1.The Impairment Attention Capture by Topological Change in Children With Autism Spectrum Disorder
Hui-Lin XU ; Huan-Jun XI ; Tao DUAN ; Jing LI ; Dan-Dan LI ; Kai WANG ; Chun-Yan ZHU
Progress in Biochemistry and Biophysics 2025;52(1):223-232
ObjectiveAutism spectrum disorder (ASD) is a neurodevelopmental condition characterized by difficulties with communication and social interaction, restricted and repetitive behaviors. Previous studies have indicated that individuals with ASD exhibit early and lifelong attention deficits, which are closely related to the core symptoms of ASD. Basic visual attention processes may provide a critical foundation for their social communication and interaction abilities. Therefore, this study explores the behavior of children with ASD in capturing attention to changes in topological properties. MethodsOur study recruited twenty-seven ASD children diagnosed by professional clinicians according to DSM-5 and twenty-eight typically developing (TD) age-matched controls. In an attention capture task, we recorded the saccadic behaviors of children with ASD and TD in response to topological change (TC) and non-topological change (nTC) stimuli. Saccadic reaction time (SRT), visual search time (VS), and first fixation dwell time (FFDT) were used as indicators of attentional bias. Pearson correlation tests between the clinical assessment scales and attentional bias were conducted. ResultsThis study found that TD children had significantly faster SRT (P<0.05) and VS (P<0.05) for the TC stimuli compared to the nTC stimuli, while the children with ASD did not exhibit significant differences in either measure (P>0.05). Additionally, ASD children demonstrated significantly less attention towards the TC targets (measured by FFDT), in comparison to TD children (P<0.05). Furthermore, ASD children exhibited a significant negative linear correlation between their attentional bias (measured by VS) and their scores on the compulsive subscale (P<0.05). ConclusionThe results suggest that children with ASD have difficulty shifting their attention to objects with topological changes during change detection. This atypical attention may affect the child’s cognitive and behavioral development, thereby impacting their social communication and interaction. In sum, our findings indicate that difficulties in attentional capture by TC may be a key feature of ASD.
2.Regulation of Immune Function by Exercise-induced Metabolic Remodeling
Hui-Guo WANG ; Gao-Yuan YANG ; Xian-Yan XIE ; Yu WANG ; Zi-Yan LI ; Lin ZHU
Progress in Biochemistry and Biophysics 2025;52(6):1574-1586
Exercise-induced metabolic remodeling is a fundamental adaptive process whereby the body reorganizes systemic and cellular metabolism to meet the dynamic energy demands posed by physical activity. Emerging evidence reveals that such remodeling not only enhances energy homeostasis but also profoundly influences immune function through complex molecular interactions involving glucose, lipid, and protein metabolism. This review presents an in-depth synthesis of recent advances, elucidating how exercise modulates immune regulation via metabolic reprogramming, highlighting key molecular mechanisms, immune-metabolic signaling axes, and the authors’ academic perspective on the integrated “exercise-metabolism-immunity” network. In the domain of glucose metabolism, regular exercise improves insulin sensitivity and reduces hyperglycemia, thereby attenuating glucose toxicity-induced immune dysfunction. It suppresses the formation of advanced glycation end-products (AGEs) and interrupts the AGEs-RAGE-inflammation positive feedback loop in innate and adaptive immune cells. Importantly, exercise-induced lactate, traditionally viewed as a metabolic byproduct, is now recognized as an active immunomodulatory molecule. At high concentrations, lactate can suppress immune function through pH-mediated effects and GPR81 receptor activation. At physiological levels, it supports regulatory T cell survival, promotes macrophage M2 polarization, and modulates gene expression via histone lactylation. Additionally, key metabolic regulators such as AMPK and mTOR coordinate immune cell energy balance and phenotype; exercise activates the AMPK-mTOR axis to favor anti-inflammatory immune cell profiles. Simultaneously, hypoxia-inducible factor-1α (HIF-1α) is transiently activated