1.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
2.Sesquiterpenoids from resin of Commiphora myrrha.
Hao HUANG ; Ran WANG ; Ya-Zhu YANG ; Jiao-Jiao YIN ; Yue LIN ; Yun-Fang ZHAO ; Hui-Xia HUO ; Jun LI
China Journal of Chinese Materia Medica 2025;50(3):702-707
The chemical constituents of Commiphora myrrha was investigated by column chromatography on silica gel, ODS, Sephadex LH-20, and semi-preparative HPLC. Their structures were elucidated by comprehensive spectroscopic methods including UV, IR, MS, NMR, as well as ECD calculation. Seven compounds were isolated from the dichloromethane-soluble fraction of C. myrrha and their structures were identified as(1S,2R,4S,5R,8S)-guaiane-2-hydroxy-7(11),10(15)-dien-6-oxo-12,8-olide(1), commipholide E(2), myrrhterpenoid H(3), myrrhterpenoid I(4), myrrhterpenoid E(5), 2α-methoxy-8α-hydroxy-6-oxogermacra-1(10),7(11)-dien-8,12-olide(6), 8,12-epoxy-1α,9α-hydroxy-eudesma-7,11-diene-6-dione(7). Compound 1 was a new compound and named myrrhterpenoid P. Compound 7 was isolated from Commiphora genus for the first time. Compounds 2, 5, and 6 significantly inhibited nitric oxide(NO) production in LPS-stimulated RAW264.7 cells, with IC_(50) values of(49.67±4.16),(40.80±1.27),(47.22±0.87) μmol·L~(-1), respectively [indomethacin as the positive control, with IC_(50) value of(63.92±2.60) μmol·L~(-1)].
Commiphora/chemistry*
;
Animals
;
Mice
;
Resins, Plant/chemistry*
;
Sesquiterpenes/isolation & purification*
;
Molecular Structure
;
Nitric Oxide
;
Macrophages/metabolism*
;
RAW 264.7 Cells
;
Drugs, Chinese Herbal/pharmacology*
3.Three new chalcone C-glycosides from Carthami Flos.
Jia-Xu BAO ; Yong-Xiang WANG ; Xian ZHANG ; Ya-Zhu YANG ; Yue LIN ; Jiao-Jiao YIN ; Yun-Fang ZHAO ; Hui-Xia HUO ; Peng-Fei TU ; Jun LI
China Journal of Chinese Materia Medica 2025;50(13):3715-3745
The chemical components of Carthami Flos were investigated by using macroporous resin, silica gel column chromatography, reversed-phase octadecylsilane(ODS) column chromatography, Sephadex LH-20, and semi-preparative high-performance liquid chromatography(HPLC). The planar structures of the compounds were established based on their physicochemical properties and ultraviolet-visible(UV-Vis), infrared(IR), high-resolution electrospray ionization mass spectrometry(HR-ESI-MS), and nuclear magnetic resonance(NMR) spectroscopic technology. The absolute configurations were determined by comparing the calculated and experimental electronic circular dichroism(ECD). Six flavonoid C-glycosides were isolated from the 30% ethanol elution fraction of macroporous resin obtained from the 95% ethanol extract of Carthami Flos, and identified as saffloquinoside F(1), 5-hydroxysaffloneoside(2), iso-5-hydroxysaffloneoside(3), isosafflomin C(4), safflomin C(5), and vicenin 2(6). Among these, the compounds 1 to 3 were new chalcone C-glycosides. The compounds 1, 2, 4, and 5 could significantly increase the viability of H9c2 cardiomyocytes damaged by oxygen-glucose deprivation/reoxygenation(OGD/R) at a concentration of 50 μmol·L~(-1), showing their good cardioprotective activity.
Glycosides/pharmacology*
;
Flowers/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Carthamus tinctorius/chemistry*
;
Chalcones/pharmacology*
;
Animals
4.Risk factors and development of a prediction model of enteral feeding intolerance in critically ill children.
Xia ZHOU ; Hong-Mei GAO ; Lin HUANG ; Hui-Wu HAN ; Hong-Ling HU ; You LI ; Ren-He YU
Chinese Journal of Contemporary Pediatrics 2025;27(3):321-327
OBJECTIVES:
To explore the risk factors of feeding intolerance (FI) in critically ill children receiving enteral nutrition (EN) and to construct a prediction nomogram model for FI.
