1.Identification of core genes of osteoarthritis by bioinformatics
Xuekun ZHU ; Heng LIU ; Hui FENG ; Yunlong GAO ; Lei WEN ; Xiaosong CAI ; Ben ZHAO ; Min ZHONG
Chinese Journal of Tissue Engineering Research 2025;29(3):637-644
BACKGROUND:At present,osteoarthritis has become a major disease affecting the quality of life of the elderly,and the therapeutic effect is poor,often focusing on preventing the disease process,and the pathogenesis of osteoarthritis is still not fully understood.Bioinformatics analysis was carried out to explore the main pathogenesis of osteoarthritis and related mechanisms of gene coding regulation. OBJECTIVE:To screen core differential genes with a major role in osteoarthritis by gene expression profiling. METHODS:Datasets were downloaded from the Gene Expression Omnibus(GEO):GSE114007,GSE117999,and GSE129147.Differential genes in the GSE114007 and GSE117999 data collections were screened using R software,performing differential genes to weighted gene co-expression network analysis.The module genes most relevant to osteoarthritis were selected to perform protein interaction analysis.Candidate core genes were selected using the cytocape software.The candidate core genes were subsequently subjected to least absolute shrinkage and selection operator regression and COX analysis to identify the core genes with a key role in osteoarthritis.The accuracy of the core genes was validated using an external dataset,GSE129147. RESULTS AND CONCLUSION:(1)A total of 477 differential genes were identified,265 differential genes associated with osteoarthritis were obtained by weighted gene co-expression network analysis,and 8 candidate core genes were identified.The least absolute shrinkage and selection operator regression analysis finally yielded a differential gene ASPM with core value that was externally validated.(2)It is concluded that abnormal gene ASPM expression screened by bioinformatics plays a key central role in osteoarthritis.
2.Four new sesquiterpenoids from the roots of Atractylodes macrocephala
Gang-gang ZHOU ; Jia-jia LIU ; Ji-qiong WANG ; Hui LIU ; Zhi-Hua LIAO ; Guo-wei WANG ; Min CHEN ; Fan-cheng MENG
Acta Pharmaceutica Sinica 2025;60(1):179-184
The chemical constituents in dried roots of
3.Immunotherapy for Lung Cancer
Pei-Yang LI ; Feng-Qi LI ; Xiao-Jun HOU ; Xue-Ren LI ; Xin MU ; Hui-Min LIU ; Shou-Chun PENG
Progress in Biochemistry and Biophysics 2025;52(8):1998-2017
Lung cancer is the most common malignant tumor worldwide, ranking first in both incidence and mortality rates. According to the latest statistics from the International Agency for Research on Cancer (IARC), approximately 2.5 million new cases and around 1.8 million deaths from lung cancer occurred in 2022, placing a tremendous burden on global healthcare systems. The high mortality rate of lung cancer is closely linked to its subtle early symptoms, which often lead to diagnosis at advanced stages. This not only complicates treatment but also results in substantial economic losses. Current treatment options for lung cancer include surgery, radiotherapy, chemotherapy, targeted drug therapy, and immunotherapy. Among these, immunotherapy has emerged as the most groundbreaking advancement in recent years, owing to its unique antitumor mechanisms and impressive clinical benefits. Unlike traditional therapies such as radiotherapy and chemotherapy, immunotherapy activates or enhances the patient’s immune system to recognize and eliminate tumor cells. It offers advantages such as more durable therapeutic effects and relatively fewer toxic side effects. The main approaches to lung cancer immunotherapy include immune checkpoint inhibitors, tumor-specific antigen-targeted therapies, adoptive cell therapies, cancer vaccines, and oncolytic virus therapies. Among these, immune checkpoint inhibitors and tumor-specific antigen-targeted therapies have received approval from the U.S. Food and Drug Administration (FDA) for clinical use in lung cancer, significantly improving outcomes for patients with advanced non-small cell lung cancer. Although other immunotherapy strategies are still in clinical trials, they show great potential in improving treatment precision and efficacy. This article systematically reviews the latest research progress in lung cancer immunotherapy, including the development of novel immune checkpoint molecules, optimization of treatment strategies, identification of predictive biomarkers, and findings from recent clinical trials. It also discusses the current challenges in the field and outlines future directions, such as the development of next-generation immunotherapeutic agents, exploration of more effective combination regimens, and the establishment of precise efficacy prediction systems. The aim is to provide a valuable reference for the continued advancement of lung cancer immunotherapy.