during exercise, driving glycolytic reprogramming in T cells and macrophages, and shaping the immune landscape. In lipid metabolism, exercise alleviates adipose tissue inflammation by reducing fat mass and reshaping the immune microenvironment. It promotes the polarization of adipose tissue macrophages from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype. Moreover, exercise alters the secretion profile of adipokines—raising adiponectin levels while reducing leptin and resistin—thereby influencing systemic immune balance. At the circulatory level, exercise improves lipid profiles by lowering pro-inflammatory free fatty acids (particularly saturated fatty acids) and triglycerides, while enhancing high-density lipoprotein (HDL) function, which has immunoregulatory properties such as endotoxin neutralization and macrophage cholesterol efflux. Regarding protein metabolism, exercise triggers the expression of heat shock proteins (HSPs) that act as intracellular chaperones and extracellular immune signals. Exercise also promotes the secretion of myokines (e.g., IL-6, IL-15, irisin, FGF21) from skeletal muscle, which modulate immune responses, facilitate T cell and macrophage function, and support immunological memory. Furthermore, exercise reshapes amino acid metabolism, particularly of glutamine, arginine, and branched-chain amino acids (BCAAs), thereby influencing immune cell proliferation, biosynthesis, and signaling. Leucine-mTORC1 signaling plays a key role in T cell fate, while arginine metabolism governs macrophage polarization and T cell activation. In summary, this review underscores the complex, bidirectional relationship between exercise and immune function, orchestrated through metabolic remodeling. Future research should focus on causative links among specific metabolites, signaling pathways, and immune phenotypes, as well as explore the epigenetic consequences of exercise-induced metabolic shifts. This integrated perspective advances understanding of exercise as a non-pharmacological intervention for immune regulation and offers theoretical foundations for individualized exercise prescriptions in health and disease contexts.
3.Safety and efficacy of Angong Niuhuang Pills in patients with moderate-to-severe acute ischemic stroke (ANGONG TRIAL): A randomized double-blind placebo-controlled pilot clinical trial.
Shengde LI ; Anxin WANG ; Lin SHI ; Qin LIU ; Xiaoling GUO ; Kun LIU ; Xiaoli WANG ; Jie LI ; Jianming ZHU ; Qiuyi WU ; Qingcheng YANG ; Xianbo ZHUANG ; Hui YOU ; Feng FENG ; Yishan LUO ; Huiling LI ; Jun NI ; Bin PENG
Chinese Medical Journal 2025;138(5):579-588
BACKGROUND:
Preclinical studies have indicated that Angong Niuhuang Pills (ANP) reduce cerebral infarct and edema volumes. This study aimed to investigate whether ANP safely reduces cerebral infarct and edema volumes in patients with moderate to severe acute ischemic stroke.
METHODS:
This randomized, double-blind, placebo-controlled pilot trial included patients with acute ischemic stroke with National Institutes of Health Stroke Scale (NIHSS) scores ranging from 10 to 20 in 17 centers in China between April 2021 and July 2022. Patients were allocated within 36 h after onset via block randomization to receive ANP or placebo (3 g/day for 5 days). The primary outcomes were changes in cerebral infarct and edema volumes after 14 days of treatment. The primary safety outcome was severe adverse events (SAEs) for 90 days.
RESULTS:
There were 57 and 60 patients finally included in the ANP and placebo groups, respectively for modified intention-to-treat analysis. The median age was 66.0 years, and the median NIHSS score at baseline was 12.0. The changes in cerebral infarct volume at day 14 were 0.3 mL and 0.4 mL in the ANP and placebo groups, respectively (median difference: -7.1 mL; interquartile range [IQR]: -18.3 to 2.3 mL, P = 0.30). The changes in cerebral edema volume of the ANP and placebo groups on day 14 were 11.4 mL and 4.0 mL, respectively ( median difference: 3.0 mL, IQR: -1.3 to 9.9 mL, P = 0.15). The rates of SAE within 90 days were similar in the ANP (3/57, 5%) and placebo (7/60, 12%) groups ( P = 0.36). Changes in serum mercury and arsenic concentrations were comparable. In patients with large artery atherosclerosis, ANP reduced the cerebral infarct volume at 14 days (median difference: -12.3 mL; IQR: -27.7 to -0.3 mL, P = 0.03).
