1.Regulation of Immune Function by Exercise-induced Metabolic Remodeling
Hui-Guo WANG ; Gao-Yuan YANG ; Xian-Yan XIE ; Yu WANG ; Zi-Yan LI ; Lin ZHU
Progress in Biochemistry and Biophysics 2025;52(6):1574-1586
Exercise-induced metabolic remodeling is a fundamental adaptive process whereby the body reorganizes systemic and cellular metabolism to meet the dynamic energy demands posed by physical activity. Emerging evidence reveals that such remodeling not only enhances energy homeostasis but also profoundly influences immune function through complex molecular interactions involving glucose, lipid, and protein metabolism. This review presents an in-depth synthesis of recent advances, elucidating how exercise modulates immune regulation via metabolic reprogramming, highlighting key molecular mechanisms, immune-metabolic signaling axes, and the authors’ academic perspective on the integrated “exercise-metabolism-immunity” network. In the domain of glucose metabolism, regular exercise improves insulin sensitivity and reduces hyperglycemia, thereby attenuating glucose toxicity-induced immune dysfunction. It suppresses the formation of advanced glycation end-products (AGEs) and interrupts the AGEs-RAGE-inflammation positive feedback loop in innate and adaptive immune cells. Importantly, exercise-induced lactate, traditionally viewed as a metabolic byproduct, is now recognized as an active immunomodulatory molecule. At high concentrations, lactate can suppress immune function through pH-mediated effects and GPR81 receptor activation. At physiological levels, it supports regulatory T cell survival, promotes macrophage M2 polarization, and modulates gene expression via histone lactylation. Additionally, key metabolic regulators such as AMPK and mTOR coordinate immune cell energy balance and phenotype; exercise activates the AMPK-mTOR axis to favor anti-inflammatory immune cell profiles. Simultaneously, hypoxia-inducible factor-1α (HIF-1α) is transiently activated during exercise, driving glycolytic reprogramming in T cells and macrophages, and shaping the immune landscape. In lipid metabolism, exercise alleviates adipose tissue inflammation by reducing fat mass and reshaping the immune microenvironment. It promotes the polarization of adipose tissue macrophages from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype. Moreover, exercise alters the secretion profile of adipokines—raising adiponectin levels while reducing leptin and resistin—thereby influencing systemic immune balance. At the circulatory level, exercise improves lipid profiles by lowering pro-inflammatory free fatty acids (particularly saturated fatty acids) and triglycerides, while enhancing high-density lipoprotein (HDL) function, which has immunoregulatory properties such as endotoxin neutralization and macrophage cholesterol efflux. Regarding protein metabolism, exercise triggers the expression of heat shock proteins (HSPs) that act as intracellular chaperones and extracellular immune signals. Exercise also promotes the secretion of myokines (e.g., IL-6, IL-15, irisin, FGF21) from skeletal muscle, which modulate immune responses, facilitate T cell and macrophage function, and support immunological memory. Furthermore, exercise reshapes amino acid metabolism, particularly of glutamine, arginine, and branched-chain amino acids (BCAAs), thereby influencing immune cell proliferation, biosynthesis, and signaling. Leucine-mTORC1 signaling plays a key role in T cell fate, while arginine metabolism governs macrophage polarization and T cell activation. In summary, this review underscores the complex, bidirectional relationship between exercise and immune function, orchestrated through metabolic remodeling. Future research should focus on causative links among specific metabolites, signaling pathways, and immune phenotypes, as well as explore the epigenetic consequences of exercise-induced metabolic shifts. This integrated perspective advances understanding of exercise as a non-pharmacological intervention for immune regulation and offers theoretical foundations for individualized exercise prescriptions in health and disease contexts.
2.Bioinformatics analysis of efferocytosis-related genes in diabetic kidney disease and screening of targeted traditional Chinese medicine.
