1.Effect of ADU-S100/doxorubicin in situ vaccine on diffuse large B-cell lymphoma and its mechanism
Pengli XIAO ; Shuli GUO ; Huirui WANG ; Huiyun MAO ; Wanhua AN
Journal of Leukemia & Lymphoma 2024;33(1):29-36
Objective:To explore the antitumor effect of ADU-S100/doxorubicin in situ vaccine on diffuse large B-cell lymphoma (DLBCL) and its mechanism.Methods:The 6-week-old female BALB/c mice were selected, and the bilateral murine subcutaneous B-cell lymphoma model was established with murine B-cell lymphoma A20 cells. The subcutaneous tumor-bearing mice were randomly divided into untreated group (without treatment), ADU-S100 in situ vaccine treatment group (intratumoral injection of interferon gene stimulating factor agonist ADU-S100), doxorubicin in situ vaccine treatment group (intratumoral injection of doxorubicin), and ADU-S100/doxorubicin in situ vaccine treatment group (intratumoral injection of ADU-S100 and doxorubicin) by using random number table method, with 5 mice in each group. The right tumors of the bilateral subcutaneous tumor-bearing mice were defined as proximal tumors, and the left tumors of the bilateral subcutaneous tumor-bearing mice were defined as distal tumors. Only the proximal tumors were treated via the intratumoral route, and the distal tumors were not treated. On day 23 after tumor inoculation, the percentages of CD11c + dendritic cells (DC), CD8 + CD11c + DC and CD80 + CD11c + DC in the spleen of mice in each group were detected by flow cytometry. The splenocytes of mice in each group were stimulated with A20 tumor cell lysate in vitro, the percentages of 5'-ethynyl-2'-deoxyuridine-positive (EdU +) cells and tumor necrosis factor-α-positive (TNF-α +) cells in CD8 + T cells in each in situ vaccine treatment group were detected by flow cytometry, and the killing effect of cytotoxic T lymphocyte (CTL) in each group was measured by using the lactate dehydrogenase (LDH) cytotoxicity assay kit. The mice treated with ADU-S100/doxorubicin in situ vaccine were intraperitoneally injected with anti-mouse CD8α (clone 53-6.7) mAb or isotype control on days 7, 12 and 17 after tumor inoculation to eliminate CD8 + cells. On day 23 after tumor inoculation, the proximal and distal tumor volumes of mice in the ADU-S100/doxorubicin in situ vaccine combined with anti-mouse CD8α (clone 53-6.7) mAb or isotype control treatment group were measured, the percentages of CD8 + T cells and CD8 + CD11c + DC in the spleen of tumor-bearing mice in these two groups were detected by flow cytometry, and the infiltration of CD8 + T cells in the tumor tissues from these two groups was detected by immunohistochemistry (IHC) staining. Results:On days 11, 14, 17, 20 and 23 after tumor inoculation, the proximal and distal tumor volumes of mice in each treated group were lower than those in the untreated group (all P < 0.05). The proportions of CD11c + DC in the spleen of the untreated group, ADU-S100 in situ vaccine treatment group, doxorubicin in situ vaccine treatment group and ADU-S100/doxorubicin in situ vaccine treatment group were (4.92±0.63)%, (7.54±0.84)%, (7.45±0.86)% and (11.63±0.85)%, respectively, and the difference was statistically significant ( F = 72.30, P < 0.001); the proportions of CD8 + CD11c + DC were (1.36±0.34)%, (4.02±0.43)%, (4.22±0.61)% and (6.11±0.73)%, respectively, and the difference was statistically significant ( F = 76.09, P < 0.001); the proportions of CD80 + CD11c + DC were (0.51±0.24)%, (1.69±0.23)%, (1.82±0.25)% and (4.09±0.39)%, respectively, and the difference was statistically significant ( F = 167.40, P < 0.001). The CTL responses and the proportion of EdU + cells and TNF-α + cells in CD8 + T cells in each in situ vaccine treatment group were higher than those in the untreated group (all P < 0.05). Furthermore, the enhanced CTL responses and the increased proportion of EdU + cells and TNF-α + cells in CD8 + T cells were observed in the ADU-S100/doxorubicin in situ vaccine treatment group as compared to the ADU-S100 in situ vaccine treatment group and doxorubicin in situ vaccine treatment group (all P < 0.05). The proportions of CD8 + T cells and CD8 + CD11c + DC in the spleen of mice treated with ADU-S100/doxorubicin in situ vaccine and anti-mouse CD8α mAb were lower than those in ADU-S100/doxorubicin in situ vaccine and isotype control group (both P < 0.05) and both proximal and distal tumor volumes of mice treated with ADU-S100/doxorubicin in situ vaccine and anti-mouse CD8α mAb were larger than those in ADU-S100/doxorubicin in situ vaccine and isotype control group (both P < 0.05). Conclusions:ADU-S100/doxorubicin in situ vaccine can induce profound regression of proximal tumors in bilateral murine subcutaneous B-cell lymphoma model and generate systemic immune responses capable of partially inhibiting distant tumor growth, and the antitumor efficacy of ADU-S100/doxorubicin in situ vaccine may require CD8 + CD11c + DC-mediated CD8 + T cell immune responses.