4.Efficacy of Differential Dosage of Pueraria in Gegen Qinliantang on Acute Enteritis Model in Mice
Ruiying ZHANG ; Ping WANG ; Di ZHANG ; Hongfa CHENG ; Ying ZHANG ; Zhu DENG ; Hui FENG ; Min LIU ; Yang TANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):197-204
ObjectiveTo investigate whether there are differences in the efficacy of Gegen Qinliantang with different contents of Puerariae Lobatae Radix on the acute enteritis (AE) model mice and provide a scientific basis for the interpretation of Gegen Qinliantang in the treatment of "Xie Re Li". MethodsA total of 112 male BALB/c mice were randomly divided into a blank group,model group,single Puerariae Lobatae Radix group,non-Puerariae Lobatae Radix group,regular dose Gegen Qinliantang group (regular dose group),half-dose Puerariae Lobatae Radix group,and doubled-dose Puerariae Lobatae Radix group, with 16 mice in each group. Hematoxylin-eosin (HE) staining was used to observe the pathological changes of the colon tissue. Western blot was employed to detect the expression of ZO-1 (a protein in the tight junction) and Occludin in the colon tissue, as well as the changes of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). ResultsCompared with the blank group,the DAI scores of the mice in the model group were significantly higher (P<0.05),and the histopathological sections of their colon tissues showed mucosal damage,glandular atrophy,disordered arrangement,and a large number of inflammatory cells infiltration,and the expression of ZO-1 and Occludin proteins in their colon tissues was significantly down-regulated (P<0.05,P<0.01). The expression of inflammatory factors TNF-α and IL-1β was significantly up-regulated (P<0.05,P<0.01). Compared with the model group,the DAI scores of mice in all dosing groups decreased significantly (P<0.05),with the most significant effect in the regular dose group. After 7 d of drug administration,the regular dose group had the best impact on the repair of colonic mucosa in the AE mouse model. The regular dose group significantly down-regulated the expression of TNF-α (P<0.05) and significantly up-regulated the expression of ZO-1 protein (P<0.05). The doubled-dose Puerariae Lobatae Radix group significantly down-regulated the expression of IL-1β protein (P<0.01),and there was no significant difference between all dosing groups and the model group in terms of the expression of Occludin protein. After 14 d of drug administration,the best effect on the repair of colonic mucosa in the AE mouse model was observed in the doubled dose Puerariae Lobatae Radix group. All groups except the non-Puerariae Lobatae Radix group significantly down-regulated the expression of TNF-α (P<0.01). Meanwhile,the regular dose group and doubled-dose Puerariae Lobatae Radix group significantly elevated the expression level of Occludin protein (P<0.01). The doubled-dose Puerariae Lobatae Radix group also significantly inhibited the expression of IL-1β protein (P<0.05) and up-regulated ZO-1 protein expression (P<0.05). ConclusionGegen Qinliantang can reduce the pathological damage of colon tissue, protect the barrier function and structure of intestinal epithelial cells, and reduce the expression of inflammatory factors, so as to achieve the therapeutic effect of AE model mice. When comparing the therapeutic efficacy of Gegen Qinliantang containing different Gegen contents, Gegen Qinliantang with the proportion of the original formula of Zhongjing was the most effective in AE model mice.
