1.Identification and Potential Clinical Utility of Common Genetic Variants in Gestational Diabetes among Chinese Pregnant Women
Claudia Ha-ting TAM ; Ying WANG ; Chi Chiu WANG ; Lai Yuk YUEN ; Cadmon King-poo LIM ; Junhong LENG ; Ling WU ; Alex Chi-wai NG ; Yong HOU ; Kit Ying TSOI ; Hui WANG ; Risa OZAKI ; Albert Martin LI ; Qingqing WANG ; Juliana Chung-ngor CHAN ; Yan Chou YE ; Wing Hung TAM ; Xilin YANG ; Ronald Ching-wan MA
Diabetes & Metabolism Journal 2025;49(1):128-143
Background:
The genetic basis for hyperglycaemia in pregnancy remain unclear. This study aimed to uncover the genetic determinants of gestational diabetes mellitus (GDM) and investigate their applications.
Methods:
We performed a meta-analysis of genome-wide association studies (GWAS) for GDM in Chinese women (464 cases and 1,217 controls), followed by de novo replications in an independent Chinese cohort (564 cases and 572 controls) and in silico replication in European (12,332 cases and 131,109 controls) and multi-ethnic populations (5,485 cases and 347,856 controls). A polygenic risk score (PRS) was derived based on the identified variants.
Results:
Using the genome-wide scan and candidate gene approaches, we identified four susceptibility loci for GDM. These included three previously reported loci for GDM and type 2 diabetes mellitus (T2DM) at MTNR1B (rs7945617, odds ratio [OR], 1.64; 95% confidence interval [CI],1.38 to 1.96]), CDKAL1 (rs7754840, OR, 1.33; 95% CI, 1.13 to 1.58), and INS-IGF2-KCNQ1 (rs2237897, OR, 1.48; 95% CI, 1.23 to 1.79), as well as a novel genome-wide significant locus near TBR1-SLC4A10 (rs117781972, OR, 2.05; 95% CI, 1.61 to 2.62; Pmeta=7.6×10-9), which has not been previously reported in GWAS for T2DM or glycaemic traits. Moreover, we found that women with a high PRS (top quintile) had over threefold (95% CI, 2.30 to 4.09; Pmeta=3.1×10-14) and 71% (95% CI, 1.08 to 2.71; P=0.0220) higher risk for GDM and abnormal glucose tolerance post-pregnancy, respectively, compared to other individuals.
Conclusion
Our results indicate that the genetic architecture of glucose metabolism exhibits both similarities and differences between the pregnant and non-pregnant states. Integrating genetic information can facilitate identification of pregnant women at a higher risk of developing GDM or later diabetes.
2.Identification and Potential Clinical Utility of Common Genetic Variants in Gestational Diabetes among Chinese Pregnant Women
Claudia Ha-ting TAM ; Ying WANG ; Chi Chiu WANG ; Lai Yuk YUEN ; Cadmon King-poo LIM ; Junhong LENG ; Ling WU ; Alex Chi-wai NG ; Yong HOU ; Kit Ying TSOI ; Hui WANG ; Risa OZAKI ; Albert Martin LI ; Qingqing WANG ; Juliana Chung-ngor CHAN ; Yan Chou YE ; Wing Hung TAM ; Xilin YANG ; Ronald Ching-wan MA
Diabetes & Metabolism Journal 2025;49(1):128-143
Background:
The genetic basis for hyperglycaemia in pregnancy remain unclear. This study aimed to uncover the genetic determinants of gestational diabetes mellitus (GDM) and investigate their applications.
Methods:
We performed a meta-analysis of genome-wide association studies (GWAS) for GDM in Chinese women (464 cases and 1,217 controls), followed by de novo replications in an independent Chinese cohort (564 cases and 572 controls) and in silico replication in European (12,332 cases and 131,109 controls) and multi-ethnic populations (5,485 cases and 347,856 controls). A polygenic risk score (PRS) was derived based on the identified variants.