METHODS:
A retrospective study was conducted to collect data from critically ill children admitted to the Pediatric Intensive Care Unit of Xiangya Hospital, Central South University, between January 2015 and October 2020. The children were randomly divided into a training set (346 cases) and a validation set (147 cases). The training set was further divided into a tolerance group (216 cases) and an intolerance group (130 cases). Multivariate logistic regression analysis was used to screen for risk factors for FI in critically ill children receiving EN. A nomogram was constructed using R language, which was then validated on the validation set. The model's discrimination, calibration, and clinical net benefit were evaluated using receiver operating characteristic curves, calibration curves, and decision curves.
RESULTS:
Duration of bed rest, shock, gastrointestinal decompression, use of non-steroidal anti-inflammatory drugs, and combined parenteral nutrition were identified as independent risk factors for FI in critically ill children receiving EN (P<0.05). Based on these factors, a nomogram prediction model for FI in critically ill children receiving EN was developed. The area under the receiver operating characteristic curve for the training set and validation set was 0.934 (95%CI: 0.906-0.963) and 0.852 (95%CI: 0.787-0.917), respectively, indicating good discrimination of the model. The Hosmer-Lemeshow goodness-of-fit test showed that the model had a good fit (χ 2=12.559, P=0.128). Calibration curve and decision curve analyses suggested that the model has high predictive efficacy and clinical application value.
CONCLUSIONS
Duration of bed rest, shock, gastrointestinal decompression, use of non-steroidal anti-inflammatory drugs, and combined parenteral nutrition are independent risk factors for FI in critically ill children receiving EN. The nomogram model developed based on these factors exhibits high predictive efficacy and clinical application value.
Humans
;
Critical Illness
;
Enteral Nutrition/adverse effects*
;
Male
;
Risk Factors
;
Female
;
Child, Preschool
;
Infant
;
Nomograms
;
Retrospective Studies
;
Child
;
Logistic Models
5.Expression and Clinical Significance of lncRNA NCK1-AS1 in Acute Myeloid Leukemia.
Chen CHENG ; Zi-Jun XU ; Pei-Hui XIA ; Xiang-Mei WEN ; Ji-Chun MA ; Yu GU ; Di YU ; Jun QIAN ; Jiang LIN
Journal of Experimental Hematology 2025;33(2):352-358
OBJECTIVE:
To detect and analyze the expression and clinical significance of long non-coding RNA tyrosine kinase non-catalytic region adaptor protein 1-antisense RNA1 (NCK1-AS1) in patients with acute myeloid leukemia (AML).
METHODS:
89 AML patients and 23 healthy controls were included from the People's Hospital Affiliated to Jiangsu University. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression levels of NCK1-AS1 and NCK1 in bone marrow samples. The relationship between the expression of NCK1-AS1 and the clinical characteristics of patients were analyzed, as well as the correlation between NCK1-AS1 and NCK1.
RESULTS:
The expression level of NCK1-AS1 in all AML, non-M3 AML and cytogenetically normal AML (CN-AML) patients was significantly higher than that in the control group (P < 0.01, P < 0.05, P < 0.01, respectively). In non-M3 AML, patients with high NCK1-AS1 expression had a significantly lower hemoglobin level than those with low NCK1-AS1 expression (P =0.036), furthermore, NCK1-AS1 high patients had shorter overall survival than NCK1-AS1low patients (P =0.0378). Multivariate analysis showed that NCK1-AS1 expression was an independent adverse factor in patients with non-M3 AML ( HR =2.392, 95% CI :1.089-5.255, P =0.030). In addition, NCK1 expression was also significantly upregulated in all AML, non-M3 AML and CN-AML patients compared with controls (P < 0.01, P < 0.01, P < 0.001, respectively). There was a certain correlation between NCK1-AS1 and NCK1 expression (r =0.37, P =0.0058).
CONCLUSION
High expression of NCK1-AS1 in AML indicates poor prognosis of AML patients.