Yi KANG ; Qian JIN ; Xue-Zhe WANG ; Meng-Qi ZHOU ; Hui-Juan ZHENG ; Dan-Wen LI ; Jie LYU ; Yao-Xian WANG
China Journal of Chinese Materia Medica 2025;50(14):4037-4052
This study employed bioinformatics to screen the feature genes related to efferocytosis in diabetic kidney disease(DKD) and explores traditional Chinese medicine(TCM) regulating these feature genes. The GSE96804 and GSE30528 datasets were integrated as the training set, and the intersection of differentially expressed genes and efferocytosis-related genes(ERGs) was identified as DKD-ERGs. Subsequently, correlation analysis, protein-protein interaction(PPI) network construction, enrichment analysis, and immune infiltration analysis were performed. Consensus clustering was conducted on DKD patients based on the expression levels of DKD-ERGs, and the expression levels, immune infiltration characteristics, and gene set variations between different subtypes were explored. Eight machine learning models were constructed and their prediction performance was evaluated. The best-performing model was evaluated by nomograms, calibration curves, and external datasets, followed by the identification of efferocytosis-related feature genes associated with DKD. Finally, potential TCMs that can regulate these feature genes were predicted. The results showed that the training set contained 640 differentially expressed genes, and after intersecting with ERGs, 12 DKD-ERGs were obtained, which demonstrated mutual regulation and immune modulation effects. Consensus clustering divided DKD into two subtypes, C1 and C2. The support vector machine(SVM) model had the best performance, predicting that growth arrest-specific protein 6(GAS6), S100 calcium-binding protein A9(S100A9), C-X3-C motif chemokine ligand 1(CX3CL1), 5'-nucleotidase(NT5E), and interleukin 33(IL33) were the feature genes of DKD. Potential TCMs with therapeutic effects included Astragali Radix, Trionycis Carapax, Sargassum, Rhei Radix et Rhizoma, Curcumae Radix, and Alismatis Rhizoma, which mainly function to clear heat, replenish deficiency, activate blood, resolve stasis, and promote urination and drain dampness. Molecular docking revealed that the key components of these TCMs, including β-sitosterol, quercetin, and sitosterol, exhibited good binding activity with the five target genes. These results indicated that efferocytosis played a crucial role in the development and progression of DKD. The feature genes closely related to both DKD and efferocytosis, such as GAS6, S100A9, CX3CL1, NT5E, and IL33, were identified. TCMs such as Astragali Radix, Trionycis Carapa, Sargassum, Rhei Radix et Rhizoma, Curcumae Radix, and Alismatis Rhizoma may provide a new therapeutic strategy for DKD by regulating efferocytosis.
Humans
;
Computational Biology
;
Diabetic Nephropathies/physiopathology*
;
Protein Interaction Maps
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal
;
Phagocytosis/genetics*
;
Efferocytosis
3.Three new chalcone C-glycosides from Carthami Flos.
Jia-Xu BAO ; Yong-Xiang WANG ; Xian ZHANG ; Ya-Zhu YANG ; Yue LIN ; Jiao-Jiao YIN ; Yun-Fang ZHAO ; Hui-Xia HUO ; Peng-Fei TU ; Jun LI
China Journal of Chinese Materia Medica 2025;50(13):3715-3745
The chemical components of Carthami Flos were investigated by using macroporous resin, silica gel column chromatography, reversed-phase octadecylsilane(ODS) column chromatography, Sephadex LH-20, and semi-preparative high-performance liquid chromatography(HPLC). The planar structures of the compounds were established based on their physicochemical properties and ultraviolet-visible(UV-Vis), infrared(IR), high-resolution electrospray ionization mass spectrometry(HR-ESI-MS), and nuclear magnetic resonance(NMR) spectroscopic technology. The absolute configurations were determined by comparing the calculated and experimental electronic circular dichroism(ECD). Six flavonoid C-glycosides were isolated from the 30% ethanol elution fraction of macroporous resin obtained from the 95% ethanol extract of Carthami Flos, and identified as saffloquinoside F(1), 5-hydroxysaffloneoside(2), iso-5-hydroxysaffloneoside(3), isosafflomin C(4), safflomin C(5), and vicenin 2(6). Among these, the compounds 1 to 3 were new chalcone C-glycosides. The compounds 1, 2, 4, and 5 could significantly increase the viability of H9c2 cardiomyocytes damaged by oxygen-glucose deprivation/reoxygenation(OGD/R) at a concentration of 50 μmol·L~(-1), showing their good cardioprotective activity.