CONCLUSIONS:
ANP showed a similar safety profile to placebo and non-significant tendency to reduce cerebral infarct volume in patients with moderate-to-severe stroke. Further studies are warranted to assess the efficacy of ANP in reducing cerebral infarcts and improving clinical prognosis.
TRAIL REGISTRATION
Clinicaltrials.gov , No. NCT04475328.
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Double-Blind Method
;
Drugs, Chinese Herbal/adverse effects*
;
Ischemic Stroke/drug therapy*
;
Pilot Projects
;
Stroke/drug therapy*
;
Treatment Outcome
4.Five-year outcomes of metabolic surgery in Chinese subjects with type 2 diabetes.
Yuqian BAO ; Hui LIANG ; Pin ZHANG ; Cunchuan WANG ; Tao JIANG ; Nengwei ZHANG ; Jiangfan ZHU ; Haoyong YU ; Junfeng HAN ; Yinfang TU ; Shibo LIN ; Hongwei ZHANG ; Wah YANG ; Jingge YANG ; Shu CHEN ; Qing FAN ; Yingzhang MA ; Chiye MA ; Jason R WAGGONER ; Allison L TOKARSKI ; Linda LIN ; Natalie C EDWARDS ; Tengfei YANG ; Rongrong ZHANG ; Weiping JIA
Chinese Medical Journal 2025;138(4):493-495
5.Sesquiterpenoids from resin of Commiphora myrrha.
Hao HUANG ; Ran WANG ; Ya-Zhu YANG ; Jiao-Jiao YIN ; Yue LIN ; Yun-Fang ZHAO ; Hui-Xia HUO ; Jun LI
China Journal of Chinese Materia Medica 2025;50(3):702-707
The chemical constituents of Commiphora myrrha was investigated by column chromatography on silica gel, ODS, Sephadex LH-20, and semi-preparative HPLC. Their structures were elucidated by comprehensive spectroscopic methods including UV, IR, MS, NMR, as well as ECD calculation. Seven compounds were isolated from the dichloromethane-soluble fraction of C. myrrha and their structures were identified as(1S,2R,4S,5R,8S)-guaiane-2-hydroxy-7(11),10(15)-dien-6-oxo-12,8-olide(1), commipholide E(2), myrrhterpenoid H(3), myrrhterpenoid I(4), myrrhterpenoid E(5), 2α-methoxy-8α-hydroxy-6-oxogermacra-1(10),7(11)-dien-8,12-olide(6), 8,12-epoxy-1α,9α-hydroxy-eudesma-7,11-diene-6-dione(7). Compound 1 was a new compound and named myrrhterpenoid P. Compound 7 was isolated from Commiphora genus for the first time. Compounds 2, 5, and 6 significantly inhibited nitric oxide(NO) production in LPS-stimulated RAW264.7 cells, with IC_(50) values of(49.67±4.16),(40.80±1.27),(47.22±0.87) μmol·L~(-1), respectively [indomethacin as the positive control, with IC_(50) value of(63.92±2.60) μmol·L~(-1)].
Commiphora/chemistry*
;
Animals
;
Mice
;
Resins, Plant/chemistry*
;
Sesquiterpenes/isolation & purification*
;
Molecular Structure
;
Nitric Oxide
;
Macrophages/metabolism*
;
RAW 264.7 Cells
;
Drugs, Chinese Herbal/pharmacology*
6.Mechanism of vanillic acid against cardiac fibrosis induced by isoproterenol in mice based on Drp1/HK1/NLRP3 and mitochondrial apoptosis signaling pathways.