Humans
;
Leukemia, Myeloid, Acute/genetics*
;
RNA, Long Noncoding/genetics*
;
Oncogene Proteins/genetics*
;
Adaptor Proteins, Signal Transducing/genetics*
;
Prognosis
;
Male
;
Female
;
Middle Aged
;
Adult
;
Case-Control Studies
;
Clinical Relevance
6.Integrative transcriptomic and epigenomic analysis identifies BCL6B as a novel regulator of human pluripotent stem cell to endothelial differentiation.
Yonglin ZHU ; Jinyang LIU ; Jia WANG ; Shuangyuan DING ; Hui QIU ; Xia CHEN ; Jianying GUO ; Peiliang WANG ; Xingwu ZHANG ; Fengzhi ZHANG ; Rujin HUANG ; Fuyu DUAN ; Lin WANG ; Jie NA
Protein & Cell 2025;16(11):985-990
7.Traditional Chinese medicine for treatment of type 2 diabetes mellitus: Clinical evidence and pharmacological mechanisms.
Hong-Xia NI ; Lin-Hai CAO ; Xiao-Xiao GONG ; Zi-Yan ZANG ; Hui CHANG
Journal of Integrative Medicine 2025;23(6):605-622
Type 2 diabetes mellitus (T2DM) is a highly prevalent chronic metabolic disease with an increasing incidence worldwide, that poses a significant risk to public health. In many current clinical practices for diabetes management, conventional Western treatments, including oral or injectable hypoglycemic agents, have serious side effects. Given that traditional Chinese medicine (TCM) is characterized by a multi-component, multi-target and multi-pathway approach, its combination with Western medicine could enhance efficacy and reduce adverse effects. Consequently, the use of TCM as a potential auxiliary or alternative treatment for the prevention and/or management of T2DM has emerged as a research hotspot. This article reviews existing reports on TCM in the treatment of T2DM and provides a detailed discussion of its applications. By integrating relevant clinical evidence, this review summarizes the clinical data on 23 TCM formulas and Chinese patent medicines, comprehensively describing their efficacy and potential pharmacological mechanisms in the treatment of T2DM. This includes an exploration of the impacts of TCM-based therapeutic interventions on T2DM-related microRNAs and their target genes. We hope this review not only offers new insights for future research directions but also enhances the understanding of the scientific value of TCM. Please cite this article as: Ni HX, Cao LH, Gong XX, Zang ZY, Chang H. Traditional Chinese medicine for treatment of type 2 diabetes mellitus: Clinical evidence and pharmacological mechanisms. J Integr Med. 2025; 23(6):605-622.
Humans
;
Diabetes Mellitus, Type 2/drug therapy*
;
Medicine, Chinese Traditional/methods*
;
Drugs, Chinese Herbal/pharmacology*
;
Hypoglycemic Agents/pharmacology*
8.National bloodstream infection bacterial resistance surveillance report (2022) : Gram-negative bacteria
Zhiying LIU ; Yunbo CHEN ; Jinru JI ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(1):42-57
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-negative bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-negative bacteria from blood cultures in member hospitals of national bloodstream infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:During the study period,9 035 strains of Gram-negative bacteria were collected from 51 hospitals,of which 7 895(87.4%)were Enterobacteriaceae and 1 140(12.6%)were non-fermenting bacteria. The top 5 bacterial species were Escherichia coli( n=4 510,49.9%), Klebsiella pneumoniae( n=2 340,25.9%), Pseudomonas aeruginosa( n=534,5.9%), Acinetobacter baumannii complex( n=405,4.5%)and Enterobacter cloacae( n=327,3.6%). The ESBLs-producing rates in Escherichia coli, Klebsiella pneumoniae and Proteus spp. were 47.1%(2 095/4 452),21.0%(427/2 033)and 41.1%(58/141),respectively. The prevalence of carbapenem-resistant Escherichia coli(CREC)and carbapenem-resistant Klebsiella pneumoniae(CRKP)were 1.3%(58/4 510)and 13.1%(307/2 340);62.1%(36/58)and 9.8%(30/307)of CREC and CRKP were resistant to ceftazidime/avibactam combination,respectively. The prevalence of carbapenem-resistant Acinetobacter baumannii(CRAB)complex was 59.5%(241/405),while less than 5% of Acinetobacter baumannii complex was resistant to tigecycline and polymyxin B. The prevalence of carbapenem-resistant Pseudomonas aeruginosa(CRPA)was 18.4%(98/534). There were differences in the composition ratio of Gram-negative bacteria in bloodstream infections and the prevalence of main Gram-negative bacteria resistance among different regions,with