1.Exploring mechanism of Porana racemosa Roxb. in treating rheumatoid arthritis based on integration of network pharmacology and molecular docking combined with experimental validation
Chen-yu YE ; Ning LI ; Yin-zi CHEN ; Tong QU ; Jing HU ; Zhi-yong CHEN ; Hui REN
Acta Pharmaceutica Sinica 2025;60(1):117-129
Through network pharmacology and molecular docking technology, combined with
2.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
3.Regulation of Immune Function by Exercise-induced Metabolic Remodeling
Hui-Guo WANG ; Gao-Yuan YANG ; Xian-Yan XIE ; Yu WANG ; Zi-Yan LI ; Lin ZHU
Progress in Biochemistry and Biophysics 2025;52(6):1574-1586
Exercise-induced metabolic remodeling is a fundamental adaptive process whereby the body reorganizes systemic and cellular metabolism to meet the dynamic energy demands posed by physical activity. Emerging evidence reveals that such remodeling not only enhances energy homeostasis but also profoundly influences immune function through complex molecular interactions involving glucose, lipid, and protein metabolism. This review presents an in-depth synthesis of recent advances, elucidating how exercise modulates immune regulation via metabolic reprogramming, highlighting key molecular mechanisms, immune-metabolic signaling axes, and the authors’ academic perspective on the integrated “exercise-metabolism-immunity” network. In the domain of glucose metabolism, regular exercise improves insulin sensitivity and reduces hyperglycemia, thereby attenuating glucose toxicity-induced immune dysfunction. It suppresses the formation of advanced glycation end-products (AGEs) and interrupts the AGEs-RAGE-inflammation positive feedback loop in innate and adaptive immune cells. Importantly, exercise-induced lactate, traditionally viewed as a metabolic byproduct, is now recognized as an active immunomodulatory molecule. At high concentrations, lactate can suppress immune function through pH-mediated effects and GPR81 receptor activation. At physiological levels, it supports regulatory T cell survival, promotes macrophage M2 polarization, and modulates gene expression via histone lactylation. Additionally, key metabolic regulators such as AMPK and mTOR coordinate immune cell energy balance and phenotype; exercise activates the AMPK-mTOR axis to favor anti-inflammatory immune cell profiles. Simultaneously, hypoxia-inducible factor-1α (HIF-1α) is transiently activated during exercise, driving glycolytic reprogramming in T cells and macrophages, and shaping the immune landscape. In lipid metabolism, exercise alleviates adipose tissue inflammation by reducing fat mass and reshaping the immune microenvironment. It promotes the polarization of adipose tissue macrophages from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype. Moreover, exercise alters the secretion profile of adipokines—raising adiponectin levels while reducing leptin and resistin—thereby influencing systemic immune balance. At the circulatory level, exercise improves lipid profiles by lowering pro-inflammatory free fatty acids (particularly saturated fatty acids) and triglycerides, while enhancing high-density lipoprotein (HDL) function, which has immunoregulatory properties such as endotoxin neutralization and macrophage cholesterol efflux. Regarding protein metabolism, exercise triggers the expression of heat shock proteins (HSPs) that act as intracellular chaperones and extracellular immune signals. Exercise also promotes the secretion of myokines (e.g., IL-6, IL-15, irisin, FGF21) from skeletal muscle, which modulate immune responses, facilitate T cell and macrophage function, and support immunological memory. Furthermore, exercise reshapes amino acid metabolism, particularly of glutamine, arginine, and branched-chain amino acids (BCAAs), thereby influencing immune cell proliferation, biosynthesis, and signaling. Leucine-mTORC1 signaling plays a key role in T cell fate, while arginine metabolism governs macrophage polarization and T cell activation. In summary, this review underscores the complex, bidirectional relationship between exercise and immune function, orchestrated through metabolic remodeling. Future research should focus on causative links among specific metabolites, signaling pathways, and immune phenotypes, as well as explore the epigenetic consequences of exercise-induced metabolic shifts. This integrated perspective advances understanding of exercise as a non-pharmacological intervention for immune regulation and offers theoretical foundations for individualized exercise prescriptions in health and disease contexts.