5.Efficacy of Differential Dosage of Pueraria in Gegen Qinliantang on Acute Enteritis Model in Mice
Ruiying ZHANG ; Ping WANG ; Di ZHANG ; Hongfa CHENG ; Ying ZHANG ; Zhu DENG ; Hui FENG ; Min LIU ; Yang TANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):197-204
ObjectiveTo investigate whether there are differences in the efficacy of Gegen Qinliantang with different contents of Puerariae Lobatae Radix on the acute enteritis (AE) model mice and provide a scientific basis for the interpretation of Gegen Qinliantang in the treatment of "Xie Re Li". MethodsA total of 112 male BALB/c mice were randomly divided into a blank group,model group,single Puerariae Lobatae Radix group,non-Puerariae Lobatae Radix group,regular dose Gegen Qinliantang group (regular dose group),half-dose Puerariae Lobatae Radix group,and doubled-dose Puerariae Lobatae Radix group, with 16 mice in each group. Hematoxylin-eosin (HE) staining was used to observe the pathological changes of the colon tissue. Western blot was employed to detect the expression of ZO-1 (a protein in the tight junction) and Occludin in the colon tissue, as well as the changes of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). ResultsCompared with the blank group,the DAI scores of the mice in the model group were significantly higher (P<0.05),and the histopathological sections of their colon tissues showed mucosal damage,glandular atrophy,disordered arrangement,and a large number of inflammatory cells infiltration,and the expression of ZO-1 and Occludin proteins in their colon tissues was significantly down-regulated (P<0.05,P<0.01). The expression of inflammatory factors TNF-α and IL-1β was significantly up-regulated (P<0.05,P<0.01). Compared with the model group,the DAI scores of mice in all dosing groups decreased significantly (P<0.05),with the most significant effect in the regular dose group. After 7 d of drug administration,the regular dose group had the best impact on the repair of colonic mucosa in the AE mouse model. The regular dose group significantly down-regulated the expression of TNF-α (P<0.05) and significantly up-regulated the expression of ZO-1 protein (P<0.05). The doubled-dose Puerariae Lobatae Radix group significantly down-regulated the expression of IL-1β protein (P<0.01),and there was no significant difference between all dosing groups and the model group in terms of the expression of Occludin protein. After 14 d of drug administration,the best effect on the repair of colonic mucosa in the AE mouse model was observed in the doubled dose Puerariae Lobatae Radix group. All groups except the non-Puerariae Lobatae Radix group significantly down-regulated the expression of TNF-α (P<0.01). Meanwhile,the regular dose group and doubled-dose Puerariae Lobatae Radix group significantly elevated the expression level of Occludin protein (P<0.01). The doubled-dose Puerariae Lobatae Radix group also significantly inhibited the expression of IL-1β protein (P<0.05) and up-regulated ZO-1 protein expression (P<0.05). ConclusionGegen Qinliantang can reduce the pathological damage of colon tissue, protect the barrier function and structure of intestinal epithelial cells, and reduce the expression of inflammatory factors, so as to achieve the therapeutic effect of AE model mice. When comparing the therapeutic efficacy of Gegen Qinliantang containing different Gegen contents, Gegen Qinliantang with the proportion of the original formula of Zhongjing was the most effective in AE model mice.
