1.Extracellular Ubiquitin Enhances Autophagy and Inhibits Mitochondrial Apoptosis Pathway to Protect Neurons Against Spinal Cord Ischemic Injury via CXCR4
Hao FENG ; Dehui CHEN ; Huina CHEN ; Dingwei WU ; Dandan WANG ; Zhengxi YU ; Linquan ZHOU ; Zhenyu WANG ; Wenge LIU
Neurospine 2025;22(1):157-172
Objective:
Neuronal apoptosis is considered to be a critical process in spinal cord injury (SCI). Despite growing evidence of the antiapoptotic, anti-inflammatory, and modulation of ischemic injury tolerance effects of extracellular ubiquitin (eUb), existing studies have paid less attention to the impact of eUb in neurological injury disorders, particularly in SCI. This study aimed to investigate whether eUb can play a protective role in neurons, both in vitro and in vivo, and explores the underlying mechanisms.
Methods:
By utilizing an oxygen glucose deprivation cellular model and a SCI rat model, we firstly investigated the therapeutic effects of eUb on SCI and further explored its effects on neuronal autophagy and mitochondria-dependent apoptosis-related indicators, as well as the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mechanical target of rapamycin (mTOR) signaling pathway.
Results:
In the SCI models both in vivo and in vitro, early intervention with eUb enhanced neuronal autophagy and inhibited mitochondrial apoptotic pathways, significantly mitigating SCI. Further studies had shown that this protective effect of eUb was mediated through its receptor, CXC chemokine receptor type 4 (CXCR4). Additionally, eUb-enhanced autophagy and antiapoptotic effects were possibly associated with inhibiting the PI3K/Akt/mTOR pathway.
Conclusion
In summary, the study demonstrates that early eUb intervention can enhance autophagy and inhibit mitochondrial apoptotic pathways via CXCR4, protecting neurons and promoting SCI repair.
2.Extracellular Ubiquitin Enhances Autophagy and Inhibits Mitochondrial Apoptosis Pathway to Protect Neurons Against Spinal Cord Ischemic Injury via CXCR4
Hao FENG ; Dehui CHEN ; Huina CHEN ; Dingwei WU ; Dandan WANG ; Zhengxi YU ; Linquan ZHOU ; Zhenyu WANG ; Wenge LIU
Neurospine 2025;22(1):157-172
Objective:
Neuronal apoptosis is considered to be a critical process in spinal cord injury (SCI). Despite growing evidence of the antiapoptotic, anti-inflammatory, and modulation of ischemic injury tolerance effects of extracellular ubiquitin (eUb), existing studies have paid less attention to the impact of eUb in neurological injury disorders, particularly in SCI. This study aimed to investigate whether eUb can play a protective role in neurons, both in vitro and in vivo, and explores the underlying mechanisms.
Methods:
By utilizing an oxygen glucose deprivation cellular model and a SCI rat model, we firstly investigated the therapeutic effects of eUb on SCI and further explored its effects on neuronal autophagy and mitochondria-dependent apoptosis-related indicators, as well as the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mechanical target of rapamycin (mTOR) signaling pathway.
Results:
In the SCI models both in vivo and in vitro, early intervention with eUb enhanced neuronal autophagy and inhibited mitochondrial apoptotic pathways, significantly mitigating SCI. Further studies had shown that this protective effect of eUb was mediated through its receptor, CXC chemokine receptor type 4 (CXCR4). Additionally, eUb-enhanced autophagy and antiapoptotic effects were possibly associated with inhibiting the PI3K/Akt/mTOR pathway.
Conclusion
In summary, the study demonstrates that early eUb intervention can enhance autophagy and inhibit mitochondrial apoptotic pathways via CXCR4, protecting neurons and promoting SCI repair.
3.Extracellular Ubiquitin Enhances Autophagy and Inhibits Mitochondrial Apoptosis Pathway to Protect Neurons Against Spinal Cord Ischemic Injury via CXCR4
Hao FENG ; Dehui CHEN ; Huina CHEN ; Dingwei WU ; Dandan WANG ; Zhengxi YU ; Linquan ZHOU ; Zhenyu WANG ; Wenge LIU
Neurospine 2025;22(1):157-172
Objective:
Neuronal apoptosis is considered to be a critical process in spinal cord injury (SCI). Despite growing evidence of the antiapoptotic, anti-inflammatory, and modulation of ischemic injury tolerance effects of extracellular ubiquitin (eUb), existing studies have paid less attention to the impact of eUb in neurological injury disorders, particularly in SCI. This study aimed to investigate whether eUb can play a protective role in neurons, both in vitro and in vivo, and explores the underlying mechanisms.