4.Oxidative Stress-related Signaling Pathways and Antioxidant Therapy in Alzheimer’s Disease
Li TANG ; Yun-Long SHEN ; De-Jian PENG ; Tian-Lu RAN ; Zi-Heng PAN ; Xin-Yi ZENG ; Hui LIU
Progress in Biochemistry and Biophysics 2025;52(10):2486-2498
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline, functional impairment, and neuropsychiatric symptoms. It represents the most prevalent form of dementia among the elderly population. Accumulating evidence indicates that oxidative stress plays a pivotal role in the pathogenesis of AD. Notably, elevated levels of oxidative stress have been observed in the brains of AD patients, where excessive reactive oxygen species (ROS) can cause extensive damage to lipids, proteins, and DNA, ultimately compromising neuronal structure and function. Amyloid β‑protein (Aβ) has been shown to induce mitochondrial dysfunction and calcium overload, thereby promoting the generation of ROS. This, in turn, exacerbates Aβ aggregation and enhances tau phosphorylation, leading to the formation of two pathological features of AD: extracellular Aβ plaque deposition and intracellular neurofibrillary tangles (NFTs). These events ultimately culminate in neuronal death, forming a vicious cycle. The interplay between oxidative stress and these pathological processes constitutes a core link in the pathogenesis of AD. The signaling pathways mediating oxidative stress in AD include Nrf2, RCAN1, PP2A, CREB, Notch1, NF‑κB, ApoE, and ferroptosis. Nrf2 signaling pathway serves as a key regulator of cellular redox homeostasis, exerts important antioxidant capacity and protective effects in AD. RCAN1 signaling pathway, as a calcineurin inhibitor, and modulates AD progression through multiple mechanisms. PP2A signaling pathway is involved in regulating tau phosphorylation and neuroinflammation processes. CREB signaling pathway contributes to neuroplasticity and memory formation; activation of CREB improves cognitive function and reduce oxidative stress. Notch1 signaling pathway regulates neuronal development and memory, participates in modulation of Aβ production, and interacts with Nrf2 toco-regulate antioxidant activity. NF‑κB signaling pathway governs immune and inflammatory responses; sustained activation of this pathway forms “inflammatory memory”, thereby exacerbating AD pathology. ApoE signaling pathway is associated with lipid metabolism; among its isoforms, ApoE-ε4 significantly increases the risk of AD, leading to elevated oxidative stress, abnormal lipid metabolism, and neuroinflammation. The ferroptosis signaling pathway is driven by iron-dependent lipid peroxidation, and the subsequent release of lipid peroxidation products and ROS exacerbate oxidative stress and neuronal damage. These interconnected pathways form a complex regulatory network that regulates the progression of AD through oxidative stress and related pathological cascades. In terms of therapeutic strategies targeting oxidative stress, among the drugs currently used in clinical practice for AD treatment, memantine and donepezil demonstrate significant therapeutic efficacy and can improve the level of oxidative stress in AD patients. Some compounds with antioxidant effects (such asα-lipoic acid and melatonin) have shown certain potential in AD treatment research and can be used as dietary supplements to ameliorate AD symptoms. In addition, non-drug interventions such as calorie restriction and exercise have been proven to exerted neuroprotective effects and have a positive effect on the treatment of AD. By comprehensively utilizing the therapeutic characteristics of different signaling pathways, it is expected that more comprehensive multi-target combination therapy regimens and combined nanomolecular delivery systems will be developed in the future to bypass the blood-brain barrier, providing more effective therapeutic strategies for AD.
5.Specific DNA barcodes screening, germplasm resource identification, and genetic diversity analysis of Platycodon grandiflorum
Xin WANG ; Yue SHI ; Jin-hui MAN ; Yu-ying HUANG ; Xiao-qin ZHANG ; Ke-lu AN ; Gao-jie HE ; Zi-qi LIU ; Fan-yuan GUAN ; Yu-yan ZHENG ; Xiao-hui WANG ; Sheng-li WEI
Acta Pharmaceutica Sinica 2024;59(1):243-252
Platycodonis Radix is the dry root of
