1.Syndrome Differentiation and Treatment Mechanisms of Inflammatory Injury in Diabetic Cardiomypathy from Theory of "Gaozhuo"
Xiaoyue WANG ; Yunfeng YU ; Xiangning HUANG ; Yixin XIANG ; Sihao ZHANG ; Qin XIANG ; Rong YU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):235-244
Diabetic cardiomyopathy (DCM) is one of the most common complications of diabetes mellitus and is a major threat to global health. As a key mechanism in the occurrence and progression of DCM, the inflammatory response persists throughout the entire course of the DCM. The Gaozhuo theory suggests that the basic pathogenesis of inflammatory injury in DCM is the Qi deficiency of spleen and kidney and Gaozhuo invasion, and divides the pathological process into three phases: Gaozhuo invasion, turbid heat damage to the channels, and turbid blood stasis and heat junction. Among them, the Qi deficiency of spleen and kidney and the endogenous formation of Gaozhuo represent the process of inflammatory factor formation induced by glucose metabolism disorders. Turbid heat damage to the channels refers to the process of myocardial inflammatory injury mediated by inflammatory factors, and turbid blood stasis and heat junction are the process of myocardial injury developing toward myocardial fibrosis and ventricular remodeling. As the disease continues to progress, it eventually develops into a depletion of the heart Yang, leading to the ultimate regression of heart failure. According to the theory of Gaozhuo, traditional Chinese medicine (TCM) should regulate inflammatory injury in DCM by strengthening the spleen and tonifying the kidney to address the root cause, and resolving dampness and lowering turbidity to treat the symptoms. If the turbidity has been stored for a long time and turns into heat, strengthening the spleen and tonifying the kidney, and clearing heat and resolving turbidity should be the therapy. If the turbidity, stasis, and heat are knotted in the heart and collaterals, strengthening the spleen and tonifying the kidney, and resolving stasis and lowering turbidity should be the therapy. TCM compounds and monomers can regulate the inflammatory response in DCM. TCM compounds can be divided into the categories for benefiting Qi to resolve turbidity, benefiting Qi and clearing heat to resolve turbidity, and benefiting Qi and activating blood to reduce turbidity. The compounds can inhibit upstream signals of inflammation and expression of inflammatory factors, improve the inflammatory damage to myocardium and blood vessels, myocardial fibrosis, and cardiac systole and diastole, and thus slow down the onset and progression of DCM.
2.Syndrome Differentiation and Treatment Mechanisms of Hepatic Stellate Cell Activation in Type 2 Diabetes Mellitus Combined with Non-alcoholic Fatty Liver Disease Based on Theory of "Gaozhuo"
Yixin XIANG ; Yunfeng YU ; Xiaoyue WANG ; Xiangning HUANG ; Qin XIANG ; Rong YU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):253-260
Non-alcoholic fatty liver disease (NAFLD) is one of the most common complications of type 2 diabetes mellitus (T2DM), and hepatic stellate cell (HSC) activation is the key link in the progression of NAFLD to liver fibrosis. According to the theory of "Gaozhuo", spleen deficiency and Qi stagnation, along with Gaozhuo invasion, are the causes of NAFLD progression to liver fibrosis, which reveals the pathogenesis essence of HSC activation in traditional Chinese medicine (TCM). Among them, spleen deficiency and Qi stagnation are the root causes of the endogenous formation of Gaozhuo. Spleen deficiency indicates the insulin sensitivity decrease and glucose metabolism disorders, and Qi stagnation means the dysregulation of hepatic glucose and lipid metabolism, which creates the preconditions for HSC activation. Gaozhuo invasion is the direct cause of HSC activation, including three stages: Internal retention of Gaozhuo, turbidity and stasis stagnation, and toxic stasis and consolidation. Internal retention of Gaozhuo refers to the abnormal metabolism and deposition of hepatic lipids, as well as the microcirculatory disorders. Turbidity and stasis stagnation is the process by which lipotoxicity stimulates the transformation of HSC into myofibroblast (MFB), and toxic stasis and consolidation represent the secretion of a large amount of extracellular matrix (ECM) by MFB to promote the fibrosis. According to the theory of Gaozhuo and the activation process of HSC, syndromes for T2DM combined with NAFLD can be classified into spleen deficiency and Qi stagnation with internal retention of Gaozhuo, spleen Qi deficiency with turbidity and stasis stagnation, and spleen Qi deficiency with toxic stasis and consolidation. Clinically, the treatment principle is to strengthen the spleen and promote Qi, resolve turbidity, and eliminate blood stasis. Both TCM compounds and monomers can effectively inhibit the HSC activation. TCM compounds can be classified into categories for regulating spleen and harmonizing liver, resolving turbidity and removing stasis, and detoxifying and removing stasis. They mainly work by improving lipid metabolism, reducing lipid accumulation in the liver, alleviating inflammatory and oxidative stress responses, inhibiting the activation and proliferation of HSC, and reducing ECM deposition, thereby delaying the progression of liver fibrosis.