Results:
Using the genome-wide scan and candidate gene approaches, we identified four susceptibility loci for GDM. These included three previously reported loci for GDM and type 2 diabetes mellitus (T2DM) at MTNR1B (rs7945617, odds ratio [OR], 1.64; 95% confidence interval [CI],1.38 to 1.96]), CDKAL1 (rs7754840, OR, 1.33; 95% CI, 1.13 to 1.58), and INS-IGF2-KCNQ1 (rs2237897, OR, 1.48; 95% CI, 1.23 to 1.79), as well as a novel genome-wide significant locus near TBR1-SLC4A10 (rs117781972, OR, 2.05; 95% CI, 1.61 to 2.62; Pmeta=7.6×10-9), which has not been previously reported in GWAS for T2DM or glycaemic traits. Moreover, we found that women with a high PRS (top quintile) had over threefold (95% CI, 2.30 to 4.09; Pmeta=3.1×10-14) and 71% (95% CI, 1.08 to 2.71; P=0.0220) higher risk for GDM and abnormal glucose tolerance post-pregnancy, respectively, compared to other individuals.
Conclusion
Our results indicate that the genetic architecture of glucose metabolism exhibits both similarities and differences between the pregnant and non-pregnant states. Integrating genetic information can facilitate identification of pregnant women at a higher risk of developing GDM or later diabetes.
3.Identification and Potential Clinical Utility of Common Genetic Variants in Gestational Diabetes among Chinese Pregnant Women
Claudia Ha-ting TAM ; Ying WANG ; Chi Chiu WANG ; Lai Yuk YUEN ; Cadmon King-poo LIM ; Junhong LENG ; Ling WU ; Alex Chi-wai NG ; Yong HOU ; Kit Ying TSOI ; Hui WANG ; Risa OZAKI ; Albert Martin LI ; Qingqing WANG ; Juliana Chung-ngor CHAN ; Yan Chou YE ; Wing Hung TAM ; Xilin YANG ; Ronald Ching-wan MA
Diabetes & Metabolism Journal 2025;49(1):128-143
Background:
The genetic basis for hyperglycaemia in pregnancy remain unclear. This study aimed to uncover the genetic determinants of gestational diabetes mellitus (GDM) and investigate their applications.
Methods:
We performed a meta-analysis of genome-wide association studies (GWAS) for GDM in Chinese women (464 cases and 1,217 controls), followed by de novo replications in an independent Chinese cohort (564 cases and 572 controls) and in silico replication in European (12,332 cases and 131,109 controls) and multi-ethnic populations (5,485 cases and 347,856 controls). A polygenic risk score (PRS) was derived based on the identified variants.
Results:
Using the genome-wide scan and candidate gene approaches, we identified four susceptibility loci for GDM. These included three previously reported loci for GDM and type 2 diabetes mellitus (T2DM) at MTNR1B (rs7945617, odds ratio [OR], 1.64; 95% confidence interval [CI],1.38 to 1.96]), CDKAL1 (rs7754840, OR, 1.33; 95% CI, 1.13 to 1.58), and INS-IGF2-KCNQ1 (rs2237897, OR, 1.48; 95% CI, 1.23 to 1.79), as well as a novel genome-wide significant locus near TBR1-SLC4A10 (rs117781972, OR, 2.05; 95% CI, 1.61 to 2.62; Pmeta=7.6×10-9), which has not been previously reported in GWAS for T2DM or glycaemic traits. Moreover, we found that women with a high PRS (top quintile) had over threefold (95% CI, 2.30 to 4.09; Pmeta=3.1×10-14) and 71% (95% CI, 1.08 to 2.71; P=0.0220) higher risk for GDM and abnormal glucose tolerance post-pregnancy, respectively, compared to other individuals.
Conclusion
Our results indicate that the genetic architecture of glucose metabolism exhibits both similarities and differences between the pregnant and non-pregnant states. Integrating genetic information can facilitate identification of pregnant women at a higher risk of developing GDM or later diabetes.
