1.Characteristic Analysis of Effective Components and Compounds of TCM for Prevention and Treatment of Breast Cancer Based on Wnt/β-catenin Signaling Pathway Targeting
Haoyang WANG ; Lin GUO ; Hui ZHAO ; Lihua CAO ; Na LI ; Mingsan MIAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):282-290
Breast cancer is a kind of malignant tumor with a complex mechanism, and its morbidity and mortality are increasing year by year, which seriously threatens women's health. At present, the main clinical treatments are surgical resection, radiotherapy, chemotherapy, and drug therapy, but they are often accompanied by side effects and adverse reactions, which affect the therapeutic effect. Traditional Chinese medicine (TCM) has the advantages of multi-component and multi-target treatment in the fight against breast cancer. The wnt/β-catenin signaling pathway is one of the classic pathways in cancer research. Abnormally activated Wnt/β-catenin signaling pathway inhibits β-catenin degradation by blocking the formation of Axin/glycogen synthase kinase 3β/adenomatous polyposis coli complex, thus promoting β-catenin nuclear metastasis, and it binds to T cell transcription factor/lymphoenhancer factor-1 to initiate downstream target genes and further interfere with the proliferation, migration, and invasion of tumor cells to affect the tumor process. Previous studies have shown that TCM monomers and compounds can mediate the Wnt/β-catenin signaling pathway to inhibit the malignant phenotype of breast cancer cells, thus playing an anti-breast cancer role, and the biochemical process involved in the regulation of therapeutic drugs has not been systematically combed. By analyzing and collating Chinese and foreign literature at the present stage, this paper discussed the association mechanism between Wnt/β-catenin signaling pathway and breast cancer and analyzed the internal mechanism of TCM monomers and compounds in mediating Wnt/β-catenin signaling pathway to exert anti-breast cancer effect. The statistical results showed that the flavonoids, alkaloids, and terpenoids in TCM monomers could target the Wnt/β-catenin signaling pathway and block the further development of malignant phenotype of breast cancer cells. TCM compounds with functions of clearing heat and detoxifying, promoting blood circulation and removing blood stasis, and tonifying kidney and liver were commonly used to intervene in the Wnt/β-catenin signaling pathway to prevent breast cancer. Compared with the current inhibitors of Wnt/β-catenin signaling pathway, the application of TCM monomers and compounds is expected to bring low-toxicity and high-efficiency breast cancer treatment drugs to the clinical practice, and the existing results provide a reference for the subsequent screening, research, and development of TCM small-molecule compounds and TCM compounds against breast cancer.
2.Heterogeneity of Adipose Tissue From a Single-cell Transcriptomics Perspective
Yong-Lang WANG ; Si-Si CHEN ; Qi-Long LI ; Yu GONG ; Xin-Yue DUAN ; Ye-Hui DUAN ; Qiu-Ping GUO ; Feng-Na LI
Progress in Biochemistry and Biophysics 2025;52(4):820-835
Adipose tissue is a critical energy reservoir in animals and humans, with multifaceted roles in endocrine regulation, immune response, and providing mechanical protection. Based on anatomical location and functional characteristics, adipose tissue can be categorized into distinct types, including white adipose tissue (WAT), brown adipose tissue (BAT), beige adipose tissue, and pink adipose tissue. Traditionally, adipose tissue research has centered on its morphological and functional properties as a whole. However, with the advent of single-cell transcriptomics, a new level of complexity in adipose tissue has been unveiled, showing that even under identical conditions, cells of the same type may exhibit significant variation in morphology, structure, function, and gene expression——phenomena collectively referred to as cellular heterogeneity. Single-cell transcriptomics, including techniques like single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), enables in-depth analysis of the diversity and heterogeneity of adipocytes at the single-cell level. This high-resolution approach has not only deepened our understanding of adipocyte functionality but also facilitated the discovery of previously unidentified cell types and gene expression patterns that may play key roles in adipose tissue function. This review delves into the latest advances in the application of single-cell transcriptomics in elucidating the heterogeneity and diversity within adipose tissue, highlighting how these findings have redefined the understanding of cell subpopulations within different adipose depots. Moreover, the review explores how single-cell transcriptomic technologies have enabled the study of cellular communication pathways and differentiation trajectories among adipose cell subgroups. By mapping these interactions and differentiation processes, researchers gain insights into how distinct cellular subpopulations coordinate within adipose tissues, which is crucial for maintaining tissue homeostasis and function. Understanding these mechanisms is essential, as dysregulation in adipose cell interactions and differentiation underlies a range of metabolic disorders, including obesity and diabetes mellitus type 2. Furthermore, single-cell transcriptomics holds promising implications for identifying therapeutic targets; by pinpointing specific cell types and gene pathways involved in adipose tissue dysfunction, these technologies pave the way for developing targeted interventions aimed at modulating specific adipose subpopulations. In summary, this review provides a comprehensive analysis of the role of single-cell transcriptomic technologies in uncovering the heterogeneity and functional diversity of adipose tissues.