2.Research on the focus of ethical governance in the field of artificial intelligence in medicine
Zhuojun YE ; Yanli SHEN ; Xiao JIANG ; Huiyun YUAN
Chinese Medical Ethics 2024;37(1):39-44
Objective:To explore the focus of ethical governance in the field of artificial intelligence(Al)in medicine.Methods:By comprehensively reviewing relevant literature to compare the relevant laws and regulations of the field of AI in medicine between China and foreign countries,analyze the governance focus of potential ethical issues,and propose the corresponding governance strategies.Results:At present,the laws,regulations,and regulatory systems related to the field of AI in medicine in China need to be improved.The emphasis of ethical governance should focus on core issues such as protecting privacy rights,ensuring the transparency and fairness of algorithms,clarifying the demarcation and allocation of responsibilities,and clarifying public perceptions and attitudes.Conclusion:The government and all sectors of society should actively learn from international legislative experience,and build an omnidirectional and multi-level ethical governance system from the aspects of policy formulation,legal framework,scientific research,and technological research and development by strengthening top-level design,improving policies and regulations,attaching importance to public feedback,and strengthening interdisciplinary cooperation.
3.Establishment of a Prediction Model for Menstruation after the First Course of Hormone Replacement Therapy in Premature Ovarian Insufficiency Patients af-ter Allogeneic Hematopoietic Stem Cell Transplantation
Ning ZHANG ; Weizeyu LIU ; Jingjing ZHANG ; Xiaoyu LI ; Fangcan SUN ; Huiyun CHEN ; Xiao MA ; Bing HAN
Journal of Practical Obstetrics and Gynecology 2024;40(7):577-581
Objective:To establish a menstrual prediction model after the first course of hormone replacement therapy(HRT)in premature ovarian insufficiency(POI)patients after allogeneic hematopoietic stem cell transplan-tation(allo-HSCT),and to provide certain reference value for formulating HRT plans.Methods:The retrospective analysis recruited 154 POI patients after allo-HSCT in the First Affiliated Hospital of Soochow University from Jan-uary 2017 to October 2022.They were divided into ideal menstruation group(n=116)and unideal menstruation group(n=38)according to menstruation after the first course of HRT.Basic characteristics and clinical data were compared in single-factor analysis to select predictive factors.Patients were randomly divided into training set and test set.The menstrual prediction model was developed based on random forest algorithm on the training set and the prediction efficiency was verified by the test set.Finally,we made a user interaction interface and deployed to the server for sharing.Results:The single-factor analysis suggested statistic difference of age of visit,body mass index(BMI),gravidity,parity,hematologic diseases,transplantation age,donor gender,follicle-stimulating hormone(FSH),Luteinizing Hormone(LH),lumbar bone mineral density(BMD)and HRT plan(P<0.05).According to mean decrease accuracy,the predictive factors included visit age,transplantation age,BMI,FSH,HRT plans,gravidity and parity.After the initial establishment of the random forest model,we improved it by adjusting ntree to 500,mtry to 6 and training/test set division to 80%/20% .We also used tenfold cross validation to reduce over-fitting.The area under curve(AUC)of the final constructed menstrual prediction model was 0.768,a sensitiv-ity of 0.695 and a specificity of 0.735.Conclusions:This study successfully established a menstrual prediction model for amenorrhea patients after allo-HSCT when finished the first course of HRT.The false positive rate was low,suggesting that if the prediction result of the model is non-ideal menstruation,we may consider adjusting HRT plans to promote menstruation in time.
