1.Heterogeneity of Adipose Tissue From a Single-cell Transcriptomics Perspective
Yong-Lang WANG ; Si-Si CHEN ; Qi-Long LI ; Yu GONG ; Xin-Yue DUAN ; Ye-Hui DUAN ; Qiu-Ping GUO ; Feng-Na LI
Progress in Biochemistry and Biophysics 2025;52(4):820-835
Adipose tissue is a critical energy reservoir in animals and humans, with multifaceted roles in endocrine regulation, immune response, and providing mechanical protection. Based on anatomical location and functional characteristics, adipose tissue can be categorized into distinct types, including white adipose tissue (WAT), brown adipose tissue (BAT), beige adipose tissue, and pink adipose tissue. Traditionally, adipose tissue research has centered on its morphological and functional properties as a whole. However, with the advent of single-cell transcriptomics, a new level of complexity in adipose tissue has been unveiled, showing that even under identical conditions, cells of the same type may exhibit significant variation in morphology, structure, function, and gene expression——phenomena collectively referred to as cellular heterogeneity. Single-cell transcriptomics, including techniques like single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), enables in-depth analysis of the diversity and heterogeneity of adipocytes at the single-cell level. This high-resolution approach has not only deepened our understanding of adipocyte functionality but also facilitated the discovery of previously unidentified cell types and gene expression patterns that may play key roles in adipose tissue function. This review delves into the latest advances in the application of single-cell transcriptomics in elucidating the heterogeneity and diversity within adipose tissue, highlighting how these findings have redefined the understanding of cell subpopulations within different adipose depots. Moreover, the review explores how single-cell transcriptomic technologies have enabled the study of cellular communication pathways and differentiation trajectories among adipose cell subgroups. By mapping these interactions and differentiation processes, researchers gain insights into how distinct cellular subpopulations coordinate within adipose tissues, which is crucial for maintaining tissue homeostasis and function. Understanding these mechanisms is essential, as dysregulation in adipose cell interactions and differentiation underlies a range of metabolic disorders, including obesity and diabetes mellitus type 2. Furthermore, single-cell transcriptomics holds promising implications for identifying therapeutic targets; by pinpointing specific cell types and gene pathways involved in adipose tissue dysfunction, these technologies pave the way for developing targeted interventions aimed at modulating specific adipose subpopulations. In summary, this review provides a comprehensive analysis of the role of single-cell transcriptomic technologies in uncovering the heterogeneity and functional diversity of adipose tissues.
2.Ultrasound-based radiogenomics: status, applications, and future direction
Si-Rui WANG ; Yu-Ting SHEN ; Bin HUANG ; Hui-Xiong XU
Ultrasonography 2025;44(2):95-111
Radiogenomics, an extension of radiomics, explores the relationship between imaging features and underlying gene expression patterns. This field is instrumental in providing reliable imaging surrogates, thus potentially representing an alternative to genetic testing. The rapidly growing area of radiogenomics that utilizes ultrasound (US) imaging seeks to elucidate the connections between US image characteristics and genomic data. In this review, the authors outline the radiogenomics workflow and summarize the applications of US-based radiogenomics. These include the prediction of gene variations, molecular subtypes, and other biological characteristics, as well as the exploration of the relationships between US phenotypes and cancer gene profiles. Although the field faces various challenges, US-based radiogenomics offers promising prospects and avenues for future research.
3.Ultrasound-based radiogenomics: status, applications, and future direction
Si-Rui WANG ; Yu-Ting SHEN ; Bin HUANG ; Hui-Xiong XU
Ultrasonography 2025;44(2):95-111
Radiogenomics, an extension of radiomics, explores the relationship between imaging features and underlying gene expression patterns. This field is instrumental in providing reliable imaging surrogates, thus potentially representing an alternative to genetic testing. The rapidly growing area of radiogenomics that utilizes ultrasound (US) imaging seeks to elucidate the connections between US image characteristics and genomic data. In this review, the authors outline the radiogenomics workflow and summarize the applications of US-based radiogenomics. These include the prediction of gene variations, molecular subtypes, and other biological characteristics, as well as the exploration of the relationships between US phenotypes and cancer gene profiles. Although the field faces various challenges, US-based radiogenomics offers promising prospects and avenues for future research.