4.Identification and Potential Clinical Utility of Common Genetic Variants in Gestational Diabetes among Chinese Pregnant Women
Claudia Ha-ting TAM ; Ying WANG ; Chi Chiu WANG ; Lai Yuk YUEN ; Cadmon King-poo LIM ; Junhong LENG ; Ling WU ; Alex Chi-wai NG ; Yong HOU ; Kit Ying TSOI ; Hui WANG ; Risa OZAKI ; Albert Martin LI ; Qingqing WANG ; Juliana Chung-ngor CHAN ; Yan Chou YE ; Wing Hung TAM ; Xilin YANG ; Ronald Ching-wan MA
Diabetes & Metabolism Journal 2025;49(1):128-143
Background:
The genetic basis for hyperglycaemia in pregnancy remain unclear. This study aimed to uncover the genetic determinants of gestational diabetes mellitus (GDM) and investigate their applications.
Methods:
We performed a meta-analysis of genome-wide association studies (GWAS) for GDM in Chinese women (464 cases and 1,217 controls), followed by de novo replications in an independent Chinese cohort (564 cases and 572 controls) and in silico replication in European (12,332 cases and 131,109 controls) and multi-ethnic populations (5,485 cases and 347,856 controls). A polygenic risk score (PRS) was derived based on the identified variants.
Results:
Using the genome-wide scan and candidate gene approaches, we identified four susceptibility loci for GDM. These included three previously reported loci for GDM and type 2 diabetes mellitus (T2DM) at MTNR1B (rs7945617, odds ratio [OR], 1.64; 95% confidence interval [CI],1.38 to 1.96]), CDKAL1 (rs7754840, OR, 1.33; 95% CI, 1.13 to 1.58), and INS-IGF2-KCNQ1 (rs2237897, OR, 1.48; 95% CI, 1.23 to 1.79), as well as a novel genome-wide significant locus near TBR1-SLC4A10 (rs117781972, OR, 2.05; 95% CI, 1.61 to 2.62; Pmeta=7.6×10-9), which has not been previously reported in GWAS for T2DM or glycaemic traits. Moreover, we found that women with a high PRS (top quintile) had over threefold (95% CI, 2.30 to 4.09; Pmeta=3.1×10-14) and 71% (95% CI, 1.08 to 2.71; P=0.0220) higher risk for GDM and abnormal glucose tolerance post-pregnancy, respectively, compared to other individuals.
Conclusion
Our results indicate that the genetic architecture of glucose metabolism exhibits both similarities and differences between the pregnant and non-pregnant states. Integrating genetic information can facilitate identification of pregnant women at a higher risk of developing GDM or later diabetes.
5.Analysis of T7 RNA Polymerase: From Structure-function Relationship to dsRNA Challenge and Biotechnological Applications
Wei-Chen NING ; Yu HUA ; Hui-Ling YOU ; Qiu-Shi LI ; Yao WU ; Yun-Long LIU ; Zhen-Xin HU
Progress in Biochemistry and Biophysics 2025;52(9):2280-2294
T7 RNA polymerase (T7 RNAP) is one of the simplest known RNA polymerases. Its unique structural features make it a critical model for studying the mechanisms of RNA synthesis. This review systematically examines the static crystal structure of T7 RNAP, beginning with an in-depth examination of its characteristic “thumb”, “palm”, and “finger” domains, which form the classic “right-hand-like” architecture. By detailing these structural elements, this review establishes a foundation for understanding the overall organization of T7 RNAP. This review systematically maps the functional roles of secondary structural elements and their subdomains in transcriptional catalysis, progressively elucidating the fundamental relationships between structure and function. Further, the intrinsic flexibility of T7 RNAP and its applications in research are also discussed. Additionally, the review presents the structural diagrams of the enzyme at different stages of the transcription process, and through these diagrams, it provides a detailed description of the complete transcription process of T7 RNAP. By integrating structural dynamics and kinetics analyses, the review constructs a comprehensive framework that bridges static structure to dynamic processes. Despite its advantages, T7 RNAP has a notable limitation: it generates double-stranded RNA (dsRNA) as a byproduct. The presence of dsRNA not only compromises the purity of mRNA products but also elicits nonspecific immune