4.Establishment of a Prediction Model for Menstruation after the First Course of Hormone Replacement Therapy in Premature Ovarian Insufficiency Patients af-ter Allogeneic Hematopoietic Stem Cell Transplantation
Ning ZHANG ; Weizeyu LIU ; Jingjing ZHANG ; Xiaoyu LI ; Fangcan SUN ; Huiyun CHEN ; Xiao MA ; Bing HAN
Journal of Practical Obstetrics and Gynecology 2024;40(7):577-581
Objective:To establish a menstrual prediction model after the first course of hormone replacement therapy(HRT)in premature ovarian insufficiency(POI)patients after allogeneic hematopoietic stem cell transplan-tation(allo-HSCT),and to provide certain reference value for formulating HRT plans.Methods:The retrospective analysis recruited 154 POI patients after allo-HSCT in the First Affiliated Hospital of Soochow University from Jan-uary 2017 to October 2022.They were divided into ideal menstruation group(n=116)and unideal menstruation group(n=38)according to menstruation after the first course of HRT.Basic characteristics and clinical data were compared in single-factor analysis to select predictive factors.Patients were randomly divided into training set and test set.The menstrual prediction model was developed based on random forest algorithm on the training set and the prediction efficiency was verified by the test set.Finally,we made a user interaction interface and deployed to the server for sharing.Results:The single-factor analysis suggested statistic difference of age of visit,body mass index(BMI),gravidity,parity,hematologic diseases,transplantation age,donor gender,follicle-stimulating hormone(FSH),Luteinizing Hormone(LH),lumbar bone mineral density(BMD)and HRT plan(P<0.05).According to mean decrease accuracy,the predictive factors included visit age,transplantation age,BMI,FSH,HRT plans,gravidity and parity.After the initial establishment of the random forest model,we improved it by adjusting ntree to 500,mtry to 6 and training/test set division to 80%/20% .We also used tenfold cross validation to reduce over-fitting.The area under curve(AUC)of the final constructed menstrual prediction model was 0.768,a sensitiv-ity of 0.695 and a specificity of 0.735.Conclusions:This study successfully established a menstrual prediction model for amenorrhea patients after allo-HSCT when finished the first course of HRT.The false positive rate was low,suggesting that if the prediction result of the model is non-ideal menstruation,we may consider adjusting HRT plans to promote menstruation in time.
5.Establishment of a Prediction Model for Menstruation after the First Course of Hormone Replacement Therapy in Premature Ovarian Insufficiency Patients af-ter Allogeneic Hematopoietic Stem Cell Transplantation
Ning ZHANG ; Weizeyu LIU ; Jingjing ZHANG ; Xiaoyu LI ; Fangcan SUN ; Huiyun CHEN ; Xiao MA ; Bing HAN
Journal of Practical Obstetrics and Gynecology 2024;40(7):577-581
Objective:To establish a menstrual prediction model after the first course of hormone replacement therapy(HRT)in premature ovarian insufficiency(POI)patients after allogeneic hematopoietic stem cell transplan-tation(allo-HSCT),and to provide certain reference value for formulating HRT plans.Methods:The retrospective analysis recruited 154 POI patients after allo-HSCT in the First Affiliated Hospital of Soochow University from Jan-uary 2017 to October 2022.They were divided into ideal menstruation group(n=116)and unideal menstruation group(n=38)according to menstruation after the first course of HRT.Basic characteristics and clinical data were compared in single-factor analysis to select predictive factors.Patients were randomly divided into training set and test set.The menstrual prediction model was developed based on random forest algorithm on the training set and the prediction efficiency was verified by the test set.Finally,we made a user interaction interface and deployed to the server for sharing.Results:The single-factor analysis suggested statistic difference of age of visit,body mass index(BMI),gravidity,parity,hematologic diseases,transplantation age,donor gender,follicle-stimulating hormone(FSH),Luteinizing Hormone(LH),lumbar bone mineral density(BMD)and HRT plan(P<0.05).According to mean decrease accuracy,the predictive factors included visit age,transplantation age,BMI,FSH,HRT plans,gravidity and parity.After the initial establishment of the random forest model,we improved it by adjusting ntree to 500,mtry to 6 and training/test set division to 80%/20% .We also used tenfold cross validation to reduce over-fitting.The area under curve(AUC)of the final constructed menstrual prediction model was 0.768,a sensitiv-ity of 0.695 and a specificity of 0.735.Conclusions:This study successfully established a menstrual prediction model for amenorrhea patients after allo-HSCT when finished the first course of HRT.The false positive rate was low,suggesting that if the prediction result of the model is non-ideal menstruation,we may consider adjusting HRT plans to promote menstruation in time.