Hai-Bo HE ; Mian WU ; Jie XU ; Qian-Qian XU ; Fang-Zhu WAN ; Hua-Qiao ZHONG ; Ji-Hong ZHANG ; Gang ZHOU ; Hui-Lin QIN ; Hao-Ran LI ; Hai-Ming TANG
China Journal of Chinese Materia Medica 2025;50(8):2193-2208
This study investigated the effects and underlying mechanisms of vanillic acid(VA) against cardiac fibrosis(CF) induced by isoproterenol(ISO) in mice. Male C57BL/6J mice were randomly divided into control group, VA group(100 mg·kg~(-1), ig), ISO group(10 mg·kg~(-1), sc), ISO + VA group(10 mg·kg~(-1), sc + 100 mg·kg~(-1), ig), ISO + dynamin-related protein 1(Drp1) inhibitor(Mdivi-1) group(10 mg·kg~(-1), sc + 50 mg·kg~(-1), ip), and ISO + VA + Mdivi-1 group(10 mg·kg~(-1), sc + 100 mg·kg~(-1), ig + 50 mg·kg~(-1), ip). The treatment groups received the corresponding medications once daily for 14 consecutive days. On the day after the last administration, cardiac functions were evaluated, and serum and cardiac tissue samples were collected. These samples were analyzed for serum aspartate aminotransferase(AST), lactate dehydrogenase(LDH), creatine kinase-MB(CK-MB), cardiac troponin I(cTnI), reactive oxygen species(ROS), interleukin(IL)-1β, IL-4, IL-6, IL-10, IL-18, and tumor necrosis factor-α(TNF-α) levels, as well as cardiac tissue catalase(CAT), glutathione(GSH), malondialdehyde(MDA), myeloperoxidase(MPO), superoxide dismutase(SOD), total antioxidant capacity(T-AOC) activities, and cytochrome C levels in mitochondria and cytoplasm. Hematoxylin-eosin, Masson, uranium acetate and lead citrate staining were used to observe morphological and mitochondrial ultrastructural changes in the cardiac tissues, and myocardial injury area and collagen volume fraction were calculated. Flow cytometry was applied to detect the relative content and M1/M2 polarization of cardiac macrophages. The mRNA expression levels of macrophage polarization markers [CD86, CD206, arginase 1(Arg-1), inducible nitric oxide synthase(iNOS)], CF markers [type Ⅰ collagen(Coll Ⅰ), Coll Ⅲ, α-smooth muscle actin(α-SMA)], and cytokines(IL-1β, IL-4, IL-6, IL-10, IL-18, TNF-α) in cardiac tissues were determined by quantitative real-time PCR. Western blot was used to detect the protein expression levels of Coll Ⅰ, Coll Ⅲ, α-SMA, Drp1, p-Drp1, voltage-dependent anion channel(VDAC), hexokinase 1(HK1), NOD-like receptor protein 3(NLRP3), apoptosis-associated speck-like protein(ASC), caspase-1, cleaved-caspase-1, gasdermin D(GSDMD), cleaved N-terminal gasdermin D(GSDMD-N), IL-1β, IL-18, B-cell lymphoma-2(Bcl-2), B-cell lymphoma-xl(Bcl-xl), Bcl-2-associated death promoter(Bad), Bcl-2-associated X protein(Bax), apoptotic protease activating factor-1(Apaf-1), pro-caspase-3, cleaved-caspase-3, pro-caspase-9, cleaved-caspase-9, poly(ADP-ribose) polymerase-1(PARP-1), and cleaved-PARP-1 in cardiac tissues. The results showed that VA significantly improved cardiac function in mice with CF, reduced myocardial injury area and cardiac index, and decreased serum levels of AST, CK-MB, cTnI, LDH, ROS, IL-1β, IL-6, IL-18, and TNF-α. VA also lowered MDA and MPO levels, mRNA expressions of IL-1β, IL-6, IL-18, and TNF-α, and mRNA and protein expressions of Coll Ⅰ, Coll Ⅲ, and α-SMA in cardiac tissues, and increased serum levels of IL-4 and IL-10, cardiac tissue levels of CAT, GSH, SOD, and T-AOC, and mRNA expressions of IL-4 and IL-10. Additionally, VA ameliorated cardiac pathological