statistically significant differences in the prevalence of CRKP and CRPA( χ2=20.489 and 20.252, P<0.001). The prevalence of CREC,CRKP,CRPA,CRAB,ESBLs-producing Escherichia coli and Klebsiella pneumoniae were higher in provinicial hospitals than those in municipal hospitals( χ2=11.953,81.183,10.404,5.915,12.415 and 6.459, P<0.01 or <0.05),while the prevalence of CRPA was higher in economically developed regions(per capita GDP ≥ 92 059 Yuan)than that in economically less-developed regions(per capita GDP <92 059 Yuan)( χ2=6.240, P=0.012). Conclusions:The proportion of Gram-negative bacteria in bloodstream infections shows an increasing trend,and Escherichia coli is ranked in the top,while the trend of CRKP decreases continuously with time. Decreasing trends are noted in ESBLs-producing Escherichia coli and Klebsiella pneumoniae. Low prevalence of carbapenem resistance in Escherichia coli and high prevalence in CRAB complex have been observed. The composition ratio and antibacterial spectrum of bloodstream infections in different regions of China are slightly different,and the proportion of main drug resistant bacteria in provincial hospitals is higher than those in municipal hospitals.
9.Epidemiological characteristics and diagnosis of imported Plasmodium malariae and Plasmodium ovale malaria cases in five provinces of China from 2014 to 2021
Wen LIN ; Duoquan WANG ; Lingcong SUN ; Tao ZHANG ; Hui YAN ; Wei RUAN ; Ying LIU ; Dongni WU ; Shizhu LI ; Jing XIA ; Hong ZHU
Chinese Journal of Schistosomiasis Control 2024;36(4):407-411
Objective To investigate the epidemiological characteristics and diagnosis of imported Plasmodium malariae and P. ovale malaria cases in Anhui Province, Hubei Province, Zhejiang Province, Guangxi Zhuang Autonomous Region and Henan Province from 2014 to 2021, so as to provide insights into malaria control in these five provinces. Methods All data pertaining to malaria cases reported in five provinces of China were captured from Chinese Disease Control and Prevention Information System from 2014 to 2021, and the epidemiological characteristics of imported P. malariae and P. ovale malaria cases were analysed using a descriptive epidemiological method. The duration from onset of malaria to initial diagnosis, duration from initial diagnosis to definitive diagnosis, institutions of initial and definitive diagnoses, and proportion of correct malaria diagnosis at initial diagnosis were statistically analyzed. Results A total of 1 223 imported P. malariae and P. ovale malaria cases were reported in Anhui Province, Hubei Province, Zhejiang Province, Henan Province and Guangxi Zhuang Autonomous Region from 2014 to 2021, there were 158 P. malariae malaria cases (12.92%) and 1 065 P. ovale malaria cases (87.08%). Totally 98.53% (1 205/1 223) of the imported malaria cases were from Africa, with Angola (18.99%, 30/158), Nigeria (11.39%,18/158), Cameroon (10.76%, 17/158), Ghana (10.13%, 16/158) and the Democratic Republic of the Congo (10.13%,16/158) as predominant countries where P. malariae malaria cases were from, and Ghana (23.19%, 247/1 065), Cameroon (14.74%, 157/1 065), Nigeria (9.39%, 100/1 065) and Angola (6.95%, 74/1 065) as predominant countries where P. ovale malaria cases were from. There were significant differences in the duration from onset of malaria to initial diagnosis (χ2 = 27.673, P = 0.000) and duration from initial diagnosis to definitive diagnosis of P. malariae and P. ovale malaria cases (χ2 = 29.808, P = 0.000), and the proportions of correct initial diagnosis of P. malariae and P. ovale malaria cases were 38.61% (61/158) and 56.53% (602/1 065). There were 74.69% (118/158) of P. malariae malaria cases with definitive diagnosis in county-, city-, and province-level medical institutions, and 79.25% (844/1 065) of P. ovale malaria cases with definitive diagnosis in county- and city-level medical institutions and county-level centers for disease control and prevention. Conclusions The imported P. malariae and P. ovale malaria cases in Anhui Province, Hubei Province, Zhejiang Province, Henan Province and Guangxi Zhuang Autonomous Region from 2014 to 2021 were mainly returned from Africa and the proportion of correct diagnosis of P. malariae and P. ovale malaria was low at initial diagnosis. Persistent improvements in the diagnostic capability of malaria are required in medical institutions.