6.Establishment of a Prediction Model for Menstruation after the First Course of Hormone Replacement Therapy in Premature Ovarian Insufficiency Patients af-ter Allogeneic Hematopoietic Stem Cell Transplantation
Ning ZHANG ; Weizeyu LIU ; Jingjing ZHANG ; Xiaoyu LI ; Fangcan SUN ; Huiyun CHEN ; Xiao MA ; Bing HAN
Journal of Practical Obstetrics and Gynecology 2024;40(7):577-581
Objective:To establish a menstrual prediction model after the first course of hormone replacement therapy(HRT)in premature ovarian insufficiency(POI)patients after allogeneic hematopoietic stem cell transplan-tation(allo-HSCT),and to provide certain reference value for formulating HRT plans.Methods:The retrospective analysis recruited 154 POI patients after allo-HSCT in the First Affiliated Hospital of Soochow University from Jan-uary 2017 to October 2022.They were divided into ideal menstruation group(n=116)and unideal menstruation group(n=38)according to menstruation after the first course of HRT.Basic characteristics and clinical data were compared in single-factor analysis to select predictive factors.Patients were randomly divided into training set and test set.The menstrual prediction model was developed based on random forest algorithm on the training set and the prediction efficiency was verified by the test set.Finally,we made a user interaction interface and deployed to the server for sharing.Results:The single-factor analysis suggested statistic difference of age of visit,body mass index(BMI),gravidity,parity,hematologic diseases,transplantation age,donor gender,follicle-stimulating hormone(FSH),Luteinizing Hormone(LH),lumbar bone mineral density(BMD)and HRT plan(P<0.05).According to mean decrease accuracy,the predictive factors included visit age,transplantation age,BMI,FSH,HRT plans,gravidity and parity.After the initial establishment of the random forest model,we improved it by adjusting ntree to 500,mtry to 6 and training/test set division to 80%/20% .We also used tenfold cross validation to reduce over-fitting.The area under curve(AUC)of the final constructed menstrual prediction model was 0.768,a sensitiv-ity of 0.695 and a specificity of 0.735.Conclusions:This study successfully established a menstrual prediction model for amenorrhea patients after allo-HSCT when finished the first course of HRT.The false positive rate was low,suggesting that if the prediction result of the model is non-ideal menstruation,we may consider adjusting HRT plans to promote menstruation in time.