Methods:
By utilizing an oxygen glucose deprivation cellular model and a SCI rat model, we firstly investigated the therapeutic effects of eUb on SCI and further explored its effects on neuronal autophagy and mitochondria-dependent apoptosis-related indicators, as well as the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mechanical target of rapamycin (mTOR) signaling pathway.
Results:
In the SCI models both in vivo and in vitro, early intervention with eUb enhanced neuronal autophagy and inhibited mitochondrial apoptotic pathways, significantly mitigating SCI. Further studies had shown that this protective effect of eUb was mediated through its receptor, CXC chemokine receptor type 4 (CXCR4). Additionally, eUb-enhanced autophagy and antiapoptotic effects were possibly associated with inhibiting the PI3K/Akt/mTOR pathway.
Conclusion
In summary, the study demonstrates that early eUb intervention can enhance autophagy and inhibit mitochondrial apoptotic pathways via CXCR4, protecting neurons and promoting SCI repair.
4.Extracellular Ubiquitin Enhances Autophagy and Inhibits Mitochondrial Apoptosis Pathway to Protect Neurons Against Spinal Cord Ischemic Injury via CXCR4
Hao FENG ; Dehui CHEN ; Huina CHEN ; Dingwei WU ; Dandan WANG ; Zhengxi YU ; Linquan ZHOU ; Zhenyu WANG ; Wenge LIU
Neurospine 2025;22(1):157-172
Objective:
Neuronal apoptosis is considered to be a critical process in spinal cord injury (SCI). Despite growing evidence of the antiapoptotic, anti-inflammatory, and modulation of ischemic injury tolerance effects of extracellular ubiquitin (eUb), existing studies have paid less attention to the impact of eUb in neurological injury disorders, particularly in SCI. This study aimed to investigate whether eUb can play a protective role in neurons, both in vitro and in vivo, and explores the underlying mechanisms.
Methods:
By utilizing an oxygen glucose deprivation cellular model and a SCI rat model, we firstly investigated the therapeutic effects of eUb on SCI and further explored its effects on neuronal autophagy and mitochondria-dependent apoptosis-related indicators, as well as the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mechanical target of rapamycin (mTOR) signaling pathway.
Results:
In the SCI models both in vivo and in vitro, early intervention with eUb enhanced neuronal autophagy and inhibited mitochondrial apoptotic pathways, significantly mitigating SCI. Further studies had shown that this protective effect of eUb was mediated through its receptor, CXC chemokine receptor type 4 (CXCR4). Additionally, eUb-enhanced autophagy and antiapoptotic effects were possibly associated with inhibiting the PI3K/Akt/mTOR pathway.
Conclusion
In summary, the study demonstrates that early eUb intervention can enhance autophagy and inhibit mitochondrial apoptotic pathways via CXCR4, protecting neurons and promoting SCI repair.
5.Extracellular Ubiquitin Enhances Autophagy and Inhibits Mitochondrial Apoptosis Pathway to Protect Neurons Against Spinal Cord Ischemic Injury via CXCR4
Hao FENG ; Dehui CHEN ; Huina CHEN ; Dingwei WU ; Dandan WANG ; Zhengxi YU ; Linquan ZHOU ; Zhenyu WANG ; Wenge LIU
Neurospine 2025;22(1):157-172
Objective:
Neuronal apoptosis is considered to be a critical process in spinal cord injury (SCI). Despite growing evidence of the antiapoptotic, anti-inflammatory, and modulation of ischemic injury tolerance effects of extracellular ubiquitin (eUb), existing studies have paid less attention to the impact of eUb in neurological injury disorders, particularly in SCI. This study aimed to investigate whether eUb can play a protective role in neurons, both in vitro and in vivo, and explores the underlying mechanisms.
Methods:
By utilizing an oxygen glucose deprivation cellular model and a SCI rat model, we firstly investigated the therapeutic effects of eUb on SCI and further explored its effects on neuronal autophagy and mitochondria-dependent apoptosis-related indicators, as well as the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mechanical target of rapamycin (mTOR) signaling pathway.
Results:
In the SCI models both in vivo and in vitro, early intervention with eUb enhanced neuronal autophagy and inhibited mitochondrial apoptotic pathways, significantly mitigating SCI. Further studies had shown that this protective effect of eUb was mediated through its receptor, CXC chemokine receptor type 4 (CXCR4). Additionally, eUb-enhanced autophagy and antiapoptotic effects were possibly associated with inhibiting the PI3K/Akt/mTOR pathway.