4.Ultrasound-based radiogenomics: status, applications, and future direction
Si-Rui WANG ; Yu-Ting SHEN ; Bin HUANG ; Hui-Xiong XU
Ultrasonography 2025;44(2):95-111
Radiogenomics, an extension of radiomics, explores the relationship between imaging features and underlying gene expression patterns. This field is instrumental in providing reliable imaging surrogates, thus potentially representing an alternative to genetic testing. The rapidly growing area of radiogenomics that utilizes ultrasound (US) imaging seeks to elucidate the connections between US image characteristics and genomic data. In this review, the authors outline the radiogenomics workflow and summarize the applications of US-based radiogenomics. These include the prediction of gene variations, molecular subtypes, and other biological characteristics, as well as the exploration of the relationships between US phenotypes and cancer gene profiles. Although the field faces various challenges, US-based radiogenomics offers promising prospects and avenues for future research.
5.Ultrasound-based radiogenomics: status, applications, and future direction
Si-Rui WANG ; Yu-Ting SHEN ; Bin HUANG ; Hui-Xiong XU
Ultrasonography 2025;44(2):95-111
Radiogenomics, an extension of radiomics, explores the relationship between imaging features and underlying gene expression patterns. This field is instrumental in providing reliable imaging surrogates, thus potentially representing an alternative to genetic testing. The rapidly growing area of radiogenomics that utilizes ultrasound (US) imaging seeks to elucidate the connections between US image characteristics and genomic data. In this review, the authors outline the radiogenomics workflow and summarize the applications of US-based radiogenomics. These include the prediction of gene variations, molecular subtypes, and other biological characteristics, as well as the exploration of the relationships between US phenotypes and cancer gene profiles. Although the field faces various challenges, US-based radiogenomics offers promising prospects and avenues for future research.
6.Ultrasound-based radiogenomics: status, applications, and future direction
Si-Rui WANG ; Yu-Ting SHEN ; Bin HUANG ; Hui-Xiong XU
Ultrasonography 2025;44(2):95-111
Radiogenomics, an extension of radiomics, explores the relationship between imaging features and underlying gene expression patterns. This field is instrumental in providing reliable imaging surrogates, thus potentially representing an alternative to genetic testing. The rapidly growing area of radiogenomics that utilizes ultrasound (US) imaging seeks to elucidate the connections between US image characteristics and genomic data. In this review, the authors outline the radiogenomics workflow and summarize the applications of US-based radiogenomics. These include the prediction of gene variations, molecular subtypes, and other biological characteristics, as well as the exploration of the relationships between US phenotypes and cancer gene profiles. Although the field faces various challenges, US-based radiogenomics offers promising prospects and avenues for future research.
7.REDH: A database of RNA editome in hematopoietic differentiation and malignancy
Jiayue XU ; Jiahuan HE ; Jiabin YANG ; Fengjiao WANG ; Yue HUO ; Yuehong GUO ; Yanmin SI ; Yufeng GAO ; Fang WANG ; Hui CHENG ; Tao CHENG ; Jia YU ; Xiaoshuang WANG ; Yanni MA
Chinese Medical Journal 2024;137(3):283-293
Background::The conversion of adenosine (A) to inosine (I) through deamination is the prevailing form of RNA editing, impacting numerous nuclear and cytoplasmic transcripts across various eukaryotic species. Millions of high-confidence RNA editing sites have been identified and integrated into various RNA databases, providing a convenient platform for the rapid identification of key drivers of cancer and potential therapeutic targets. However, the available database for integration of RNA editing in hematopoietic cells and hematopoietic malignancies is still lacking.Methods::We downloaded RNA sequencing (RNA-seq) data of 29 leukemia patients and 19 healthy donors from National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database, and RNA-seq data of 12 mouse hematopoietic cell populations obtained from our previous research were also used. We performed sequence alignment, identified RNA editing sites, and obtained characteristic editing sites related to normal hematopoietic development and abnormal editing sites associated with hematologic diseases.Results::We established a new database, "REDH", represents RNA editome in hematopoietic differentiation and malignancy. REDH is a curated database of associations between RNA editome and hematopoiesis. REDH integrates 30,796 editing sites from 12 murine adult hematopoietic cell populations and systematically characterizes more than 400,000 edited events in malignant hematopoietic samples from 48 cohorts (human). Through the Differentiation, Disease, Enrichment, and knowledge modules, each A-to-I editing site is systematically integrated, including its distribution throughout the genome, its clinical information (human sample), and functional editing sites under physiological and pathological conditions. Furthermore, REDH compares the similarities and differences of editing sites between different hematologic malignancies and healthy control.Conclusions::REDH is accessible at http://www.redhdatabase.com/. This user-friendly database would aid in understanding the mechanisms of RNA editing in hematopoietic differentiation and malignancies. It provides a set of data related to the maintenance of hematopoietic homeostasis and identifying potential therapeutic targets in malignancies.