Glycosides/pharmacology*
;
Flowers/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Carthamus tinctorius/chemistry*
;
Chalcones/pharmacology*
;
Animals
4.Genetic profiling and intervention strategies for phenylketonuria in Gansu, China: an analysis of 1 159 cases.
Chuan ZHANG ; Pei ZHANG ; Bing-Bo ZHOU ; Xing WANG ; Lei ZHENG ; Xiu-Jing LI ; Jin-Xian GUO ; Pi-Liang CHEN ; Ling HUI ; Zhen-Qiang DA ; You-Sheng YAN
Chinese Journal of Contemporary Pediatrics 2025;27(7):808-814
OBJECTIVES:
To investigate the molecular epidemiology of children with phenylketonuria (PKU) in Gansu, China, providing foundational data for intervention strategies.
METHODS:
A retrospective analysis was conducted on 1 159 PKU families who attended Gansu Provincial Maternity and Child Care Hospital from January 2012 to December 2024. Sanger sequencing, multiplex ligation-dependent probe amplification, whole exome sequencing, and deep intronic variant analysis were used to analyze the PAH gene.
RESULTS:
For the 1 159 children with PKU, 2 295 variants were identified in 2 318 alleles, resulting in a detection rate of 99.01%. The detection rates were 100% (914/914) in 457 classic PKU families, 99.45% (907/912) in 456 mild PKU families, and 96.34% (474/492) in 246 mild hyperphenylalaninemia families. The 2 295 variants detected comprised 208 distinct mutation types, among which c.728G>A (14.95%, 343/2 295) had the highest frequency, followed by c.611A>G (4.88%, 112/2 295) and c.721C>T (4.79%, 110/2 295). The cumulative frequency of the top 23 hotspot variants reached 70.28% (1 613/2 295), and most variant alleles were detected in exon 7 (29.19%, 670/2 295).
CONCLUSIONS
Deep intronic variant analysis of the PAH gene can improve the genetic diagnostic rate of PKU. The development of targeted detection kits for PAH hotspot variants may enable precision screening programs and enhance preventive strategies for PKU.
Humans
;
Phenylketonurias/epidemiology*
;
Female
;
Male
;
Retrospective Studies
;
Phenylalanine Hydroxylase/genetics*
;
Mutation
;
Child, Preschool
;
China/epidemiology*
;
Child
;
Infant
5.Application of mindfulness-based stress reduction on the patients treated with image fusion-guided prostate biopsy.
Qiang JI ; Jun HU ; Xiao-Hong WANG ; Yun LI ; Fan WANG ; Jie LIU ; Hui-Xian WEI ; Ying-Chun HUANG ; Ying LI
National Journal of Andrology 2025;31(9):812-817
OBJECTIVE:
To evaluate the application effect of mindfulness-based stress reduction (MBSR) therapy on the patients treated with image fusion-guided transperineal prostate biopsy.
METHODS:
A total of 160 patients who underwent image fusion-guided transperineal prostate biopsy in the Urology Department from April 2023 to April 2024 were included. Patients were randomly assigned to a control group and an observation group, with 80 cases in each group. The control group received routine care, while the observation group received combined MBSR on the basis of routine care. The surgical indicators, pain levels, psychological states, nursing satisfaction, and postoperative complication rates of both groups were compared.