6.Study on the effect of different administration regimens of iprrazole enteric-coated tablets on inhibiting gastric acid secretion
Ting-Yuan PANG ; Zhi WANG ; Zi-Shu HU ; Zi-Han SHEN ; Yue-Qi WANG ; Ya-Qian CHEN ; Xue-Bing QIAN ; Jin-Ying LIANG ; Liang-Ying YI ; Jun-Long LI ; Zhi-Hui HAN ; Guo-Ping ZHONG ; Guo-Hua CHENG ; Hai-Tang HU
The Chinese Journal of Clinical Pharmacology 2024;40(1):92-96
Objective To compare the effects of 20 mg qd and 10 mg bidadministration of iprrazole enteric-coated tablets on the control of gastric acid in healthy subjects.Methods A randomized,single-center,parallel controlled trial was designed to include 8 healthy subjects.Randomly divided into 2 groups,20 mg qd administration group:20 mg enteric-coated tablets of iprrazole in the morning;10 mg bid administration group:10 mg enteric-coated tablets of iprrazole in the morning and 10 mg in the evening.The pH values in the stomach of the subjects before and 24 h after administration were monitored by pH meter.The plasma concentration of iprazole after administration was determined by HPLC-MS/MS.The main pharmacokinetic parameters were calculated by Phoenix WinNonlin(V8.0)software.Results The PK parameters of iprrazole enteric-coated tablets and reference preparations in fasting group were as follows:The Cmax of 20 mg qd group and 10 mg bid group were(595.75±131.15)and(283.50±96.98)ng·mL-1;AUC0-t were(5 531.94±784.35)and(4 686.67±898.23)h·ng·mL-1;AUC0-∞ were(6 003.19±538.59)and(7 361.48±1 816.77)h·ng·mL-1,respectively.The mean time percentage of gastric pH>3 after 20 mg qd and 10 mg bid were 82.64%and 61.92%,and the median gastric pH within 24 h were 6.25±1.49 and 3.53±2.05,respectively.The mean gastric pH values within 24 h were 5.71±1.36 and 4.23±1.45,respectively.The correlation analysis of pharmacokinetic/pharmacodynamics showed that there was no significant correlation between the peak concentration of drug in plasma and the inhibitory effect of acid.Conclusion Compared with the 20 mg qd group and the 10 mg bid group,the acid inhibition effect is better,the administration times are less,and the safety of the two administration regimes is good.
7.Effects of emodin modulation of the HIF-1α/VEGF pathway on vascular endothelial cells damage in diabetic macroangiopathy rats
Qiu-Xiao ZHU ; Hui-Yao HAO ; Zi-Bo LIU ; Ming GAO ; Fang ZHANG ; Jing ZHOU ; Zhi-Hua HAO ; Li-Hui ZHANG ; Yong-Mei HAO
The Chinese Journal of Clinical Pharmacology 2024;40(6):859-863
Objective To investigate the impact of emodin(EM)on vascular endothelial cell injury in rats with diabetes macroangiopathy by regulating hypoxia inducible factor-1α(HIF-1α)/vascular endothelial growth factor(VEGF)signaling pathway.Methods SD rats were divided into blank group and modeling group,the rats in the modeling group were fed with high fat and high sugar combined with N-nitro-L-arginine methyl ester to build the diabetes macroangiopathy model,and the blank group was fed with ordinary diet.The vascular endothelial cells successfully isolated from the thoracic aorta of rats in blank group and modeling group were named control group and model group,respectively.The vascular endothelial cells in the modeling group were divided into model group,dimethyloxallyl glycine(DMOG)group(10 μmol·L-1DMOG),combined group(80 mg·L-1EM+10 μmol·L-1 DMOG)and experimental-L,-M,-H groups(20,40,80 mg·L-1 EM).The apoptosis of rat vascular endothelial cells was detected by flow cytometry;Western blot was applied to detect the expression of HIF-1αand VEGF proteins in rat vascular endothelial cells.Results The apoptosis rates of vascular endothelial cells in experimental-M,-H groups,DMOG group,combined group,model group and control group were(10.18±0.36)%,(6.28±0.20)%,(24.96±1.18)%,(12.36±0.49)%,(18.76±0.68)%and(4.59±0.26)%;HIF-1α protein levels were 0.96±0.07,0.78±0.06,2.03±0.12,1.05±0.13,1.58±0.12 and 0.69±0.05;VEGF protein levels were 0.59±0.05,0.23±0.02,0.98±0.06,0.63±0.04,0.86±0.07 and 0.11±0.01.The above indexes in the model group were compared with the control,DMOG,experimental-M and experimental-H groups,and the above indexes in the combined group were compared with the experimental-H group,and the differences were statistically significant(all P<0.05).Conclusion EM may inhibit HIF-1α/VEGF pathway to improve vascular endothelial cell injury in rats with diabetes macroangiopathy.