responses, which pose significant challenges for biotechnological and therapeutic applications. The review provides a detailed exploration of the mechanisms underlying dsRNA formation during T7 RNAP catalysis, reviews current strategies to mitigate this issue, and highlights recent progress in the field. A key focus is the semi-rational design of T7 RNAP mutants engineered to minimize dsRNA generation and enhance catalytic performance. Beyond its role in transcription, T7 RNAP exhibits rapid development and extensive application in fields, including gene editing, biosensing, and mRNA vaccines. This review systematically examines the structure-function relationships of T7 RNAP, elucidates the mechanisms of dsRNA formation, and discusses engineering strategies to optimize its performance. It further explores the engineering optimization and functional expansion of T7 RNAP. Furthermore, this review also addresses the pressing issues that currently need resolution, discusses the major challenges in the practical application of T7 RNAP, and provides an outlook on potential future research directions. In summary, this review provides a comprehensive analysis of T7 RNAP, ranging from its structural architecture to cutting-edge applications. We systematically examine: (1) the characteristic right-hand domains (thumb, palm, fingers) that define its minimalistic structure; (2) the structure-function relationships underlying transcriptional catalysis; and (3) the dynamic transitions during the complete transcription cycle. While highlighting T7 RNAP’s versatility in gene editing, biosensing, and mRNA vaccine production, we critically address its major limitation—dsRNA byproduct formation—and evaluate engineering solutions including semi-rationally designed mutants. By synthesizing current knowledge and identifying key challenges, this work aims to provide novel insights for the development and application of T7 RNAP and to foster further thought and progress in related fields.
6.Effect of Tongdu Tiaoshen acupuncture on hippocampal neuronal ferroptosis in depression rats based on SLC7A11/GPX4 pathway.
Tingting QIAN ; Ling ZOU ; Zhi GAO ; Yu WU ; Yanbiao ZHAO ; Nan LI ; Hui LIU ; Meixiang SUN ; Peiyang SUN
Chinese Acupuncture & Moxibustion 2025;45(8):1120-1127
OBJECTIVE:
To observe the effects of Tongdu Tiaoshen acupuncture (acupuncture for unblocking the obstruction in the governor vessel and regulating the spirit) on the depression-like behavior and the hippocampal neuronal ferroptosis mediated by solute carrier family 7 member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) pathway in depression rats, and explore the mechanism of this therapy for depression.
METHODS:
Of 30 male SD rats of SPF grade, 24 rats were selected. According to the random number table, they were divided into a normal group (n=8) and a modeling group (n=16). The rats in the modeling group were subjected to chronic unpredictable mild stress (CUMS) for 28 consecutive days to establish depression model. After modeling, 16 successfully-modeled rats were randomly divided into a model group and an acupuncture group, 8 rats in each one. In the acupuncture group, Tongdu Tiaoshen acupuncture was applied to "Dazhui"(GV14), "Shuigou" (GV26), "Baihui" (GV20) and "Shenting" (GV24). This intervention measure was deliveredonce a day, continuously for 6 days. The intervention discontinued on day 7, and was completed in 4 weeks. Before and after modeling, and after intervention completion, the behavioristics detection was performed using sucrose preference experiment and open field experiment. After intervention, using hematoxylin-eosin (HE) and Nissl staining, the morphology of hippocampal neurons was observed; with Western blot method, the protein expression of GPX4, SLC7A11, Ferritin and acyl-CoA synthetase long-chain family 4 (ACSL4) in hippocampal tissues was detected; with the real-time fluorescence quantitative PCR adopted, the mRNA expression of GPX4, SLC7A11, Ferritin and ACSL4 was detected; and using colorimetry, the hippocampal iron content was determined.