3.Mechanism of Action of Guishenwan in Treatment of Ovarian Insufficiency Diseases: A Review
Yao CHEN ; Sainan TIAN ; Bin'an WANG ; Shengyu WANG ; Wen'e LIU ; Lei LEI ; Li TANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):317-324
Guishenwan (GSW), originating from Jingyue Quanshu (Zhang Jingyue's Complete Works), is a classic traditional Chinese medicine (TCM) formula with a history of over 400 years. Designed for kidney essence deficiency syndrome, it is clinically applied to treat diseases associated with essence-blood deficiency, such as ovarian insufficiency diseases in women, oligospermia-induced infertility in men, and lumbar disc herniation. Numerous studies have confirmed its significant efficacy and advantages in managing ovarian insufficiency diseases, including diminished ovarian reserve (DOR), premature ovarian insufficiency (POI), and premature ovarian failure (POF). According to recent literature, the therapeutic mechanisms of GSW in treating ovarian insufficiency diseases involve regulating the hypothalamic-pituitary-ovarian axis (HPOA) function, ameliorating reproductive endocrine disorders, improving ovarian function, modulating relevant signaling pathways, and exerting immunoregulatory and anti-inflammatory effects. A review of GSW in clinical treatment revealed that clinical applications of GSW, particularly in combination with Western medicine, not only alleviate symptoms but also compensate for the limitations of hormone replacement therapy, thereby reducing recurrence, minimizing adverse reactions, and enhancing safety. This review aims to provide a scientific basis for the rational clinical use of GSW in ovarian insufficiency diseases, offer innovative TCM strategies for developing novel ovarian-protective drugs, promote the integration of TCM and Western medicine in reproductive medicine, and ultimately contribute a Chinese approach to global management of ovarian insufficiency diseases.
4.Mechanism of Zuogui Jiangtang Jieyu Prescription Against Damage to Hippocampal Synaptic Microenvironment via Suppressing GluR2/Parkin Signal-mediated Mitophagy in Rats with Diabetes-related Depression
Jian LIU ; Lin LIU ; Xiaoyuan LIN ; Wei LI ; Yuhong WANG ; Hui YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):104-112
ObjectiveTo reveal the mechanism of Zuogui Jiangtang Jieyu prescription against damage to hippocampal synaptic microenvironment via suppressing glutamate receptor 2 (GluR2)/Parkin signal-mediated mitophagy in rats with diabetes-related depression (DD). MethodsEighty male SD rats underwent adaptive feeding for 5 days before the study. Ten rats were randomly assigned to the normal group. The model of DD rats was established with the rest by 2-week high-fat diet + streptozotocin (STZ) tail intravenous injection + 28 days of chronic unpredictable mild stress (CUMS) combined with isolation. The rats were randomly divided into a normal group, a model group, a GluR2 blocker group (5 μg·kg-1), a GluR2 agonist group (10 μg·kg-1), a metformin + fluoxetine group (0.18 g·kg-1 metformin + 1.8 mg·kg-1 fluoxetine), and high- and low-dose Zuogui Jiangtang Jieyu prescription groups (20.52 and 10.26 g·kg-1, respectively). The rats in the GluR2 blocker group and the GluR2 agonist group were continuously injected with CNQX and Cl-HIBO in the dentate gyrus of the hippocampus once a week starting from stress modeling, respectively, while the metformin + fluoxetine group and the high- and low-dose Zuogui Jiangtang Jieyu prescription groups were continuously given intragastric administration for 28 d at the same time of stress modeling. Depression-like behavior was evaluated by open field and forced swimming experiments. The levels of serum insulin and adenosine triphosphate (ATP) in hippocampus were detected by biochemical analysis. The levels of 5-hydroxytryptamine (5-HT) and dopamine (DA) in hippocampus were detected by enzyme-linked immunosorbent assay (ELISA). The autophagosomes of hippocampal