8.Prevalence and risk evaluation of cardiovascular disease in the newly diagnosed prostate cancer population in China: A nationwide, multi-center, population-based cross-sectional study
Weiyu ZHANG ; Huixin LIU ; Ming LIU ; Shi YING ; Renbin YUAN ; Hao ZENG ; Zhenting ZHANG ; Sujun HAN ; Zhannan SI ; Bin HU ; Simeng WEN ; Pengcheng XU ; Weimin YU ; Hui CHEN ; Liang WANG ; Zhitao LIN ; Tao DAI ; Yunzhi LIN ; Tao XU
Chinese Medical Journal 2024;137(11):1324-1331
Background::Cardiovascular disease (CVD) has emerged as the leading cause of death from prostate cancer (PCa) in recent decades, bringing a great disease burden worldwide. Men with preexisting CVD have an increased risk for major adverse cardiovascular events when treated with androgen deprivation therapy (ADT). The present study aimed to explore the prevalence and risk evaluation of CVD among people with newly diagnosed PCa in China.Methods::Clinical data of newly diagnosed PCa patients were retrospectively collected from 34 centers in China from 2010 to 2022 through convenience sampling. CVD was defined as myocardial infarction, arrhythmia, heart failure, stroke, ischemic heart disease, and others. CVD risk was estimated by calculating Framingham risk scores (FRS). Patients were accordingly divided into low-, medium-, and high-risk groups. χ2 or Fisher’s exact test was used for comparison of categorical variables. Results::A total of 4253 patients were enrolled in the present study. A total of 27.0% (1147/4253) of patients had comorbid PCa and CVD, and 7.2% (307/4253) had two or more CVDs. The enrolled population was distributed in six regions of China, and approximately 71.0% (3019/4253) of patients lived in urban areas. With imaging and pathological evaluation, most PCa patients were diagnosed at an advanced stage, with 20.5% (871/4253) locally progressing and 20.5% (871/4253) showing metastasis. Most of them initiated prostatectomy (46.6%, 1983/4253) or regimens involving ADT therapy (45.7%, 1944/4253) for prostate cancer. In the present PCa cohort, 43.1% (1832/4253) of patients had hypertension, and half of them had poorly controlled blood pressure. With FRS stratification, as expected, a higher risk of CVD was related to aging and metabolic disturbance. However, we also found that patients with treatment involving ADT presented an originally higher risk of CVD than those without ADT. This was in accordance with clinical practice, i.e., aged patients or patients at advanced oncological stages were inclined to accept systematic integrative therapy instead of surgery. Among patients who underwent medical castration, only 4.0% (45/1118) received gonadotropin releasing hormone antagonists, in stark contrast to the grim situation of CVD prevalence and risk.Conclusions::PCa patients in China are diagnosed at an advanced stage. A heavy CVD burden was present at the initiation of treatment. Patients who accepted ADT-related therapy showed an original higher risk of CVD, but the awareness of cardiovascular protection was far from sufficient.