6.Effect of Yixintai on Mitochondrial Fission Proteins Fis1 and Mff in Rat Model of Chronic Heart Failure
Chengxin LIU ; Jiaming WEI ; Ziyan WANG ; Min SHI ; Hui YUAN ; Yun TANG ; Ya LI ; Zhihua GUO
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(4):143-151
ObjectiveTo study the effect and mechanism of Yixintai on mitochondrial fission proteins in the rat model of chronic heart failure. MethodTen of 60 SD rats were randomly selected as the sham operation group, and the remaining 50 rats were subjected to ligation of the left anterior descending coronary artery for the modeling of heart failure post myocardial infarction. The successfully modeled rats were randomized into model, low-, medium-, and high-dose (1.4, 2.8, and 5.6 g·kg-1, respectively) Yixintai, and trimetazidine (10 mg·kg-1) groups. The rats were administrated with corresponding doses of drugs by gavage, and the rats in the model group and sham operation group were given an equal volume of normal saline by gavage for 28 consecutive days. Enzyme-linked immunosorbent assay (ELISA) was then employed to measure the levels of amino-terminal pro-B-type natriuretic peptide (NT-pro BNP), B-type natriuretic peptide (BNP), and adenosine triphosphate (ATP) in the serum. Color Doppler ultrasound imaging was conducted to examine the cardiac function indicators. Hematoxylin-eosin staining and Masson staining were conducted to observe the pathological changes in the heart, and Image J was used to calculate collagen volume fraction (CVF). Transmission electron microscopy was employed to observe the ultrastructural changes of myocardial cells. Terminal-deoxynucleoitidyl transferase-mediated nick-end labeling (TUNEL) was employed to measure the apoptosis rate of myocardial cells. Western blot was employed to determine the protein levels of mitochondrial fission protein 1 (Fis1) and mitochondrial fission factor (Mff) in the outer mitochondrial membrane of the myocardial tissue. ResultCompared with the sham operation group, the model group showed elevated levels of NT-pro BNP and BNP in the serum, decreased ATP content, left ventricular ejection fraction (LVEF), and left ventricular fraction shortening (LVFS), increased left ventricular end-diastolic diameter (LVIDd) and left ventricular end-systolic diameter (LVIDs), disarrangement of myocardial cells, inflammatory cell infiltration, increased collagen fibers and CVF, damaged myocardium and mitochondria, and increased apoptosis rate of myocardial cells, and up-regulated expression of Fis1 and Mff in the cardiac tissue (P<0.01). Compared with the model group, different doses of Yixintai and trimetazidine lowered the serum levels of NT-pro BNP and BNP (P<0.05), increased the ATP content (P<0.05), increased LVEF and LVFS (P<0.01), decreased LVIDd and LVIDs (P<0.01). Moreover, the drugs alleviated the myocardial inflammatory damage and fibrosis, reduced CVF (P<0.01), repaired the myocardial mitochondrial structure, and decreased the apoptosis rate of myocardial cells (P<0.01). Medium- and high-dose Yixintai and trimetazidine down-regulated the expression of Fis1 and Mff in the myocardial tissue (P<0.05). ConclusionYixintai can improve mitochondrial structure, reduce myocardial cell apoptosis, and improve cardiac function by inhibiting the expression of Fis1 and Mff in the myocardial tissue.
7.Recent advances in small-molecule inhibitors targeting influenza virus RNA-dependent RNA polymerase
Hui-nan JIA ; Rui-fang JIA ; Ji-wei ZHANG ; Yuan-min JIANG ; Chuan-feng LIU ; Ying ZHANG ; Xin-yong LIU ; Peng ZHAN
Acta Pharmaceutica Sinica 2024;59(1):43-60
Influenza virus causes serious threat to human life and health. Due to the inherent high variability of influenza virus, clinically resistant mutant strains of currently approved anti-influenza virus drugs have emerged. Therefore, it is urgent to develop antiviral drugs with new targets or mechanisms of action. RNA-dependent RNA polymerase is directly responsible for viral RNA transcription and replication, and plays key roles in the viral life cycle, which is considered an important target of anti-influenza drug design. From the point of view of medicinal chemistry, this review summarizes current advances in diverse small-molecule inhibitors targeting influenza virus RNA-dependent RNA polymerase, hoping to provide valuable reference for development of novel antiviral drugs.