neurons were observed by transmission electron microscopy. The morphology and structure of dendrites and spines of hippocampal neurons were evaluated by Golgi staining. Western blot detected the expression levels of GluR2 and Parkin proteins in hippocampus. The expression levels of GluR2, Parkin, regulating synaptic membrane exocytosis protein 3 (RIMS3), and postsynaptic density protein 95 (PSD95) in the dentate gyrus of the hippocampus were detected by immunofluorescence. ResultsCompared with the normal group, the model group exhibited reduced total activity distance in the open field and increased immobility time in forced swimming (P<0.01), lowered levels of serum insulin and ATP, 5-HT, and DA in hippocampus (P<0.01), increased autophagosomes of hippocampal neurons, significantly damaged morphology and structure of dendrites and spines of hippocampal neurons, decreased expression levels of GluR2, RIMS3, and PSD95 in hippocampus, and an increased Parkin expression level (P<0.05, P<0.01). Compared with the model group, the GluR2 blocker group and the GluR2 agonist group showed aggravation and alleviation of the above abnormal changes, respectively (P<0.05, P<0.01). The above depression-like behavior was significantly improved in the high- and low-dose Zuogui Jiangtang Jieyu prescription groups to different degrees. Specifically, the two groups saw elevated levels of serum insulin and ATP, 5-HT, and DA in hippocampus (P<0.05, P<0.01), restrained increase in autophagosomes and damage to morphology and structure of dendrites and spines of hippocampal neurons, up-regulated protein expression levels of GluR2, RIMS3, and PSD95, and down-regulated Parkin expression level (P<0.05, P<0.01). ConclusionZuogui Jiangtong Jieyu prescription can ameliorate the mitophagy-mediated damage to hippocampal synaptic microenvironment in DD rats, the mechanism of which might be related to the regulation of GluR2/Parkin signaling pathway.
5.Effect of Wenyang Shengji Ointment (温阳生肌膏) on MGO Content and HIF-1a/VEGF Pathway in Wound Tissue of Diabetic Wound Model Rats with Yin Syndrome
Xinyu HUANG ; Li CHEN ; Yarong DING ; Jun WANG ; Shuihua FENG ; Zhongzhi ZHOU
Journal of Traditional Chinese Medicine 2025;66(4):382-389
ObjectiveTo investigate the possible mechanism of Wenyang Shengji Ointment (温阳生肌膏, WSO) in the treatment of diabetic wounds with yin syndrome. MethodsA total of 24 SD rats were randomly divided into a group (n=6) and modeling group (n=18). The modeling group rats were fed with high-fat diet for 14 days and then were injected intraperitoneally with streptozotocin to induce diabetic model. After steroid injection, full-thickness skin defects were created on the back of the rats to establish a diabetic wound with yin syndrome model. The normal group was fed with regular diet, and full-thickness skin defects were created surgically on the back of the rats. The 18 successfully modeled rats were further divided into three groups, the model group, the WSO group, and the Beifuxin (Recombinant Bovine Basic Fibroblast Growth Factor Gel, BX) group, 6 rats in each group. The WSO group was given the ointment to the wound, the Beifuxin group was givne BX gel, and the normal group and model group was disinfected and treated with saline. All groups had their dressings changed once daily for 14 days. Wound healing was recorded on days 0, 3, 7, and 14, and the wound healing rate was calculated on day 3, 7, and 14. On day 14 after treatment, HE staining was performed to observe the pathological morphology of the wound tissue. Western Blot was used to detect the relative protein levels of hypoxia-inducible factor 1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF). Immunofluorescence was used to measure the fluorescence intensity of HIF-1α in the wound tissue, and ELISA was used to detect the methylglyoxal (MGO) content in the wound tissue. ResultsCompared with the normal group, the model group showed poor wound healing on day 3, 7, and 14, with