7.Establishment of a Prediction Model for Menstruation after the First Course of Hormone Replacement Therapy in Premature Ovarian Insufficiency Patients af-ter Allogeneic Hematopoietic Stem Cell Transplantation
Ning ZHANG ; Weizeyu LIU ; Jingjing ZHANG ; Xiaoyu LI ; Fangcan SUN ; Huiyun CHEN ; Xiao MA ; Bing HAN
Journal of Practical Obstetrics and Gynecology 2024;40(7):577-581
Objective:To establish a menstrual prediction model after the first course of hormone replacement therapy(HRT)in premature ovarian insufficiency(POI)patients after allogeneic hematopoietic stem cell transplan-tation(allo-HSCT),and to provide certain reference value for formulating HRT plans.Methods:The retrospective analysis recruited 154 POI patients after allo-HSCT in the First Affiliated Hospital of Soochow University from Jan-uary 2017 to October 2022.They were divided into ideal menstruation group(n=116)and unideal menstruation group(n=38)according to menstruation after the first course of HRT.Basic characteristics and clinical data were compared in single-factor analysis to select predictive factors.Patients were randomly divided into training set and test set.The menstrual prediction model was developed based on random forest algorithm on the training set and the prediction efficiency was verified by the test set.Finally,we made a user interaction interface and deployed to the server for sharing.Results:The single-factor analysis suggested statistic difference of age of visit,body mass index(BMI),gravidity,parity,hematologic diseases,transplantation age,donor gender,follicle-stimulating hormone(FSH),Luteinizing Hormone(LH),lumbar bone mineral density(BMD)and HRT plan(P<0.05).According to mean decrease accuracy,the predictive factors included visit age,transplantation age,BMI,FSH,HRT plans,gravidity and parity.After the initial establishment of the random forest model,we improved it by adjusting ntree to 500,mtry to 6 and training/test set division to 80%/20% .We also used tenfold cross validation to reduce over-fitting.The area under curve(AUC)of the final constructed menstrual prediction model was 0.768,a sensitiv-ity of 0.695 and a specificity of 0.735.Conclusions:This study successfully established a menstrual prediction model for amenorrhea patients after allo-HSCT when finished the first course of HRT.The false positive rate was low,suggesting that if the prediction result of the model is non-ideal menstruation,we may consider adjusting HRT plans to promote menstruation in time.
8.Establishment of a Prediction Model for Menstruation after the First Course of Hormone Replacement Therapy in Premature Ovarian Insufficiency Patients af-ter Allogeneic Hematopoietic Stem Cell Transplantation
Ning ZHANG ; Weizeyu LIU ; Jingjing ZHANG ; Xiaoyu LI ; Fangcan SUN ; Huiyun CHEN ; Xiao MA ; Bing HAN
Journal of Practical Obstetrics and Gynecology 2024;40(7):577-581
Objective:To establish a menstrual prediction model after the first course of hormone replacement therapy(HRT)in premature ovarian insufficiency(POI)patients after allogeneic hematopoietic stem cell transplan-tation(allo-HSCT),and to provide certain reference value for formulating HRT plans.Methods:The retrospective analysis recruited 154 POI patients after allo-HSCT in the First Affiliated Hospital of Soochow University from Jan-uary 2017 to October 2022.They were divided into ideal menstruation group(n=116)and unideal menstruation group(n=38)according to menstruation after the first course of HRT.Basic characteristics and clinical data were compared in single-factor analysis to select predictive factors.Patients were randomly divided into training set and test set.The menstrual prediction model was developed based on random forest algorithm on the training set and the prediction efficiency was verified by the test set.Finally,we made a user interaction interface and deployed to the server for sharing.Results:The single-factor analysis suggested statistic difference of age of visit,body mass index(BMI),gravidity,parity,hematologic diseases,transplantation age,donor gender,follicle-stimulating hormone(FSH),Luteinizing Hormone(LH),lumbar bone mineral density(BMD)and HRT plan(P<0.05).According to mean decrease accuracy,the predictive factors included visit age,transplantation age,BMI,FSH,HRT plans,gravidity and parity.After the initial establishment of the random forest model,we improved it by adjusting ntree to 500,mtry to 6 and training/test set division to 80%/20% .We also used tenfold cross validation to reduce over-fitting.The area under curve(AUC)of the final constructed menstrual prediction model was 0.768,a sensitiv-ity of 0.695 and a specificity of 0.735.Conclusions:This study successfully established a menstrual prediction model for amenorrhea patients after allo-HSCT when finished the first course of HRT.The false positive rate was low,suggesting that if the prediction result of the model is non-ideal menstruation,we may consider adjusting HRT plans to promote menstruation in time.