RESULTS:
After modeling, the sucrose preference rates, the total distance of movement, the standing times and the boxes of horizontal crossing in the model group and the acupuncture group were lower than those in the normal group (P<0.01). After the intervention, the sucrose preference rates, the total distance of movement, the standing times and the boxes of horizontal crossing in the acupuncture group were higher than those in the model group (P<0.01, P<0.05). Compared with the normal group, the number of necrotic cells increased and the number of Nissl bodies decreased in the model group; and when compared with the model group, the neuronal pyknosis and necrosis were ameliorated, the cells were arranged more regularly, the neuronal structure was clear, the matrix was dense, the blood vessels were enriched and the number of Nissl bodies increased in the acupuncture group. In comparison with the normal group, the relative expression of protein and mRNA of hippocampal GPX4, SLC7A11 decreased (P<0.01), it increased in the expression of hippocampal Ferritin and ACSL4 (P<0.01) in the model group. When compared with the model group, in the acupuncture group, the relative expression of protein and mRNA of hippocampal GPX4, SLC7A11 was elevated (P<0.01, P<0.05), it was dropped for hippocampal Ferritin and ACSL4 (P<0.01). In the model group, the hippocampal iron content was elevated when compared with that in the normal group (P<0.01); and it was reduced in the acupuncture group when compared with that in the model group (P<0.05).
CONCLUSION
Tongdu Tiaoshen acupuncture attenuates depression-like behaviors in the depression rats, which may be related to regulating SLC7A11/GPX4 pathway and inhibiting neuronal ferroptosis in the hippocampus.
Animals
;
Ferroptosis
;
Male
;
Hippocampus/cytology*
;
Rats, Sprague-Dawley
;
Rats
;
Depression/enzymology*
;
Phospholipid Hydroperoxide Glutathione Peroxidase/genetics*
;
Acupuncture Therapy
;
Neurons/metabolism*
;
Humans
;
Acupuncture Points
;
Amino Acid Transport System y+/genetics*
;
Glutathione Peroxidase/genetics*
7.Risk factors and development of a prediction model of enteral feeding intolerance in critically ill children.
Xia ZHOU ; Hong-Mei GAO ; Lin HUANG ; Hui-Wu HAN ; Hong-Ling HU ; You LI ; Ren-He YU
Chinese Journal of Contemporary Pediatrics 2025;27(3):321-327
OBJECTIVES:
To explore the risk factors of feeding intolerance (FI) in critically ill children receiving enteral nutrition (EN) and to construct a prediction nomogram model for FI.
METHODS:
A retrospective study was conducted to collect data from critically ill children admitted to the Pediatric Intensive Care Unit of Xiangya Hospital, Central South University, between January 2015 and October 2020. The children were randomly divided into a training set (346 cases) and a validation set (147 cases). The training set was further divided into a tolerance group (216 cases) and an intolerance group (130 cases). Multivariate logistic regression analysis was used to screen for risk factors for FI in critically ill children receiving EN. A nomogram was constructed using R language, which was then validated on the validation set. The model's discrimination, calibration, and clinical net benefit were evaluated using receiver operating characteristic curves, calibration curves, and decision curves.
RESULTS:
Duration of bed rest, shock, gastrointestinal decompression, use of non-steroidal anti-inflammatory drugs, and combined parenteral nutrition were identified as independent risk factors for FI in critically ill children receiving EN (P<0.05). Based on these factors, a nomogram prediction model for FI in critically ill children receiving EN was developed. The area under the receiver operating characteristic curve for the training set and validation set was 0.934 (95%CI: 0.906-0.963) and 0.852 (95%CI: 0.787-0.917), respectively, indicating good discrimination of the model. The Hosmer-Lemeshow goodness-of-fit test showed that the model had a good fit (χ 2=12.559, P=0.128). Calibration curve and decision curve analyses suggested that the model has high predictive efficacy and clinical application value.
CONCLUSIONS
Duration of bed rest, shock, gastrointestinal decompression, use of non-steroidal anti-inflammatory drugs, and combined parenteral nutrition are independent risk factors for FI in critically ill children receiving EN. The nomogram model developed based on these factors exhibits high predictive efficacy and clinical application value.
Humans
;
Critical Illness
;
Enteral Nutrition/adverse effects*
;
Male
;
Risk Factors
;
Female
;
Child, Preschool
;
Infant
;
Nomograms
;
Retrospective Studies
;
Child
;
Logistic Models
8.Predictive factors and nomogram model construction for plastic bronchitis in children with Mycoplasma pneumoniae pneumonia.
Wen-Hui WANG ; Fang-Fang YANG ; Ling-Jian MENG ; Ning MAO ; Yi WU
Chinese Journal of Contemporary Pediatrics 2025;27(10):1212-1219
OBJECTIVES:
To investigate the predictive factors for plastic bronchitis (PB) in children with Mycoplasma pneumoniae pneumonia (MPP) and to establish a nomogram prediction model for PB occurrence.