RESULTS:
There was no statistically significant difference in general personal information and clinical data between the two groups(P>0.05). The surgery duration, secondary fusion rate, and postoperative complication rate in the observation group were all lower than those in the control group ([23.54±2.07]min vs [26.25±1.69]min, P<0.05; 8.75% vs 22.50%, P=0.017; 17% vs 29%, P=0.036), and nursing satisfaction was higher in the observation group than in the control group ( 77% vs 69%, P=0.025). The VAS scores biopsy (5.11±0.93 vs 6.27±1.32, P=0.041), discharge (0.74±0.67 vs 1.85±0.95, P=0.004), and scores of SDS (47.76±2.06 vs 50.46±2.07, P=0.009) and SAS (46.89±2.68 vs 49.75±2.83, P=0.031) in the observation group were all lower than those in the control group.
CONCLUSION
The application of MBSR in image fusion-guided prostate biopsy can synergistically utilize the advantages of minimally invasive technology, significantly optimize surgical indicators, and improve patients' psychological experiences, which is worthy of clinical application and promotion.
Humans
;
Male
;
Mindfulness
;
Prostate/pathology*
;
Image-Guided Biopsy
;
Stress, Psychological/therapy*
;
Middle Aged
;
Prostatic Neoplasms/pathology*
;
Aged
6.A Novel Mouse Model Unveils Protein Deficiency in Truncated CDKL5 Mutations.
Xue FENG ; Zi-Ai ZHU ; Hong-Tao WANG ; Hui-Wen ZHOU ; Ji-Wei LIU ; Ya SHEN ; Yu-Xian ZHANG ; Zhi-Qi XIONG
Neuroscience Bulletin 2025;41(5):805-820
Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) cause a severe neurodevelopmental disorder, yet the impact of truncating mutations remains unclear. Here, we introduce the Cdkl5492stop mouse model, mimicking C-terminal truncating mutations in patients. 492stop/Y mice exhibit altered dendritic spine morphology and spontaneous seizure-like behaviors, alongside other behavioral deficits. After creating cell lines with various Cdkl5 truncating mutations, we found that these mutations are regulated by the nonsense-mediated RNA decay pathway. Most truncating mutations result in CDKL5 protein loss, leading to multiple disease phenotypes, and offering new insights into the pathogenesis of CDKL5 disorder.
Animals
;
Disease Models, Animal
;
Mice
;
Protein Serine-Threonine Kinases/deficiency*
;
Mutation/genetics*
;
Epileptic Syndromes/genetics*
;
Humans
;
Dendritic Spines/pathology*
;
Spasms, Infantile/genetics*
;
Male
;
Seizures/genetics*
;
Mice, Inbred C57BL
7.Electroacupuncture for hot flashes in early menopause: A randomized sham-controlled trial.
Hui-Xian WANG ; Xin-Tong YU ; Jing HU ; Jin-Jia CHEN ; Yu-Ting MEI ; Yun-Fei CHEN
Journal of Integrative Medicine 2025;23(5):519-527
BACKGROUND:
Electroacupuncture (EA) may affect the severity of hot flashes (HFs) associated with natural menopause and provide additional benefits for postmenopausal women. However, the evidence for its effectiveness in the management of early postmenopausal HFs remains inadequately understood.
OBJECTIVE:
We designed this trial to assess the efficacy and safety of EA for relieving early postmenopausal HFs.
DESIGN, SETTING, PARTICIPANTS AND INTERVENTIONS:
This randomized sham-controlled trial involved 72 women with HFs. The participants were divided equally into the intervention and control groups. The intervention group was treated with EA, while the control group was treated with sham acupuncture. The main acupoints used were Hegu (LI4), Guanyuan (RN4), Sanyinjiao (SP6), Taixi (KI3), Fuliu (KI7) and Shenshu (BL23). All participants received 18 treatment sessions, distributed across a 6-week period. The treatment was administered on three occasions per week, adhering to a fixed weekday schedule (Monday, Wednesday, Friday or Tuesday, Thursday, Saturday) with a minimum interval of one day between sessions. Each patient received a 12-week follow-up.