a low wound healing rate (P<0.01). HE staining showed scab coverage on the wound, with inflammatory cell infiltration and disorganized collagen arrangement. The relative protein levels of VEGF were significantly reduced, while the relative protein levels of HIF-1α and the MGO content significantly increased (P<0.01), and the fluorescence intensity of HIF-1α was enhanced. Compared to the model group, the WSO group and Beifuxin group showed better wound healing on day 3, 7, and 14, with an increased wound healing rate (P<0.01). The wound tissue showed clear and complete epithelial structure, reduced inflammatory cells, mature granulation tissue, and organized collagen arrangement. MGO content was significantly reduced (P<0.01). The relative protein levels of HIF-1α and VEGF both significantly increased in the WSO group, while only VEGF increased in the Beifuxin group (P<0.05 or P<0.01). Compared with the Beifuxin group, the WSO group had a thicker epidermal layer, prominent collagen formation, significantly increased HIF-1α fluorescence expression, reduced MGO content in the wound tissue, and higher relative protein levels of HIF-1α (P<0.05). ConclusionWSO can reduce the accumulation of MGO in diabetic wound tissue with yin syndrome and activate the HIF-1α/VEGF pathway, which could be one of the mechanisms for promoting wound healing.
6.Mechanism of Xuefu Zhuyutang in Intervening in Ferroptosis in Rats with Coronary Heart Disease with Blood Stasis Syndrome Based on ACSL4 Signalling Pathway
Yi LIU ; Yang YANG ; Chang SU ; Peng TIAN ; Mingyun WANG ; Ruqian ZHONG ; Xuejiao XIE ; Qing YAN ; Qinghua PENG ; Qiuyan ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):27-38
ObjectiveTo investigate the mechanism of ferroptosis mediated by long-chain acyl-CoA synthetase 4 (ACSL4) signalling pathway in rats with coronary heart disease with blood stasis syndrome and the intervention effect of Xuefu Zhuyutang. MethodsSPF male SD rats were randomly divided into normal group, sham-operation group, model group, trimetazidine group (5.4 mg·kg-1), low-, medium-, and high-dose group (3.51, 7.02,14.04 g·kg-1) of Xuefu Zhuyutang. The coronary artery left anterior descending ligation method was used to prepare a model of coronary heart disease with blood stasis syndrome, and continuous treatment for 7 d was conducted, while the sham-operation group was only threaded and not ligated. The general macroscopic symptoms of the rats were observed, and indicators such as electrocardiogram, echocardiography, and blood rheology were detected. The pathological morphology of myocardial tissue was observed by hematoxylin-eosin (HE) staining, and the changes in mitochondria in myocardial tissue were observed by transmission electron microscopy. The level of iron deposition in myocardial tissue was observed by Prussian blue staining. The levels of 12-hydroxyeicosatetraenoic acid (12-HETE) and 15-HETE were detected in serum by enzyme-linked immunosorbent assay. A biochemical colourimetric assay was used to detect the levels of Fe2+, lipid peroxidation (LPO), glutathione (GSH), and T-GSH/glutathione disulfide (GSSG) in myocardial tissue. DCFH-DA fluorescence quantitative assay was employed to detect the levels of reactive oxygen species (ROS). Western blot and Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was adopted to detect the protein and mRNA expressions of glutathione peroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), ACSL4, and ly-sophosphatidylcholine acyltransferase3 (LPCAT3) in myocardial tissue. ResultsCompared with those in the normal group, the rats in the model group were poor in general macroscopic symptoms. The electrocardiogram showed widened QRS wave amplitude and increased voltage, bow-back elevation of the ST segments, elevated T waves, J-point elevation, and accelerated heart rate. Echocardiography showed a significant reduction in left ventricular ejection fraction (LVEF) and left ventricular fraction shortening (LVFS) (P<0.01). Blood rheology showed that the viscosity of the whole blood (low, medium, and high rate of shear) was significantly increased (P<0.01). HE staining showed an abnormal structure of myocardial tissue. There was a large area of myocardial necrosis and inflammatory cell infiltration and a large number of connective tissue between myocardial fibers. Transmission electron microscopy showed that the mitochondria were severely atrophy or swelling. The cristae were reduced or even broken, and the matrix was flocculent or even vacuolated. Prussian blue staining showed that there were a large number of iron-containing particles, and the iron deposition was obvious. The content of 12-HETE and 15-HETE in the serum was significantly increased (P<0.01). The content of Fe2+, LPO, and ROS in myocardial tissue was significantly increased (P<0.01). The content of GSH was significantly decreased (P<0.01), and T-GSH/GSSG was decreased (P<0.01). The protein and mRNA expressions of GPX4 and FTH1 in myocardial tissue were both significantly decreased (P<0.05, P<0.01), while those of ACSL4 and LPCAT3 increased significantly (P<0.01). Compared with the model group, the general macroscopic symptoms and electrocardiogram results of rats in low-, medium- and high-dose groups of Xuefu Zhuyutang were alleviated, and the differences in LVEF/LVFS ratios were all significantly increased (P<0.05, P<0.01). The differences in whole-blood viscosity (low, medium, and high rate of shear) were all significantly decreased (P<0.01). The results of HE staining and transmission electron microscopy showed that the morphology, structure, and mitochondria of cardiomyocytes were improved. The content of 12-HETE and 15-HETE in serum was reduced to different degrees in low-, medium-, and high-dose groups of Xuefu Zhuyutang (P<0.05, P<0.01). The content of Fe2+, LPO, and ROS was significantly reduced in the medium- and high-dose groups of Xuefu Zhuyutang (P<0.05, P<0.01), and the content of GSH and T-GSH/GSSG was significantly increased (P<0.05, P<0.01). The protein and mRNA expressions of GPX4 and FTH1 were significantly increased to varying degrees in the medium- and high-dose groups of Xuefu Zhuyutang (P<0.05, P<0.01), and ACSL4 and LPCAT3 were decreased to different degrees in the low-, medium-, and high-dose groups of Xuefu Zhuyutang (P<0.05, P<0.01). ConclusionXuefu Zhuyutang can regulate iron metabolism and anti-lipid oxidation reaction to mediate ferroptosis through the ACSL4 signalling pathway, thus exerting a protective effect on rats with coronary heart disease with blood stasis syndrome.
7.Platelet Metabolomics Analysis in Rats of Coronary Heart Disease with Blood Stasis Syndrome by Overexpression of Fibrinogen
Manli ZHOU ; Jiale ZHU ; Liping WANG ; Weixiong JIAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):230-237
ObjectiveTo analyze the metabolomic characteristics of platelets in fibrinogen(FIB) overexpression rats of coronary heart disease with blood stasis syndrome(CHD-BSS), explore potential biomarkers, and investigate the mechanism of FIB overexpression on CHD-BSS. MethodsSD rats were randomly divided into BSS group and BSS+FIB overexpression group(BSS+FIB group), with 10 rats in each group. Both the BSS+FIB group and the BSS group were fed a high-fat diet combined with oral administration of vitamin D3 and subcutaneous injection of isoproterenol, but rats in the BSS+FIB group were overexpressed with FIB during the initial modeling stage by transfection with adeno-associated virus(AAV). The overexpression level of FIB in rat liver and plasma samples was detected by enzyme-linked immunosorbent assay(ELISA) and real-time fluorescence quantitative polymerase chain reaction(Real time PCR), as well as the expression level of liver FIB A(FGA) mRNA. The characteristics of metabolites in rat platelet samples were analyzed by ultra-high performance liquid chromatography-quadrupole-electrostatic field orbital trap high-resolution mass