damage, inhibited myocardial cell apoptosis, inflammatory infiltration, and collagen fiber deposition, reduced collagen volume fraction, and alleviated mitochondrial damage. VA decreased the ratio of F4/80~+CD86~+ M1 cells and the mRNA expressions of CD86 and iNOS in cardiac tissue, and increased the ratio of F4/80~+CD206~+ M2 cells and the mRNA expressions of CD206 and Arg-1. VA also reduced protein expressions of p-Drp1, VDAC, NLRP3, ASC, caspase-1, cleaved-caspase-1, GSDMD, GSDMD-N, IL-1β, IL-18, Bad, Bax, Apaf-1, cleaved-caspase-3, cleaved-caspase-9, cleaved-PARP-1, and cytoplasmic cytochrome C, and increased the expressions of HK1, Bcl-2, Bcl-xl, pro-caspase-3, pro-caspase-9 proteins, as well as the Bcl-2/Bax and Bcl-xl/Bad ratios and mitochondrial cytochrome C content. These results indicate that VA has a significant ameliorative effect on ISO-induced CF in mice, alleviates ISO-induced oxidative damage and inflammatory response, and its mechanism may be closely related to the inhibition of Drp1/HK1/NLRP3 and mitochondrial apoptosis signaling pathways, suppression of myocardial cell inflammatory infiltration and collagen fiber deposition, reduction of collagen volume fraction and CollⅠ, Coll Ⅲ, and α-SMA expressions, thus mitigating CF.
Animals
;
Isoproterenol/adverse effects*
;
Male
;
Mice
;
Signal Transduction/drug effects*
;
Vanillic Acid/administration & dosage*
;
Dynamins/genetics*
;
Mice, Inbred C57BL
;
Fibrosis/genetics*
;
Apoptosis/drug effects*
;
Mitochondria/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Myocardium/metabolism*
;
Humans
7.Three new chalcone C-glycosides from Carthami Flos.
Jia-Xu BAO ; Yong-Xiang WANG ; Xian ZHANG ; Ya-Zhu YANG ; Yue LIN ; Jiao-Jiao YIN ; Yun-Fang ZHAO ; Hui-Xia HUO ; Peng-Fei TU ; Jun LI
China Journal of Chinese Materia Medica 2025;50(13):3715-3745
The chemical components of Carthami Flos were investigated by using macroporous resin, silica gel column chromatography, reversed-phase octadecylsilane(ODS) column chromatography, Sephadex LH-20, and semi-preparative high-performance liquid chromatography(HPLC). The planar structures of the compounds were established based on their physicochemical properties and ultraviolet-visible(UV-Vis), infrared(IR), high-resolution electrospray ionization mass spectrometry(HR-ESI-MS), and nuclear magnetic resonance(NMR) spectroscopic technology. The absolute configurations were determined by comparing the calculated and experimental electronic circular dichroism(ECD). Six flavonoid C-glycosides were isolated from the 30% ethanol elution fraction of macroporous resin obtained from the 95% ethanol extract of Carthami Flos, and identified as saffloquinoside F(1), 5-hydroxysaffloneoside(2), iso-5-hydroxysaffloneoside(3), isosafflomin C(4), safflomin C(5), and vicenin 2(6). Among these, the compounds 1 to 3 were new chalcone C-glycosides. The compounds 1, 2, 4, and 5 could significantly increase the viability of H9c2 cardiomyocytes damaged by oxygen-glucose deprivation/reoxygenation(OGD/R) at a concentration of 50 μmol·L~(-1), showing their good cardioprotective activity.
Glycosides/pharmacology*
;
Flowers/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Carthamus tinctorius/chemistry*
;
Chalcones/pharmacology*
;
Animals
8.Sperm tRNA-derived fragments expression is potentially linked to abstinence-related improvement of sperm quality.
