- and concentration-dependent manner. Flow cytometry and JC-1 staining showed that berberine (30 μmol/L) significantly increased apoptosis rate (P < 0.01) and reduced the mitochondrial membrane potential of RA-FLSs (P < 0.05). Berberine treatment obviously decreased the ratios of Bcl-2/Bax (P < 0.05) and LC3B-II/I (P < 0.01) and increased the expression of p62 protein in the cells (P < 0.05). Detection of mCherry-EGFP-LC3B autophagy flow revealed obvious autophagy flow block in berberine-treated RA-FLSs. Berberine significantly reduced the level of ROS in TNF-α-induced RA-FLSs and upregulated the expression level of autophagy-related protein p-mTOR (P < 0.01); this effect was regulated by ROS level, and the combined use of RAPA significantly reduced the pro-apoptotic effect of berberine in RA-FLSs (P < 0.01).
CONCLUSION
Berberine can inhibit autophagy and promote apoptosis of RA-FLSs by regulating the ROS-mTOR pathway.
Humans
;
Synoviocytes
;
Berberine/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Hydrogen Peroxide/metabolism*
;
Sincalide/metabolism*
;
Cell Proliferation
;
Arthritis, Rheumatoid/metabolism*
;
Signal Transduction
;
TOR Serine-Threonine Kinases/metabolism*
;
Apoptosis
;
Fibroblasts
;
Autophagy
;
Cells, Cultured
10.Dynamic Changes of ROS and Nrf2-Related Factors During Erythroid Development.
Lei YANG ; Fan WU ; Ling LING ; Duo-Nan YU
Journal of Experimental Hematology 2023;31(1):247-253
OBJECTIVE:
To investigate the changes and roles of reactive oxygen species (ROS) and nuclear factor erythroid 2-related factor 2 (Nrf2) related antioxidases during erythroid development.
METHODS:
Flow cytometry was used to detect the sensibility of peripheral red blood cells of wild-type mice to a strong oxidant hydrogen peroxide (H2O2). Erythroid cells from different developmental stages in bone marrow (BM) were obtained using fluorescence-activated cell sorter and the ROS levels were detected by flow cytometry. RT-qPCR was used to detect the changes of expression levels of Nrf2 and related antioxidases in erythroid cells from different developmental stages in BM. The ROS levels of the peripheral blood and BM nucleated erythrocytes in Nrf2 knockout mice were further examined. The expression level of Nrf2 in erythroid precursors isolated from 14.5 d embryonic liver of wild-type mice during differentiation and culture in vitro was detected.
RESULTS:
In the peripheral blood of wild-type mice, the ROS level of reticulocytes and mature erythrocytes treated with H2O2 increased about 4 times and 7 times, respectively (P<0.01). In BM erythrocytes, the ROS level gradually decreased as the cells matured (r=0.85), while the expression level of Nrf2 and its related anti-oxidative genes increased (r=0.99). The ROS levels in peripheral blood erythrocytes and BM nucleated erythrocytes of Nrf2 knockout mice were significantly increased compared with wild-type mice (P<0.01). The expression of Nrf2 increased during the early erythroid development after embryonic liver cell sorting (P<0.01).
CONCLUSION
The expression levels of Nrf2 and its related factors vary during erythropoiesis. Nrf2 at physiological level plays an important antioxidant role during the erythroid development.
Animals
;
Mice
;
Hydrogen Peroxide
;
Mice, Knockout
;
NF-E2-Related Factor 2/metabolism*
;
Oxidative Stress
;
Reactive Oxygen Species/metabolism*

Result Analysis
Print
Save
E-mail