MAIN OUTCOME MEASURES:
The HF score was the primary outcome. Participants documented the frequency and severity of HFs in a 7-day symptom diary, which provided data for calculating the HF score. Secondary outcomes were the Menopause Rating Scale (MRS), Menopause-Specific Quality of Life Questionnaire (MENQOL), Pittsburgh Sleep Quality Index (PSQI) and Traditional Chinese Medicine Syndrome Score Scale (TCMSSS), as well as estradiol (E2), luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels.
RESULTS:
Both groups demonstrated significant reductions in HF scores after the treatment and during the follow-up (P < 0.001). Immediately after completion of the 6-week treatment cycle and at 12 weeks post-intervention, the HF scores were similar in both groups. At week 6, the intervention group showed significantly greater improvements in MRS, MENQOL (vasomotor, psychosocial, and physical), PSQI and TCMSSS scores (P < 0.05). The improvements in the MENQOL (vasomotor, and psychosocial) and PSQI total scores persisted through the follow-up (P < 0.05). However, the results showed no significant inter- or intragroup differences in sexual scores on the MENQOL (P > 0.05). EA did not significantly decrease E2, LH or FSH levels compared to placebo. The incidence of adverse events was similar in both groups.
CONCLUSION:
EA does not significantly improve HFs in early postmenopausal patients. However, it enhances the quality of sleep and decreases menopausal symptoms across vasomotor, psychosocial and physical domains.
TRIAL REGISTRATION
Chinese Clinical Trial Registry (http://www.chictr.org.cn); Trial ID: ChiCTR2300072002. Please cite this article as: Wang HX, Yu XT, Hu J, Chen JJ, Mei YT, Chen YF. Electroacupuncture for hot flashes in early menopause: A randomized sham-controlled trial. J Integr Med. 2025; 23(5):519-527.
Humans
;
Female
;
Electroacupuncture
;
Hot Flashes/therapy*
;
Middle Aged
;
Acupuncture Points
;
Quality of Life
;
Menopause
;
Treatment Outcome
;
Adult
8.Disease spectrum and pathogenic genes of inherited metabolic disorder in Gansu Province of China
Chuan ZHANG ; Ling HUI ; Bing-Bo ZHOU ; Lei ZHENG ; Yu-Pei WANG ; Sheng-Ju HAO ; Zhen-Qiang DA ; Ying MA ; Jin-Xian GUO ; Zong-Fu CAO ; Xu MA
Chinese Journal of Contemporary Pediatrics 2024;26(1):67-71
Objective To investigate the disease spectrum and pathogenic genes of inherited metabolic disorder(IMD)among neonates in Gansu Province of China.Methods A retrospective analysis was conducted on the tandem mass spectrometry data of 286 682 neonates who received IMD screening in Gansu Provincial Maternal and Child Health Hospital from January 2018 to December 2021.A genetic analysis was conducted on the neonates with positive results in tandem mass spectrometry during primary screening and reexamination.Results A total of 23 types of IMD caused by 28 pathogenic genes were found in the 286 682 neonates,and the overall prevalence rate of IMD was 0.63‰(1/1 593),among which phenylketonuria showed the highest prevalence rate of 0.32‰(1/3 083),followed by methylmalonic acidemia(0.11‰,1/8 959)and tetrahydrobiopterin deficiency(0.06‰,1/15 927).In this study,166 variants were identified in the 28 pathogenic genes,with 13 novel variants found in 9 genes.According to American College of Medical Genetics and Genomics guidelines,5 novel variants were classified as pathogenic variants,7 were classified as likely pathogenic variants,and 1 was classified as the variant of uncertain significance.Conclusions This study enriches the database of pathogenic gene variants for IMD and provides basic data for establishing an accurate screening and diagnosis system for IMD in this region.