Conclusion
In summary, the study demonstrates that early eUb intervention can enhance autophagy and inhibit mitochondrial apoptotic pathways via CXCR4, protecting neurons and promoting SCI repair.
6.Establishment and validation of a risk prediction model for 90-day mortality in patients with acute-on-chronic liver failure based on sarcopenia
Huina CHEN ; Ming KONG ; Siqi ZHANG ; Manman XU ; Yu CHEN ; Zhongping DUAN
Journal of Clinical Hepatology 2025;41(6):1135-1142
ObjectiveTo establish and validate a new prediction model for the risk of death in patients with acute-on-chronic liver failure (ACLF) based on sarcopenia and other clinical indicators, and to improve the accuracy of prognostic assessment for ACLF patients. MethodsA total of 380 patients with ACLF who were admitted to Beijing YouAn Hospital, Capital Medical University, from January 2019 to January 2022 were enrolled, and they were divided into training group with 228 patients and testing group with 152 patients in a ratio of 6∶4 using the stratified random sampling method. For the training group, CT images were used to measure the cross-sectional area of the skeletal muscle at the third lumbar vertebra (L3), and L3 skeletal muscle index (L3-SMI) was calculated. Sarcopenia was diagnosed based on the previously established L3-SMI reference values for healthy adults in northern China. Univariate and multivariable Cox regression analyses were used to establish a sarcopenia-ACLF model which integrated sarcopenia and clinical risk factors, and a nomogram was developed for presentation. The area under the ROC curve (AUC) was used to assess the predictive performance of the model, the calibration curve was used to assess the degree of calibration, and a decision curve analysis was used to investigate the clinical application value of the model. The independent-samples t test or the Mann-Whitney U test was used for comparison of continuous data between two groups, and the chi-square test was used for comparison of categorical data between two groups. The Kaplan-Meier method was used to plot survival curves, and the Log-rank test was used for comparison between groups. The DeLong test was used for comparison of AUC between different models. ResultsThe multivariate Cox regression analysis showed that sarcopenia (hazard ratio [HR]=1.962, 95% confidence interval [CI]: 1.185 — 3.250, P=0.009), total bilirubin (HR=1.003, 95%CI: 1.002 — 1.005, P<0.001), international normalized ratio (HR=1.997, 95%CI: 1.674 — 2.382, P<0.001), and lactic acid (HR=1.382, 95%CI: 1.170 — 1.632, P<0.001) were included in the sarcopenia-ACLF model. In the training cohort, the sarcopenia-ACLF model had a larger AUC than MELD-Na score in predicting 90-day mortality in patients with ACLF (0.80 vs 0.73, Z=1.97, P=0.049). In the test cohort, the sarcopenia-ACLF model had a significantly larger AUC than MELD score (0.79 vs 0.69, Z=2.70, P=0.007) and MELD-Na score (0.79 vs 0.68, Z=2.92, P=0.004). The calibration curve showed that the model had good calibration ability, with a relatively good consistency between the predicted risk of mortality and the observed results. The DCA results showed that within a reasonable range of threshold probabilities, the sarcopenia-ACLF model showed a greater net benefit than MELD and MELD-Na scores in both the training cohort and the test cohort. ConclusionThe sarcopenia-ACLF model developed in this study provides a more accurate tool for predicting the risk of 90-day mortality in ACLF patients, which provides support for clinical decision-making and helps to optimize treatment strategies.