spectrometry(UPLC-Q-Exactive Orbitrap-MS), and the differential metabolites between groups were screened by principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA), and the enriched pathways were analyzed. The accuracy of potential biomarkers in the diagnosis of CHD-BSS was evaluated by receiver operating characteristic(ROC) curve. The expression of autophagy related proteins phosphorylated adenosine monophosphate(AMP) activated protein kinase(p-AMPK)/AMPK, phosphorylated mammalian target of rapamycin(p-mTOR)/mTOR, microtubule-associated protein 1 light chain 3(LC3) Ⅱ/Ⅰ and p62 in platelets were detected by Western blot. ResultsCompared with the BSS group, the expression levels of FIB in liver and plasma samples of the BSS+FIB group were significantly increased(P<0.05, P<0.01), and the expression level of FIB mRNA in the liver was remarkably increased(P<0.01), indicating successful overexpression of FIB. Platelet metabolomics results showed significant differences in metabolic profiles between the BSS+FIB group and the BSS group, and a total of 25 significantly enriched metabolic pathways and 8 metabolites involved in these metabolic pathways, among which uric acid, guanosine and ribose 1-phosphate levels were up-regulated, while adenosine diphosphate(ADP), AMP, guanosine diphosphate(GDP), adenylosuccinate and norepinephrine levels were down-regulated. The diagnostic ability analysis of differential metabolites showed that all 8 differential metabolites had good diagnostic ability, with an area under the curve(AUC)>0.85. Western blot results showed that compared with the BSS group, the expression levels of p-mTOR/mTOR and p62 proteins in platelets of the BSS+FIB group was significantly reduced(P<0.01), while the expression levels of p-AMPK/AMPK and LC3Ⅱ/Ⅰ proteins were increased, but the difference was not statistically significant. ConclusionOverexpression of FIB can change the metabolic characteristics of CHD-BSS rat model, involving multiple aspects such as vascular endothelial injury, platelet activation and myocardial function damage. Among them, overexpression of FIB may enhance the occurrence of platelet autophagy, thereby inducing platelet activation and promoting thrombus formation.
8.Experience of Using Charcoal-Processed Traditional Chinese Medicine in the Treatment of Gynecological Hemorrhagic Disorders
Xiaolan WU ; Zhaoling YOU ; Guiyun WANG ; Kailing WANG ; Xiaojuan YE ; Lingyu LIAO ; Yueheng LI ; Huiping LIU
Journal of Traditional Chinese Medicine 2025;66(3):308-311
Charcoal-processed traditional Chinese herbal medicine has various therapeutic effects, including astringing, hemostasis, anti-diarrhea, clearing heat, tonifying, and warming the interior. This paper summarizes the clinical application features, compatible experiences, dosages, and precautions for over 20 types of charcoal-processed herbal medicine in the treatment of gynecological bleeding disorders caused by dysfunctions such as dysfunctional uterine bleeding, endometriosis, uterine incision pseudocavity, and vaginal bleeding resulting from threatened miscarriage. The charcoal-processed herbal medicine include Huangqin (Scutellaria Baicalensis) Charcoal, Dahuang (Rheum Palmatum) Charcoal, Cebai (Platycladus Orientalis) Charcoal, Diyu (Sanguisorba Officinalis) Charcoal, Daji (Cirsium Setosum) Charcoal, Xiaoji (Cirsium Japonicum) Charcoal, Shengdi (Rehmannia Glutinosa) Charcoal, Aiye (Artemisia Argyi) Charcoal, Paojiang (Zingiber Officinale) Charcoal, Xuduan (Dipsacus Asper) Charcoal, Duzhong (Eucommia Ulmoides) Charcoal, Qiancao (Rubia Cordifolia) Charcoal, Puhuang (Typha Angustifolia) Charcoal, Shanzha (Crataegus Pinnatifida) Charcoal, Jingjie (Schizonepeta Tenuifolia) Charcoal, Xueyu (Carthamus Tinctorius) Charcoal, Zonglyu (Areca Catechu) Charcoal, Wumei (Prunus Mume) Charcoal, Shudahuang (Rheum Officinale) Charcoal, Lianfang (Nymphaea Alba) Charcoal, Mianmaguanzhong (Clematis Armandii) Charcoal, and Oujie (Nelumbo Nucifera) Charcoal.