9.Prognostic Factors Affecting Recurrence in Peripheral T-Cell Lymphoma Patients with Different HDAC Levels
Ying-Xin LI ; Yi-Dan LI ; Pei WANG ; Hui-Jie JIAO ; Ying LI ; Jing ZHANG ; Xian-Hua YUAN
Journal of Experimental Hematology 2024;32(3):733-741
Objective:To analyze the distribution characteristics of prognostic factors affecting recurrence in peripheral T-cell lymphoma(PTCL)patients with different levels of histone deacetylase(HDAC)based on latent class analysis.Methods:112 PTCL patients who were treated in our hospital from September 2012 to September 2019 were selected and divided into recurrence group and non-recurrence group.The clinical data of the two groups of patients were compared.Multivariate logistic regression was used to analyze the risk factors for recurrence.Latent class analysis was used to compare the distribution characteristics of prognostic factors affecting recurrence between the high-risk group and the low-risk group.Results:There were 87 patients(77.68%)in recurrence group and 25 patients(22.32%)in non-recurrence group.The result of multivariate logistic regression showed that ECOG score ≥2,Ann Arbor stage Ⅲ-Ⅳ,IPI score>2,bone marrow involvement,elevated serum β2-microglobulin(β2-MG),short-term efficacy not reaching complete remission(CR)or partial remission(PR),and the high expression of HDAC were all independent risk factors for recurrence in patients with PTCL(P<0.05).The recurrence rate of patients with high HDAC levels was significantly higher than that of patiens with low HDAC levels(P<0.05).The results of cluster analysis showed that the risk of recurrence was obviously clustered,and the patients could be divided into high recurrence risk group(HDAC>5 points)and low recurrence risk group(HDAC≤5 points).The results of latent class analysis showed that patients with multiple risk factors account for a higher proportion in the high recurrence risk group,compared with the low recurrence risk group(P<0.05).Conclusion:There are differences in recurrence rates among PTCL patients with different HDAC levels and in distribution characteristics of risk factors between high recurrence risk and low recurrence risk groups.
10.Nimbolide targets RNF114 in treatment of mouse model of acute pneumonia caused by Staphylococcus aureus
Hui SUN ; Tian TIAN ; Tingrong XIONG ; Quanming ZOU ; Xiaokai ZHANG ; Xian YANG ; Yu WANG
Journal of Army Medical University 2024;46(12):1353-1360
Objective To explore the mechanism which drives nimbolide(NIM)in treating acute pneumonia caused by Staphylococcus aureus(S.auteus).Methods A mouse model of acute pneumonia caused by S.auteus was constructed through endotracheal intubation.After NIM treatment,the survival rate was observed,the amount of bacteria in the lung was tested by plate culture,and the expression of inflammatory cytokines in the lung tissues was detected with ELISA.After primary cultured peritoneal macrophages(PM)were infected with S.auteus,the effect of NIM on the expression of inflammatory cytokines and activation of inflammatory pathway were studied with ELISA and Western blotting,respectively.The effect of RNF114 knockdown by lentiviral shRNA infection on inflammation responses in PM was explored with ELISA and Western blotting.Results Acute infection of S.auteus in the lung could cause acute death in the mice,while NIM treatment significantly improved the survival rate and down-regulated the levels of inflammatory cytokines in the lung.However,it had no effect on the lung colonization of S.auteus in the short term.The results of in vitro experiments indicated that NIM may regulate RNF114 function to down-regulate the phosphorylation level of ERK,inhibit the activation of MAPK pathway,and thus suppress the expression of inflammatory cytokines.Conclusion NIM may inhibit the activation of MAPK pathway by regulating the function of RNF114,and thus suppress the expression of inflammatory cytokines in the lung,and finally inhibit the death of mice with acute pulmonary hyperinflammation caused by S.auteus.

Result Analysis
Print
Save
E-mail