7.Latent profile analysis of return-to-work self-efficacy of postoperative patients with thyroid cancer
Xiaoxia TANG ; Xiaolin YI ; Mei WANG ; Rui CHEN ; Xumin ZHOU ; Huina MAO
Chinese Journal of Practical Nursing 2024;40(11):831-839
Objective:To explore the potential categories of return-to-work self-efficacy of postoperative patients with thyroid cancer and analyze the influencing factors, so as to provide theoretical basis for implementing precise interventions of occupational rehabilitation.Methods:This was a cross-sectional study. A convenient sampling method was used to select 257 postoperative patients with thyroid cancer in Zhujiang Hospital of Southern Medical University from May 2022 to July 2023. The General Information Questionnaire, Return-To-Work Self-Efficacy Questionnaire and Cancer Fatigue Scale were used for investigation. Latent profile analysis was used to explore the potential categories of return-to-work self-efficacy of postoperative patients with thyroid cancer. Logistic regression and decision tree were used to analyze the influencing factors of different potential categories.Results:Finally, 250 postoperative patients with thyroid cancer were included. There were 76 males and 174 females, aged (37.91 ± 8.04) years old. The return-to-work self-efficacy of postoperative patients with thyroid cancer was divided into 2 potential categories: low return-to-work self-efficacy group (72.0%, 180/250) and high return-to-work self-efficacy group (28.0%, 70/250). Logistic regression showed education, thyrotropin suppressive therapy, cancer-related fatigue and age were factors influencing the potential categories of return-to-work self-efficacy of postoperative patients with thyroid cancer ( OR values were 0.951 - 19.820, all P<0.05). Decision tree model showed education level and cancer-related fatigue were the most important factors ( χ2 = 31.40, 16.95, both P<0.05). Conclusions:There were two potential categories of return-to-work self-efficacy of postoperative patients with thyroid cancer. Most of them had low levels of return-to-work self-efficacy. Health care professionals should focus on patients who are less educated and having cancer-related fatigue, meanwhile, should not ignore patients who are substandard thyrotropin suppressive therapy, and older. Implement precise interventions of occupational rehabilitation to improve the return-to-work self-efficacy of postoperative patients with thyroid cancer so as to help them reintegrate into society.
8.Meta-analysis on Xixian Tongshuan Preparation Combined with Conventional Western Medicine in the Treatment of Acute Ischemic Stroke
Yishan CHEN ; Tianyuan WANG ; Jing HU ; Huina ZHANG ; Hong WANG ; Qian LIU ; Bo LI
Chinese Journal of Information on Traditional Chinese Medicine 2024;31(4):44-49
Objective To systematically evaluate the efficacy of Xixian Tongshuan Capsules/Pills in the treatment of acute ischemic stroke(AIS).Methods Literature about Xixian Tongshuan Preparation combined with conventional Western medicine for the treatment of AIS was retrieved from CNKI,SinoMed,VIP,Wanfang Data,PubMed,Medline,Embase,Cochrane Library and Web of Science from establishment of the databases to February 28,2023.Meta-analysis was conducted for the studies that could be quantitatively analyzed.The effective rate and response indicators were combined.Results A total of 7 articles were included for Meta-analysis.Results showed that there was statistical difference in the effective rate(RR=0.34,95%CI[0.23,0.51],P<0.01),NIHSS score(MD=-2.90,95%CI[-3.74,-2.06],P<0.01),BI score(MD=-10.08,95%CI[-13.47,-6.68],P<0.01),FIB(MD=-1.18,95%CI[-1.59,-0.77],P<0.01)of Xixian Tongshuan Preparation combined with conventional Western medicine for the treatment of AIS.There was no statistical difference in IL-6(MD=-15.4,95%CI[-33.3,2.49],P=0.09).There was no statistical difference in the effects of different dosage forms and treatment courses on the effective rate and NIHSS score.Conclusion The combination of Xixian Tongshuan Capsules/Pills could better improve the NIHSS and BI scores of patients with AIS,recovery the neurological function,and reduce the risk of blood hypercoagulability by reducing FIB content,with good safety.
9.Preparation,characterization,in vitro drug release property and cytotoxicity of Periplaneta americana extract-loaded spider fibroin membrane
Huina ZENG ; Chen QING ; Nannan XUE ; Zizhong YANG ; Xiumei WU ; Hewei LI ; Yu ZHAO ; Qiyan LI
China Pharmacy 2023;34(2):168-172
OBJECTIVE To prepare spider fibroin membrane loaded with Periplaneta americana extract, and investigate its characterization, in vitro drug release property and cytotoxicity. METHODS Using natural spider silk collected from Chilobrachys guangxiensis as raw material, P. americana extract as model drug, the drug-loaded spider fibroin membrane (hereinafter referred to as drug-loaded membrane) was prepared by solvent casting method. The material matrix spider fibroin membrane without P. americana extract (hereinafter referred to as blank membrane) was prepared with same method. The membrane structure was characterized by static water contact angle, Fourier infrared chromatography, X-ray diffraction and scanning electron microscopy from different angles; drug release characteristics in artificial saliva were simulated in vitro to evaluate the drug sustained-release performance. MTT assay was adopted to validate the cytotoxicity of drug-loaded membrane. RESULTS The drug-loaded membrane was prepared, and the static water contact angle was less than 90°, which was less than that of blank membrane. The drug-loaded membrane showed the characteristic absorption peak to polypeptide of P. americana extract at 1 500-1 700 cm-1. X-ray diffraction and scanning electron microscopy also proved that the drug was successfully loaded into the pellicle. The release time of the pellicle in artificial saliva was more than 200 min. The MTT test results showed that the cell proliferation rates of blank membrane and drug-loaded membrane were 84.6% and 79.4% (both greater than 70%), respectively, without significant potential cytotoxicity. CONCLUSIONS Drug-loaded membrane prepared with natural spider silk has a certain sustained-release effect in artificial saliva, which can be further developed as a drug sustained-release carrier with excellent biological characteristics and biocompatibility.