Xi-Ren JI ; Rui-Jun WANG ; Zeng-Hui HUANG ; Hui-Lan WU ; Xiu-Hai HUANG ; Hao BO ; Ge LIN ; Wen-Bing ZHU ; Chuan HUANG
Asian Journal of Andrology 2025;27(5):638-645
Recent studies have shown that shorter periods of ejaculatory abstinence may enhance certain sperm parameters, but the molecular mechanisms underlying these improvements are still unclear. This study explored whether reduced abstinence periods could improve semen quality, particularly for use in assisted reproductive technologies (ART). We analyzed semen samples from men with normal sperm counts ( n = 101) and those with low sperm motility or concentration ( n = 53) after 3-7 days of abstinence and then after 1-3 h of abstinence, obtained from the Reproductive & Genetic Hospital of CITIC-Xiangya (Changsha, China). Physiological and biochemical sperm parameters were evaluated, and the dynamics of transfer RNA (tRNA)-derived fragments (tRFs) were analyzed using deep RNA sequencing in five consecutive samples from men with normal sperm counts. Our results revealed significant improvement in sperm motility and a decrease in the DNA fragmentation index after the 1- to 3-h abstinence period. Additionally, we identified 245 differentially expressed tRFs, and the mitogen-activated protein kinase (MAPK) signaling pathway was the most enriched. Further investigations showed significant changes in tRF-Lys-TTT and its target gene mitogen-activated protein kinase kinase 2 ( MAP2K2 ), which indicates a role of tRFs in improving sperm function. These findings provide new insights into how shorter abstinence periods influence sperm quality and suggest that tRFs may serve as biomarkers for male fertility. This research highlights the potential for optimizing ART protocols and improving reproductive outcomes through molecular approaches that target sperm function.
Male
;
Humans
;
Spermatozoa/metabolism*
;
RNA, Transfer/genetics*
;
Sperm Motility/genetics*
;
Adult
;
Semen Analysis
;
Sexual Abstinence/physiology*
;
Sperm Count
;
DNA Fragmentation
9.The Molecular Mechanism of HCQ Reversing Immune Mediators Dysregulation in Severe Infection after Chemotherapy in Acute Myeloid Leukemia and Inducing Programmed Death of Leukemia Cells.
Qing-Lin XU ; Yan-Quan LIU ; He-Hui ZHANG ; Fen WANG ; Zuo-Tao LI ; Zhi-Min YAN ; Shu-Juan CHEN ; Hong-Quan ZHU
Journal of Experimental Hematology 2025;33(4):931-938
OBJECTIVE:
To explore the effects of hydroxychloroquine (HCQ) on immune mediators dysregulation in severe infection after chemotherapy in acute myeloid leukemia (AML) and its molecular mechanism.
METHODS:
Bone marrow or peripheral blood samples of 36 AML patients with severe infection (AML-SI) and 29 AML patients without infection (AML-NI) after chemotherapy were collected from the First Affiliated Hospital of Gannan Medical University from August 2022 to June 2023. In addition, the peripheral blood of 21 healthy subjects from the same period in our hospital was selected as the control group. The mRNA expressions of CXCL12, CXCR4 and CXCR7 were detected by RT-qPCR technology, and the levels of IL-6, IL-8 and TNF-α were detected by ELISA. Leukemia-derived THP-1 cells were selected and constructed as AML disease model. At the same time, bone marrow mesenchymal stem cells (BM-MSCs) from AML-SI patients were co-cultured with THP-1 cells and divided into Mono group and Co-culture group. THP-1 cells were treated with different concentration gradients of HCQ. The cell proliferation activity was subsequently detected by CCK-8 method and apoptosis was detected by Annexin V/PI double staining flow cytometry. ELISA was used to detect the changes of IL-6, IL-8 and TNF-α levels in the supernatant of the cell co-culture system, RT-qPCR was used to detect the mRNA expression changes of the core members of the CXCL12-CXCR4/7 regulatory axis, and Western blot was used to detect the expressions of apoptosis regulatory molecules and related signaling pathway proteins.