8.Clinical trial of empagliflozin and linagliptin in the treatment of patients with type 2 diabetes mellitus with heart failure
Guang-Hui CHENG ; Xin-Jun LI ; Ying-Jie LI ; Hui WANG ; Dan-Dan CUI ; Hai-Yang ZHANG ; Zi-Jian WANG
The Chinese Journal of Clinical Pharmacology 2024;40(8):1131-1135
Objective To compare the efficacy and safety of empagliflozin and linagliptin in the treatment of patients with type 2 diabetes mellitus(T2DM)with heart failure(HF).Methods Patients with T2DM and HF were randomly into control group and treatment group.Both groups were treated with individualized anti-HF and metformin-based hypoglycemic therapy.On this basis,the control group was given linagliptin orally(5 mg each time,once a day),while the treatment group was given oral administration of empagliflozin 10 mg every day.Patients in both groups were treated continuously for 6 months.The clinical efficacy and blood glucose indicators[fasting blood glucose(FBG),2 h postprandial blood glucose(2 h PBG),hemoglobin A1c(HbA1c)],cardiac molecular markers[N-terminal pro-brain natriuretic peptide(NT-proBNP),fibroblast growth factor 23(FGF23),copeptin(CPP)]and caridac function indicators[left ventricular end-diastolic diameter(LVEDD),left ventricular ejection fraction(LVEF),left ventricular remodeling index(LVRI)]before and after treatment were compared,and the adverse drug reactions were recorded.Results There were 40 cases in treatment group and 40 cases in control group.After treatment,the total effective rates in treatment group and control group were 97.50%(39 cases/40 cases)and 80.00%(32 cases/40 cases),with no significant difference(P<0.05).The FBG levels in treatment group and control group were(7.64±1.18)and(7.83±1.24)mmol·L-1;2 h PBG levels were(8.97±1.46)and(9.04±1.35)mmol·L-1;HbA1c levels were(7.58±1.27)%and(7.65±1.42)%,all with no significant difference(all P>0.05).The NT-proBNP levels in treatment group and control group were(612.53±204.62)and(1 045.24±316.75)pg·mL-1;FGF23 levels were(362.74±62.61)and(493.27±74.64)μg·L-1;CPP levels were(12.58±3.43)and(16.87±4.36)pmol·L-1;LVEDD values were(51.19±2.36)and(53.35±2.24)mm;LVEF values were(52.69±3.38)%and(50.28±3.75)%;LVRI values were(2.62±0.29)and(2.96±0.33)kg·L-1,all with significant difference(all P<0.05).The incidence rates of adverse reactions in treatment group and control group were 5.00%(2 cases/40 cases)and 10.00%(4 cases/40 cases),with no significant difference(P>0.05).Conclusion Both empagliflozin and linagliptin can effectively reduce the blood glucose in patients with T2DM complicated with HF.Empagliflozin can better promote the improvement of cardiac function in patients without significantly increase the incidence of adverse drug reactions.
9.Influence of lncRNA ZFAS1 on cisplatin sensitivity in glioma via miR-193b-3p regulation
Hui ZHANG ; Kuan-Yun ZHENG ; Li-Na QI ; Zi-Jiao XUE
The Chinese Journal of Clinical Pharmacology 2024;40(12):1774-1778
Objective To investigate the role of long non-coding RNA(lnc RNA)ZFAS1 in glioma cells'sensitivity to cisplatin and its underlying mechanisms.Methods By analyzing the knockdown of ZFAS1 on the sensitivity of glioma cells to cisplatin using real-time fluorescence quantitative polymerase chain reaction(qRT-PCR)experiments,and the cells were divided into sh-NC group(transfected with sh-NC lentiviral plasmid),sh#1 group(transfected with sh-ZFAS1-1 lentiviral plasmid)and sh#2 group(transfected with sh-ZFAS1-2 lentiviral plasmid).Dual luciferase experiments verified the interaction between ZFAS1 and miR-193b-3p,and the cells were divided into ZFAS1-WT+NC inhibitor group(transfected with ZFAS1 wild-type plasmid and NC inhibitor),ZFAS1-WT+miR-193b-3p inhibitor group(transfected with ZFAS1 wild-type plasmid and miR-193b-3p inhibitor),ZFAS1-Mut+NC inhibitor group(transfected with ZFAS1 mutant plasmid and NC inhibitor)and ZFAS1-Mut+miR-193b-3p inhibitor group(transfected with ZFAS1 mutant plasmid and miR-193b-3p inhibitor).Cell counting kit-8(CCK-8)and terminal deoxynucleotidly transferase mediated labeling(TUNEL)experiments were used to analyze the effect of ZFAS1/miR-193b-3p on the sensitivity of glioma cells to cisplatin,and the cells were divided into blank control group(0 μg·mL-1 cisplatin treatment of U251 cells),0.5 μg·mL-1 cisplatin+sh-NC+NC inhibitor group(0.5 μg·mL-1 cisplatin