METHODS:
A retrospective analysis was conducted on children with MPP hospitalized at The Affiliated Hospital of Xuzhou Medical University from January 2023 to June 2024. The patients were randomly divided into a training set (n=562) and a validation set (n=240) at a ratio of 7:3 using simple random sampling. In the training set, patients were categorized into a PB group (n=70) and a non-PB group (n=492) based on the occurrence of PB. Spearman correlation analysis was performed to exclude collinearity among variables, followed by univariate analysis and LASSO regression to identify predictive factors. A nomogram prediction model for PB in children with MPP was constructed. The discriminative ability of the model was assessed using receiver operating characteristic (ROC) curve analysis, model calibration was evaluated with calibration curves, and clinical utility was appraised through decision curve analysis.
RESULTS:
Compared with the non-PB group, the PB group exhibited significantly longer disease duration prior to bronchoscopy, prolonged fever duration, higher fever peaks, higher proportions of patients with a family history of allergy and personal allergy history, and a higher proportion of patients with pleural effusion, as well as significantly elevated levels of white blood cell count, neutrophil percentage, C-reactive protein, procalcitonin, fibrinogen, D-dimer, aspartate aminotransferase, alanine aminotransferase, creatine kinase, lactate dehydrogenase, immunoglobulin A, and interleukin-6, along with a significantly lower lymphocyte percentage (all P<0.05). LASSO regression analysis identified pleural effusion, procalcitonin, D-dimer, and lactate dehydrogenase as major predictive factors for PB occurrence in children with MPP. The nomogram model based on these factors demonstrated good discriminative ability (area under the ROC curve: 0.852 in the training set and 0.830 in the validation set), with satisfactory calibration and clinical benefit.
CONCLUSIONS
The nomogram prediction model based on pleural effusion, procalcitonin, D-dimer, and lactate dehydrogenase provides effective predictive performance for the occurrence of PB in children with MPP.
Humans
;
Pneumonia, Mycoplasma/complications*
;
Nomograms
;
Male
;
Female
;
Child
;
Child, Preschool
;
Retrospective Studies
;
Bronchitis/etiology*
;
Infant
;
ROC Curve
;
Adolescent
9.Bear Bile Powder Ameliorates LPS-Induced Acute Lung Injury by Inhibiting CD14 Pathway and Improving Intestinal Flora: Exploration of "Fei (Lung)-Dachang (Large Intestine) Interaction" Theory.
Long CHENG ; Hui-Ling TIAN ; Hong-Yuan LEI ; Ying-Zhou WANG ; Ma-Jing JIAO ; Yun-Hui LIANG ; Zhi-Zheng WU ; Xu-Kun DENG ; Yong-Shen REN
Chinese journal of integrative medicine 2025;31(9):821-829
OBJECTIVE:
To explore the effect of bear bile powder (BBP) on acute lung injury (ALI) and the underlying mechanism.
METHODS:
The chemical constituents of BBP were analyzed by ultra-high-pressure liquid chromatography-mass spectrometry (UPLC-MS). After 7 days of adaptive feeding, 50 mice were randomly divided into 5 groups by a random number table (n=10): normal control (NC), lipopolysaccharide (LPS), dexamethasone (Dex), low-, and high-dose BBP groups. The dosing cycle was 9 days. On the 12th and 14th days, 20 µL of Staphylococcus aureus solution (bacterial concentration of 1 × 10-7 CFU/mL) was given by nasal drip after 1 h of intragastric administration, and the mice in the NC group was given the same dose of phosphated buffered saline (PBS) solution. On the 16th day, after 1 h intragastric administration, 100 µL of LPS solution (1 mg/mL) was given by tracheal intubation, and the same dose of PBS solution was given to the NC group. Lung tissue was obtained to measure the myeloperoxidase (MPO) activity, the lung wet/dry weight ratio and expressions of CD14 and other related proteins. The lower lobe of the right lung was obtained for pathological examination. The concentrations of inflammatory cytokines including interleukin (IL)-6, tumour necrosis factor α (TNF-α ) and IL-1β in the bronchoalveolar lavage fluid (BALF) were detected by enzyme linked immunosorbent assay, and the number of neutrophils was counted. The colonic contents of the mice were analyzed by 16 sRNA technique and the contents of short-chain fatty acids (SCFAs) were measured by gas chromatograph-mass spectrometer (GC-MS).