9.Textual Research on Key Information of Classic Formula Shengma Gegentang
Yuli LI ; Ping JIANG ; Zhenyi YUAN ; Yuanyuan HE ; Ya'nan MAO ; Shasha WANG ; Wenyan ZHU ; Zhouan YIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):187-197
Shengma Gegentang is one of the classic formulas in the Catalogue of Ancient Classic Prescriptions (Second Batch). This study reviewed ancient and modern literature and used literature tracing and bibliometric methods to analyze the historical evolution, efficacy, indications, dosage decoctions, and modern clinical disease spectrum of Shengma Gegentang. The results indicated that the earliest record of Shengma Gegentang can be found in the Taiping Huimin Heji Jufang of the Song dynasty, but its origin can be traced back to the Shaoyao Siwu Jiejitang in the Beiji Qianjin Yaofang of the Tang dynasty. The composition dosage of Shengma Gegentang is 413 g of Cimicifugae Rhizoma, 619.5 g of Puerariae Lobatae Radix, 413 g of Paeoniae Radix Alba, and 413 g of Glycyrrhizae Radix et Rhizoma, which are ground into coarse powder. Each dose is 12.39 g, and the amount of water added is 300 mL. 100 mL of solution is decocted and taken at the right time. The four drugs in the formula play the role of relieving exterior syndrome, penetrating pathogenic factors, and detoxicating together. Its indications are widely involved in internal medicine, pediatrics, surgery, ophthalmology and otorhinolaryngology, obstetrics and gynecology, sexually transmitted diseases, and other diseases, such as measles, sores, acne, spots, surgical gangrene, red eyes, toothache, chancre, and fetal poison. The epidemic diseases treated by Shengma Gegentang are complicated, including rash, pox, macula, numbness, summer diarrhea, dysentery, sha disease, febrile symptoms, spring warmth, winter warmth, and cold pestilence. At the same time, it is a plague prevention formula. Although Shengma Gegentang has a wide range of indications, it cannot be separated from the pathogenic mechanism of evil Qi blocking the muscle surface and heat in the lungs and stomach. The modern clinical disease spectrum of Shengma Gegentang involves the ophthalmology and otorhinolaryngology system, nervous system, pediatric-related diseases and syndromes, skin system, hepatobiliary system, and digestive system. It plays a key role in the treatment of epidemic diseases such as measles, chronic hepatitis B, dysentery, and tetanus.
10.Study on the improvement effects of Compound qinbai granules on ulcerative colitis in rats and its mechanism
Shouyan HE ; Wenpeng LUO ; Liao PAN ; Jinyin XIAO ; Zhenquan WANG
China Pharmacy 2025;36(6):686-691
OBJECTIVE To investigate the improvement effects of Compound qinbai granules on ulcerative colitis (UC) in rats and its mechanism based on short-chain fatty acid (SCFA) and their targets G protein-coupled receptor (GPR). METHODS Male SD rats were randomly divided into normal group (12 rats) and model group (30 rats); the model group was given 5% dextran sulfate sodium solution to induce the UC model. Model rats were divided into the model group, positive control group [Mesalazine enteric-coated tablets 270 mg/(kg·d)] and Compound qinbai granules group [2.52 g/(kg·d)], with 9 rats in each group. Rats in each group were orally administered with normal saline or corresponding medication twice a day, for three consecutive weeks. During intragastric administration, the general conditions of rats in each group were observed, and the disease activity index (DAI) scores were assessed after the last administration. Serum levels of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-6) and anti-inflammatory cytokines (transforming growth factor-β1, interleukin-10) were measured. Pathological changes in their colonic tissues were observed and scored. Additionally, the content of SCFA (acetic acid, propionic acid and butyric acid) in their feces as well as the protein and mRNA expressions of GPR41, GPR43 and GPR109A in colonic tissues were detected. RESULTS Compared with the normal group, rats in the model group exhibited lethargy and obvious blood in their feces; the colonic tissue structure was severely damaged, with pathological changes such as notable glandular loss, edema, and inflammatory cell infiltration visible; the serum levels of pro- inflammatory cytokines, DAI score and colonic pathology score were significantly increased, while the levels of anti-inflammatory cytokines, SCFA content, and protein and mRNA expressions of GPR41, GPR43 and GPR109A were significantly decreased or down-regulated (P<0.01). Compared with the model group, the general condition and pathological changes of colonic tissue in each administration group showed improvement, with significant reversal observed in the aforementioned quantitative indicators (P<0.05 or P<0.01). CONCLUSIONS Compound qinbai granules can alleviate intestinal inflammation and intestinal mucosal damage in UC rats. These effects may be related to its ability to restore intestinal SCFA levels and the expression of their target GPR.

Result Analysis
Print
Save
E-mail