10.Acute-on-chronic liver failure: Features and prognosis of a new clinical classification system based on onset manifestations
Yu WU ; Jinling DONG ; Manman XU ; Huina CHEN ; Huaibin ZOU ; Li BAI ; Yu CHEN
Journal of Clinical Hepatology 2023;39(10):2375-2382
ObjectiveTo investigate the characteristics of intrahepatic and extrahepatic organ failure at the onset of acute-on-chronic liver failure(ACLF), to explore the features of a new clinical classification system of ACLF, and to provide a basis for the diagnosis, treatment, prognostic analysis of the disease. MethodsA retrospective analysis was performed for the clinical data of the patients who were hospitalized Beijing YouAn Hospital, Capital Medical University, from January 2015 to October 2022 and were diagnosed with ACLF for the first time. According to the conditions of intrahepatic and extrahepatic organ failure at disease onset, they were classified into type Ⅰ ACLF and type Ⅱ ACLF. Type Ⅰ ACLF referred to liver failure on the basis of chronic liver diseases, and type Ⅱ ACLF referred to acute decompensation of chronic liver diseases combined with multiple organ failure. The clinical features of patients with type Ⅰ or type Ⅱ ACLF were analyzed, and the receiver operating characteristic (ROC) curve was used to assess the value of MELD, MELD-Na, and CLIF-C ACLF scoring system in predicting the 90-day prognosis of ACLF patients with type Ⅰ or type Ⅱ ACLF. The independent-samples t test was used for comparison of normally distributed continuous data between two groups, and the Wilcoxon rank-sum test was used for comparison of non-normally distributed continuous data between two groups; the chi-square test or the Fisher’s exact test was used for comparison of categorical data between two groups. ResultsA total of 582 patients with ACLF were enrolled, among whom there were 535 patients with type Ⅰ ACLF and 47 patients with type Ⅱ ACLF. Hepatitis B and alcoholic liver disease were the main causes in both groups, with no significant difference between the two groups (P>0.05). Chronic non-cirrhotic liver disease (28.2%) and compensated liver cirrhosis (56.8%) were the main underlying liver diseases in type Ⅰ ACLF, while compensated liver cirrhosis (34.0%) and decompensated liver cirrhosis (61.7%) were the main underlying liver diseases in type Ⅱ ACLF, and there was no significant difference in underlying liver diseases between the patients with type Ⅰ ACLF and those with type Ⅱ ACLF (P<0.001). The patients with type Ⅱ ACLF had significantly higher median MELD score, MELD-Na score, and CLIF-C ACLF score than those with type Ⅰ ACLF (all P<0.001). The patients with type Ⅱ ACLF had significantly higher 28- and 90-day mortality rates than those with type Ⅰ ACLF (38.3%/53.2% vs 15.5%/27.5%, P<0.001). For the patients with type Ⅰ ACLF who did not progress to multiple organ failure, the patients with an increase in MELD score accounted for 63.7% in the death group and 10.1% in the survival group (P<0.001), while for the patients with type Ⅰ ACLF who progressed to multiple organ failure, there was no significant difference in the change in MELD score between the survival group and the death group (P>0.05). In the patients with type Ⅰ ACLF, MELD score, MELD-Na score, and CLIF-C ACLF score had an area under the ROC curve (AUC) of 0.735, 0.737, and 0.740, respectively, with no significant difference between any two scores (all P>0.05). In the patients with type Ⅱ ACLF, CLIF-C ACLF score had a significantly higher AUC than MELD score (0.880 vs 0.560, P<0.01) and MELD-Na score (0.880 vs 0.513, P<0.01). ConclusionThere are differences in underlying liver diseases, clinical features, and prognosis between type Ⅰ and type Ⅱ ACLF, and different prognosis scoring systems have different emphases, which provide a basis for the new clinical classification system of ACLF from the perspective of evidence-based medicine.

Result Analysis
Print
Save
E-mail