treatment of U251 cells co-transfected with sh-NC lentiviral plasmid and NC inhibitor),0.5 μg·mL-1 cisplatin+sh#1+NC inhibitor group(0.5 μg·mL-1cisplatin treatment of U251 cells co-transfected with sh-NC lentiviral plasmid and NC inhibitor),and 0.5 μg·mL-1 cisplatin+sh#1+miR-193b-3p inhibitor group(0.5 μg·mL-1 cisplatin treatment of U251 cells co-transfected with sh-ZFAS1-1 lentiviral plasmid and miR-193b-3p inhibitor).Results The results of the experiment showed that the expression levels of ZFAS1 in the sh-NC group,sh#1 group and sh#2 group were 1.00±0.17,0.48±0.06 and 0.68±0.08.The fluorescence activities of ZFAS 1-WT+NC inhibitor group,ZFAS1-WT+miR-193b-3p inhibitor group,ZFAS1-Mut+NC inhibitor group and ZFAS1-Mut+miR-193b-3p inhibitor group were 1.00±0.10,1.45±0.11,1.02±0.09 and 0.97±0.13.The proliferation rates at 72 h for the blank control group,0.5 μg·mL-1 cisplatin+sh-NC+NC inhibitor group,0.5 μg·mL-1 cisplatin+sh#1+NC inhibitor group and 0.5 μg·mL-1cisplatin+sh# 1+miR-193b-3p inhibitor group were(100.00±14.13)%,(96.62±9.82)%,(60.56±6.08)%and(78.64±7.22)%;while the apoptosis rates at 72 h were(9.52±1.11)%,(10.12±1.34)%,(16.08±1.52)%and(12.22±1.19)%.Comparied between blank control group and 0.5 μg·mL-1 cisplatin+sh-NC+NC inhibitor group,0.5 μg·mL-1 cisplatin+sh#1+NC inhibitor group and 0.5 μg·mL-1 cisplatin+sh # 1+miR-193b-3p inhibitor group,the differences were statistically significant(all P<0.05).Conclusion This study reveals the important role of ZFAS1 in cisplatin sensitivity in glioma and elucidates its mechanism of influencing drug sensitivity through the regulation of miR-193b-3p.
10.iTRAQ-based proteomics reveals the mechanism of action of Yinlai decoction in treating pneumonia in mice consuming a high-calorie diet
Qianqian Li ; Tiegang Liu ; Chen Bai ; Xueyan Ma ; Hui Liu ; Zi ; an Zheng ; Yuxiang Wan ; He Yu ; Yuling Ma ; Xiaohong Gu
Journal of Traditional Chinese Medical Sciences 2024;11(1):21-32
Objective:
To uncover the underlying mechanisms of action of the Yinlai decoction on high-calorie diet-induced pneumonia through proteomics analysis.
Methods:
Based on the Gene Expression Omnibus (GEO) database, lung tissue samples from normal and high-fat diet (HFD) fed mice in the GSE16377 dataset were selected as test cohorts to identify differentially expressed genes and conduct bioinformatics analyses. In the animal experiments, mice were randomly divided into the control (N), high-calorie diet pneumonia (M), and Yinlai decoction treatment (Y) groups. Mice in the M group received high-calorie feed and a 0.5 mg/mL lipopolysaccharide solution spray for 30 min for 3 d. The mice in the Y group were intragastrically administered 2 mL/10 g Yinlai decoction twice daily for 3 d. Pathological evaluation of the lung tissue was performed. Differentially expressed proteins (DEPs) in the lung tissue were identified using quantitative proteomics and bioinformatics analyses. The drug-target relationships between Yinlai decoction and core DEPs in the lung tissue were verified using AutoDock Vina and Molecular Graphics Laboratory (MGL) Tools. DEPs were verified by western blot.
Results:
GEO data mining showed that an HFD altered oxidative phosphorylation in mouse lung tissue. The Yinlai decoction alleviated pathological damage to lung tissue and pneumonia in mice that were fed a high-calorie diet. A total of 47 DEPs were identified between the Y and M groups. Enrichment analysis revealed their association with energy metabolism pathways such as the tricarboxylic acid cycle (TCA) and oxidative phosphorylation. The protein-protein interaction network revealed that Atp5a1, Pdha1, and Sdha were the target proteins mediating the therapeutic effects of Yinlai decoction. Molecular docking results suggested that the mechanism of the therapeutic effect of Yinlai decoction involves the binding of brassinolide, praeruptorin B, chrysoeriol, and other components in Yinlai decoction to Atp5a1.
Conclusion
The Yinlai decoction alleviated lung tissue damage and pneumonia in mice that were fed a high-calorie diet by regulating the TCA and oxidative phosphorylation. Our study highlights the importance of a healthy diet for patients with pneumonia and provides a scientific basis for the prevention and treatment of pneumonia through dietary adjustments.


Result Analysis
Print
Save
E-mail