8.The regulation and guidance of long-term care insurance to the demands of home and community-based care:International experiences and implications
Xin-Hui WANG ; Chen-Han SUN ; Wen LIU ; Min HU
Chinese Journal of Health Policy 2024;17(1):75-81
In order to implement a"people-centered"service concept and promote the sustainability of long-term care systems,countries worldwide are increasingly focusing on benefit package design when allocating and using public long-term care funds.This emphasis is aimed at regulating and guiding long-term care demand and developing home and community-based care.Based on the purchasing theory,this study categorized the long-term care benefit package models in representative countries into two types:"Institutional Eligibility Restrictions Type"and"Home-care-focused Benefit Type",and further elaborated the specific benefit package design.In China,long-term care insurance are still in the initial stages of development.We should optimize the service utilization structure and promote a rational allocation of resources through purchasing,while incorporating diverse benefit designs such as eligibility restrictions,differential benefit levels,and supplementary support,to establish a robust,multi-tiered long-term care system based on home and community-based care.
9.Protein expression and clinical significance of KCTD8 gene in ductal carcinoma of the breast
Ying-Ge LIU ; Hui-Jie YANG ; Xiao-Yu ZHAI ; Ji-Min HE ; Hong-Chao LI ; Ying-Li ZHANG
Chinese Journal of Current Advances in General Surgery 2024;27(2):117-121
Objective:To investigate the expression of KCTD8 gene in breast ductal carcinoma and its correlation with clinical factors and prognosis.Methods:Immunohistochemistry technology(IHC)were employed to detect protein expression levels of KCTD8 in 27 pairs of breast ductal carci-noma and its paired adjacent tissues.Analyzing the correlation between changes in KCTD8 expres-sion of protein and clinical factors using statistical techniques.RNA expression and methylation data of breast cancer(including intraductal cancer)were analysed from TCGA database.Result:The pro-tein expression of KCTD8 gene in 27 pairs of breast ductal carcinoma tissues showed a decreasing trend compared to adjacent tissues(P<0.05),and the decreased expression level of protein was cor-related with the tumor size of patients(P<0.05).The analysis results of the TCGA database indicate that the expression and hypemethylation of KCTD 8 gene in breast cancer(including intraductal can-cer)tissues affected the prognosis of patients.Conclusion:The reduced protein expression level of KCTD8 gene in breast ductal carcinoma may be involved in the development and affect the prog-nosis of patients.
10.Discrete element modeling and breakage behavior analysis of oral solid dosage form particles
Lin-xiu LUO ; Tian-bing GUAN ; An-qi LUO ; Zeng LIU ; Yu-ting WANG ; Yan-ling JIANG ; Zheng LU ; Jing-cao TANG ; Shuang-kou CHEN ; Hui-min SUN ; Chuan-yun DAI
Acta Pharmaceutica Sinica 2024;59(4):1057-1066
The breakage pattern of unit particles during the production of oral solid dosage forms (OSD) is closely related to the quality of intermediate or final products. To accurately characterize the particles and study the evolution law of particle breakage, the Bonding model of the discrete element method (DEM) was used to investigate the breakage patterns of model parameters, particle shape and process conditions (loading mode and loading rate) on the dynamic breakage, force-time curve, breakage rate, maximum breakage size ratio and fracture strength of particles. The results showed that the particle breakage force was positively correlated with normal strength and bonded disk scale, negatively correlated with normal stiffness per unit area and tangential stiffness per unit area, and weakly correlated with tangential strength. The particle breakage rate was negatively correlated with the aspect ratio of the particles, and the maximum breakage size ratio was positively correlated with the aspect ratio of the particles; among the three loading modes, the breakage rate of compression breakage model was the largest, the breakage rate of shear breakage model was the second largest, and the breakage rate of wear breakage model was the smallest; the maximum breakage size ratio was positively correlated with the loading rate, the loading mode and the loading rate had no mutual influence on particle breakage rate, but had mutual influence on the maximum breakage size ratio. The research results will provide a theoretical basis for the shift of OSD from batch manufacturing to advanced manufacturing.

Result Analysis
Print
Save
E-mail