9.Mechanism of Danzhi Jiangtang capsule protecting mitochondrial function and reducing vascular calcification via LncRNA TUG1/β-catenin signaling pathway
Ying-Qun NI ; Yi-Xuan LIN ; Si-Hai WANG ; Qin LU ; Jin-Zhi LUO ; Chun-Qin WU ; ZHAO-Hui FANG
Chinese Pharmacological Bulletin 2024;40(5):899-906
Aim To explore how Danzhi Jiangtang cap-sules(DJC)safeguard the mitochondrial activity of vascular smooth muscle cells(VSMCs)by controlling the LncRNA TUG1/β-catenin signaling pathway to de-crease vascular calcification(VC).Methods Vascu-lar smooth muscle cell calcification models were in-duced with β-glycerin and diabetic vascular calcifica-tion rat models were induced with vitamin D3+high-fat diet.Von Kossa staining was applied to detect cal-cification of cells and vascular tissue.Colorimetric method of phthalein complex was used to determine calcium content.P-nitrobenzene phosphate colorimetry was employed to assess alkaline phosphatase(ALP)activity.RT-qPCR was used to analyze the expression of VSMCs'osteoblast transformation related genes bone morphogenetic protein2(BMP2),smooth muscle actin alpha(α-SMA),taurine up-regulated1,LncRNA Tug1(Lnc-RNA TUG1),and β-catenin.Western blotting was utilized to detect the protein expression of BMP2,α-SMA and β-catenin.The mitochondrial membrane potential was detected by JC-1 fluorescence probe.Mitochondrial structure was observed by trans-mission electron microscope.Results DJC reduced LncRNA TUG1 expression,down-regulated β-catenin expression,decreased ALP activity and calcium depo-sition,protected mitochondrial function,restored mem-brane potential,and decreased osteoblastic transforma-tion of VSMCs induced by glycerin phosphate.Impor-tantly,DJC attenuated diabetic lower limb VC by down-regulating the expression of LncRNA TUG1,β-catenin,and elevating the expression of α-SMA.Con-clusions DJC capsules significantly improved VSMCs by protecting mitochondrial function by LncRNA TUG1/β-catenin signaling to reduce VSMCs'osteo-blast transformation.
10.Establishment and evaluation of a rabbit model of frozen shoulder induced by persistent strain injuries and ice com-pression
Lu LIU ; Shao-Dan CHENG ; Yang CHENG ; Si-Chen PENG ; Cheng GE ; Shi-Hui WANG
China Journal of Orthopaedics and Traumatology 2024;37(4):392-398
Objective To evaluate the rabbit modle of frozen shoulder induced by persistent strain injuries and ice com-pression.Methods Twelve clean,healthy male New Zealand rabbits with a mass of(2 500±500)g were selected and randomly divided into a blank group and a control group with 6 rabbits in each group.In the control group,the rabbits were modeled with persistent strain injuries and ice compression,the general conditions of the rabbits and the active and passive activities of the shoulder joint were observed and their body weights were recorded.MRI was performed on the affected shoulder joints at 6 d and 29 d after modelling to observe the fluid and soft tissue;HE staining was used to observe the morphology of the rabbit bi-ceps longus tendon and the synovial membrane of the joint capsule;Masson staining was used to observe the fibrous deposits of the rabbit biceps longus tendon and the synovial membrane of the joint capsule,and the fibrous deposits were analysed semi-quantitatively by Image J software.Results Six days after the end of modeling,the active movement of the shoulder joints in the control group was limited,the passive movement was not significantly limited,and they walked with a limp;29 days after the end of the modeling,the active and passive movements of the shoulder joints in the model group were severely limited.Com-pared with the blank group(2.50±0.14)kg,the body weight of the model group(2.20±0.17)kg was significantly reduced(P<0.01).MRI showed that 6 days after modelling,the muscles around the shoulder joint were not smooth in shape,the joint cap-sule structure was narrowed and a large amount of fluid was seen in the joint cavity;29 days after modelling,the muscles around the shoulder joint were rough in shape,structure of the joint capsule was unclear and the fluid in the joint cavity was reduced compared with 6 days after modelling.Pathological staining showed that the long-headed biceps tendon fibres in the control group were disorganised,curled or even broken,and the synovial tissue of the joint capsule was heavily vascularised,with col-lagen fibre deposits and severe inflammatory cell infiltration.The fiber deposition of the long head of biceps brachii in the mod-el group[(23.58±3.41)%,(27.56±3.70)%]and synovial tissue[(41.78±5.59)%,(62.19±7.54)%]were significantly higher than those in the blank group[(1.79±1.03)%,(1.29±0.63)%]at 7 and 30 days after modeling and synovial tissue fiber de-position[(8.15±3.61)%,(11.29±7.10)%],as shown by the semi-quantitative analysis of Masson staining results by Image J software.And the longer the time,the more severe the fibrosis(P<0.01).Conclusion The behavioral,imaging and pathological findings showed that the rabbit frozen shoulder model with persistent strain injuries and ice compression is consistent with the clinical manifestations and pathogenesis of periarthritis,making it an ideal method for periarthritis research.

Result Analysis
Print
Save
E-mail