RESULTS:
UPLC-MS revealed that the chemical components of BBP samples were mainly tauroursodeoxycholic acid and taurochenodeoxycholic acid sodium salt. BBP reduced the activity of MPO, concentrations of inflammatory cytokines, and inhibited the expression of CD14 protein, thus suppressing the activation of NF-κB pathway (P<0.05). The lung histopathological results indicated that BBP significantly reduced the degree of neutrophil infiltration, cell shedding, necrosis, and alveolar cavity depression. Moreover, BBP effectively regulated the composition of the intestinal microflora and increased the production of SCFAs, which contributed to its treatment effect (P<0.05).
CONCLUSIONS
BBP alleviates lung injury in ALI mouse through inhibiting activation of NF-κB pathway and decreasing expression of CD14 protein. BBP may promote recovery of ALI by improving the structure of intestinal flora and enhancing metabolic function of intestinal flora.
Animals
;
Acute Lung Injury/pathology*
;
Lipopolysaccharides
;
Ursidae
;
Gastrointestinal Microbiome/drug effects*
;
Bile/chemistry*
;
Lipopolysaccharide Receptors/metabolism*
;
Powders
;
Male
;
Lung/drug effects*
;
Mice
;
Peroxidase/metabolism*
;
Signal Transduction/drug effects*
;
Cytokines/metabolism*
10.Effectiveness of Xuanshen Yishen Decoction on Intensive Blood Pressure Control: Emulation of a Randomized Target Trial Using Real-World Data.
Xiao-Jie WANG ; Yuan-Long HU ; Jia-Ming HUAN ; Shi-Bing LIANG ; Lai-Yun XIN ; Feng JIANG ; Zhen HUA ; Zhen-Yuan WANG ; Ling-Hui KONG ; Qi-Biao WU ; Yun-Lun LI
Chinese journal of integrative medicine 2025;31(8):677-684
OBJECTIVE:
To investigate the effectiveness of Xuanshen Yishen Decoction (XYD) in the treatment of hypertension.
METHODS:
Hospital electronic medical records from 2019-2023 were utilized to emulate a randomized pragmatic clinical trial. Hypertensive participants were eligible if they were aged ⩾40 years with baseline systolic blood pressure (BP) ⩾140 mm Hg. Patients treated with XYD plus antihypertensive regimen were assigned to the treatment group, whereas those who followed only antihypertensive regimen were assigned to the control group. The primary outcome assessed was the attainment rate of intensive BP control at discharge, with the secondary outcome focusing on the 6-month all-cause readmission rate.
RESULTS:
The study included 3,302 patients, comprising 2,943 individuals in the control group and 359 in the treatment group. Compared with the control group, a higher proportion in the treatment group achieved the target BP for intensive BP control [8.09% vs. 17.5%; odds ratio (OR)=2.29, 95% confidence interval (CI)=1.68 to 3.13; P<0.001], particularly in individuals with high homocysteine levels (OR=3.13; 95% CI=1.72 to 5.71; P<0.001; P for interaction=0.041). Furthermore, the 6-month all-cause readmission rate in the treatment group was lower than in the control group (hazard ratio=0.58; 95% CI=0.36 to 0.91; P=0.019), and the robustness of the results was confirmed by sensitivity analyse.
CONCLUSIONS
XYD could be a complementary therapy for intensive BP control. Our study offers real-world evidence and guides the choice of complementary and alternative therapies. (Registration No. ChiCTR2400086589).
Adult
;
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Antihypertensive Agents/pharmacology*
;
Blood Pressure/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Hypertension/physiopathology*
;
Patient Readmission
;
Treatment Outcome

Result Analysis
Print
Save
E-mail