10.Application Study of Enzyme Inhibitors and Their Conformational Optimization in The Treatment of Alzheimer’s Disease
Chao-Yang CHU ; Biao XIAO ; Jiang-Hui SHAN ; Shi-Yu CHEN ; Chu-Xia ZHANG ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Zhi-Cheng LIN ; Kai XIE ; Shu-Jun XU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2024;51(7):1510-1529
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive dysfunction and behavioral impairment, and there is a lack of effective drugs to treat AD clinically. Existing medications for the treatment of AD, such as Tacrine, Donepezil, Rivastigmine, and Aducanumab, only serve to delay symptoms and but not cure disease. To add insult to injury, these medications are associated with very serious adverse effects. Therefore, it is urgent to explore effective therapeutic drugs for AD. Recently, studies have shown that a variety of enzyme inhibitors, such as cholinesterase inhibitors, monoamine oxidase (MAO)inhibitors, secretase inhibitors, can ameliorate cholinergic system dysfunction, Aβ production and deposition, Tau protein hyperphosphorylation, oxidative stress damage, and the decline of synaptic plasticity, thereby improving AD symptoms and cognitive function. Some plant extracts from natural sources, such as Umbelliferone, Aaptamine, Medha Plus, have the ability to inhibit cholinesterase activity and act to improve learning and cognition. Isochromanone derivatives incorporating the donepezil pharmacophore bind to the catalytic active site (CAS) and peripheral anionic site (PAS) sites of acetylcholinesterase (AChE), which can inhibit AChE activity and ameliorate cholinergic system disorders. A compound called Rosmarinic acid which is found in the Lamiaceae can inhibit monoamine oxidase, increase monoamine levels in the brain, and reduce Aβ deposition. Compounds obtained by hybridization of coumarin derivatives and hydroxypyridinones can inhibit MAO-B activity and attenuate oxidative stress damage. Quinoline derivatives which inhibit the activation of AChE and MAO-B can reduce Aβ burden and promote learning and memory of mice. The compound derived from the combination of propargyl and tacrine retains the inhibitory capacity of tacrine towards cholinesterase, and also inhibits the activity of MAO by binding to the FAD cofactor of monoamine oxidase. A series of hybrids, obtained by an amide linker of chromone in combine with the benzylpiperidine moieties of donepezil, have a favorable safety profile of both cholinesterase and monoamine oxidase inhibitory activity. Single domain antibodies (such as AAV-VHH) targeted the inhibition of BACE1 can reduce Aβ production and deposition as well as the levels of inflammatory cells, which ultimately improve synaptic plasticity. 3-O-trans-p-coumaroyl maslinic acid from the extract of Ligustrum lucidum can specifically inhibit the activity of γ-secretase, thereby rescuing the long-term potentiation and enhancing synaptic plasticity in APP/PS1 mice. Inhibiting γ-secretase activity which leads to the decline of inflammatory factors (such as IFN-γ, IL-8) not only directly improves the pathology of AD, but also reduces Aβ production. Melatonin reduces the transcriptional expression of GSK-3β mRNA, thereby decreasing the levels of GSK-3β and reducing the phosphorylation induced by GSK-3β. Hydrogen sulfide can inhibitGSK-3β activity via sulfhydration of the Cys218 site of GSK-3β, resulting in the suppression of Tau protein hyperphosphorylation, which ameliorate the motor deficits and cognitive impairment in mice with AD. This article reviews enzyme inhibitors and conformational optimization of enzyme inhibitors targeting the regulation of cholinesterase, monoamine oxidase, secretase, and GSK-3β. We are hoping to provide a comprehensive overview of drug development in the enzyme inhibitors, which may be useful in treating AD.

Result Analysis
Print
Save
E-mail