RESULTS:
CXCL12, CXCR4, CXCR7, as well as IL-6, IL-8, and TNF-α were all abnormally increased in AML patients, and the increases were more significant in AML-SI patients (P <0.01). Furthermore, there were statistically significant differences between AML-NI patients and AML-SI patients (all P <0.05). HCQ could inhibit the proliferation and induce the apoptosis of THP-1 cells, but the low concentration of HCQ had no significant effect on the killing of THP-1 cells. When THP-1 cells were co-cultured with BM-MSCs of AML patients, the levels of IL-6, IL-8 and TNF-α in the supernatance of Co-culture group were significantly higher than those of Mono group (all P <0.01). After HCQ intervention, the levels of IL-6, IL-8 and TNF-α in cell culture supernatant of Mono group were significantly decreased compared with those before intervention (all P <0.01). Similarly, those of Co-culture group were also significantly decreased (all P <0.001). However, the expression of the core members of the CXCL12-CXCR4/7 regulatory axis was weakly affected by HCQ. HCQ could up-regulate the expression of pro-apoptotic protein Bax, down-regulate the expression of anti-apoptotic protein Bcl-2, as well as simultaneously promote the hydrolytic activation of Caspase-3 when inhibiting the activation level of TLR4/NF-κB pathway, then induce the programmed death of THP-1 cells after intervention.
CONCLUSION
The core members of CXCL12-CXCR4/7 axis and related cytokines may be important mediators of severe infectious immune disorders in AML patients. HCQ can inhibit cytokine levels to reverse immune mediators dysregulation and suppress malignant biological characteristics of leukemia cells. The mechanisms may be related to regulating the expression of Bcl-2 family proteins, hydrolytically activating Caspase-3 and inhibiting the activation of TLR4/NF-κB signaling pathway.
Humans
;
Leukemia, Myeloid, Acute/immunology*
;
Hydroxychloroquine/pharmacology*
;
Receptors, CXCR4/metabolism*
;
Apoptosis/drug effects*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Chemokine CXCL12/metabolism*
;
Interleukin-8/metabolism*
;
Interleukin-6/metabolism*
;
Receptors, CXCR/metabolism*
;
Mesenchymal Stem Cells
;
THP-1 Cells
10.Wip1 Phosphatase Regulates Hematopoietic Function in Mouse Spleen.
Xiao-Ping REN ; Zhi-Lin CHANG ; Yi WANG ; Hui-Min ZHU ; Wen-Yan HE
Journal of Experimental Hematology 2025;33(5):1491-1498
OBJECTIVE:
To investigate the regulatory effect of Wip1 phosphatase on hematopoietic function in the mouse spleen.
METHODS:
Wip1 knockout mice were bred, and the effect of Wip1 deletion on the proportion and number of hematopoietic stem/progenitor cells, as well as their mature subsets in mouse spleen was detected by flow cytometry. The Proteome ProfilerTM antibody array was used to analyze the role of Wip1 deletion on the expression of inflammatory cytokines in CD45highCD11b+ myeloid cells sorted from mouse spleen.
RESULTS:
Wip1 deletion resulted in smaller size and significant reduction of cell number in the mouse spleen. The absolute numbers of hematopoietic stem/progenitor cells were decreased. Meanwhile, the absolute number of T and B lymphocytes also significantly declined. However, the proportion of erythroid progenitors and erythroid cells at various stage significantly increased, but the number of mature erythroid cells decreased. Furthermore, the myeloid cells and their subsets neutrophils, monocytes, CD45highCD11b+ and CD45lowCD11b+ were all reduced. CD45highCD11b+ myeloid cells displayed proinflammatory phenotype in the spleen.
CONCLUSION
Wip1 gene deletion impairs normal hematopoietic function in the mouse spleen, leading to a significant reduction of mature hematopoietic cells of various lineages, and proinflammatory phenotype in CD45highCD11b+ myeloid cells.
Animals
;
Mice
;
Spleen/cytology*
;
Mice, Knockout
;
Hematopoietic Stem Cells/cytology*
;
Myeloid Cells/cytology*
;
Protein Phosphatase 2C
;
Hematopoiesis
;
Flow Cytometry

Result Analysis
Print
Save
E-mail