9.Establishment of a Prediction Model for Menstruation after the First Course of Hormone Replacement Therapy in Premature Ovarian Insufficiency Patients af-ter Allogeneic Hematopoietic Stem Cell Transplantation
Ning ZHANG ; Weizeyu LIU ; Jingjing ZHANG ; Xiaoyu LI ; Fangcan SUN ; Huiyun CHEN ; Xiao MA ; Bing HAN
Journal of Practical Obstetrics and Gynecology 2024;40(7):577-581
Objective:To establish a menstrual prediction model after the first course of hormone replacement therapy(HRT)in premature ovarian insufficiency(POI)patients after allogeneic hematopoietic stem cell transplan-tation(allo-HSCT),and to provide certain reference value for formulating HRT plans.Methods:The retrospective analysis recruited 154 POI patients after allo-HSCT in the First Affiliated Hospital of Soochow University from Jan-uary 2017 to October 2022.They were divided into ideal menstruation group(n=116)and unideal menstruation group(n=38)according to menstruation after the first course of HRT.Basic characteristics and clinical data were compared in single-factor analysis to select predictive factors.Patients were randomly divided into training set and test set.The menstrual prediction model was developed based on random forest algorithm on the training set and the prediction efficiency was verified by the test set.Finally,we made a user interaction interface and deployed to the server for sharing.Results:The single-factor analysis suggested statistic difference of age of visit,body mass index(BMI),gravidity,parity,hematologic diseases,transplantation age,donor gender,follicle-stimulating hormone(FSH),Luteinizing Hormone(LH),lumbar bone mineral density(BMD)and HRT plan(P<0.05).According to mean decrease accuracy,the predictive factors included visit age,transplantation age,BMI,FSH,HRT plans,gravidity and parity.After the initial establishment of the random forest model,we improved it by adjusting ntree to 500,mtry to 6 and training/test set division to 80%/20% .We also used tenfold cross validation to reduce over-fitting.The area under curve(AUC)of the final constructed menstrual prediction model was 0.768,a sensitiv-ity of 0.695 and a specificity of 0.735.Conclusions:This study successfully established a menstrual prediction model for amenorrhea patients after allo-HSCT when finished the first course of HRT.The false positive rate was low,suggesting that if the prediction result of the model is non-ideal menstruation,we may consider adjusting HRT plans to promote menstruation in time.
10.Establishment of a Prediction Model for Menstruation after the First Course of Hormone Replacement Therapy in Premature Ovarian Insufficiency Patients af-ter Allogeneic Hematopoietic Stem Cell Transplantation
Ning ZHANG ; Weizeyu LIU ; Jingjing ZHANG ; Xiaoyu LI ; Fangcan SUN ; Huiyun CHEN ; Xiao MA ; Bing HAN
Journal of Practical Obstetrics and Gynecology 2024;40(7):577-581
Objective:To establish a menstrual prediction model after the first course of hormone replacement therapy(HRT)in premature ovarian insufficiency(POI)patients after allogeneic hematopoietic stem cell transplan-tation(allo-HSCT),and to provide certain reference value for formulating HRT plans.Methods:The retrospective analysis recruited 154 POI patients after allo-HSCT in the First Affiliated Hospital of Soochow University from Jan-uary 2017 to October 2022.They were divided into ideal menstruation group(n=116)and unideal menstruation group(n=38)according to menstruation after the first course of HRT.Basic characteristics and clinical data were compared in single-factor analysis to select predictive factors.Patients were randomly divided into training set and test set.The menstrual prediction model was developed based on random forest algorithm on the training set and the prediction efficiency was verified by the test set.Finally,we made a user interaction interface and deployed to the server for sharing.Results:The single-factor analysis suggested statistic difference of age of visit,body mass index(BMI),gravidity,parity,hematologic diseases,transplantation age,donor gender,follicle-stimulating hormone(FSH),Luteinizing Hormone(LH),lumbar bone mineral density(BMD)and HRT plan(P<0.05).According to mean decrease accuracy,the predictive factors included visit age,transplantation age,BMI,FSH,HRT plans,gravidity and parity.After the initial establishment of the random forest model,we improved it by adjusting ntree to 500,mtry to 6 and training/test set division to 80%/20% .We also used tenfold cross validation to reduce over-fitting.The area under curve(AUC)of the final constructed menstrual prediction model was 0.768,a sensitiv-ity of 0.695 and a specificity of 0.735.Conclusions:This study successfully established a menstrual prediction model for amenorrhea patients after allo-HSCT when finished the first course of HRT.The false positive rate was low,suggesting that if the prediction result of the model is non-ideal menstruation,we may consider adjusting HRT plans to promote menstruation in time.

Result Analysis
Print
Save
E-mail