3.Proportions of memory T cells and expression of their associated cytokines in lymph nodes of mice infected with Echinococcus multilocularis
Yinshi LI ; Duolikun ADILAI ; Bingqing DENG ; Ainiwaer ABIDAN ; Sheng SUN ; Wenying XIAO ; Conghui GE ; Na TANG ; Jing LI ; Hui WANG ; Tao JIANG ; Chuanshan ZHANG
Chinese Journal of Schistosomiasis Control 2025;37(2):136-143
Objective To investigate the effects of Echinococcus multilocularis infection on levels of memory T (Tm) cells and their subsets in lymph nodes of mice at different stages of infection, so as to provide new insights into immunotherapy for alveolarechinococcosis. MethodsTwenty-four C57BL/6J mice aged 6 to 9 weeks were randomly divided into the infection group and the control group, of 12 mice in each group. Mice in the infection group were administered with 3 000 E. multilocularis protoscoleces via portal venous injection, while animals in the control group were administered with an equal volume of physiological saline. Three mice from each group were sacrificed 4, 12 weeks and 24 weeks post-infection, and lymph nodes were sampled and stained with hematoxylin and eosin (HE) to investigate the histopathological changes of mouse lymph nodes in the infection group. The expression and localization of T lymphocyte surface markers CD3, CD4, and CD8 were observed in mouse lymph nodes using immunohistochemical staining. In addition, lymphocyte suspensions were prepared from mouse lymph nodes in both groups at different time points post-infection, and the levels of Tm cell subsets and their secreted cytokines were detected using flow cytometry. Results HE staining showed diffuse structural alterations in the subcapsular cortical and paracortical regions of mouse lymph nodes in the infection group 4 weeks post-infection with E. multilocularis. Immunohistochemical staining detected CD3, CD4 and CD8 expression in mouse lymph nodes in both groups. Flow cytometry revealed higher proportions of CD4+ Tm cells [(55.3 ± 4.8)% vs. (38.8 ± 6.1)%; t = -4.259, P < 0.05] and CD4+ tissue-resident Tm (Trm) cells [(57.7 ± 3.7)% vs. (34.1 ± 11.2)%; t = -3.990, P < 0.05] in mouse lymph nodes in the infection group than in the control group 4 weeks post-infection, and higher proportions of CD4+ Tm cells [(34.6 ± 3.2)% vs. (23.3 ± 7.5)%; t = -2.764, P < 0.05] and CD4+ Trm cells [(44.0 ± 1.9)% vs. (31.2 ± 1.5)%; t = -4.039, P < 0.05] in mouse lymph nodes in the infection group than in the control group 24 weeks post-infection. The proportions of CD8+ Tm cells were higher in the infection group than in the control group 4 weeks [(56.8 ± 2.7)% vs. (43.9 ± 5.2)%; t = -4.416, P < 0.01] and 12 weeks post-infection [(25.4 ± 2.7)% vs. (12.0 ± 2.6)%; t = -2.552, P < 0.05], while the proportions of tumor necrosis factor (TNF)-α+ CD4+ T cells [(15.7 ± 5.0)% vs. (49.4 ± 6.4)%; t = 7.150, P < 0.01], TNF-α+CD8+ T cells [(20.7 ± 5.5)% vs. (57.5 ± 8.4)%; t = -6.694, P < 0.01], and TNF-α+ CD8+ Tm cells [7.0% (1.0%) vs. 31.0% (11.0%); Z = -2.236, P < 0.05] were lower in the infection group than in the control group 24 weeks post-infection. Conclusions Tm cells levels are consistently increased in lymph nodes of mice at different stages of E. multilocularis infection, with Trm cells as the predominantly elevated subset. The impaired capacity of CD8+ Tm cells to secrete the effector molecule TNF-α in mouse lymph nodes at the late-stage infection may facilitate chronic parasitism of E. multilocularis.
4.Enhancing Disciplinary Development Through Journal Columns: Taking the "Clinical Practice Guidelines"Column in Medical Journal of Peking Union Medical College Hospital as an Example
Meihua WU ; Hui LIU ; Qi ZHOU ; Qianling SHI ; Na LI ; Yule LI ; Xiaoqing LIU ; Kehu YANG ; Jinhui TIAN ; Long GE ; Bin MA ; Xiuxia LI ; Xuping SONG ; Xiaohui WANG ; Yaolong CHEN
Medical Journal of Peking Union Medical College Hospital 2025;16(5):1315-1324
To explore the role of the "Clinical Practice Guidelines" column and others in the We collected papers published by the Lanzhou University Evidence-Based Medicine Center team in the "Clinical Practice Guidelines" column and others from 2018 to 2025. These publications were analyzed across multiple dimensions, including authorship and institutional affiliations, citation metrics, and research themes and content. A total of 59 papers were included in the analysis, with authors representing 70 domestie and international research institutions. The cumulative citation count was 639, with the highest single-paper citation frequency reaching 101. The average citation per paper was 10.8, and total downloads exceeded 30 000. The content focused on key themes such as guideline terminology, development methodology, guideline evaluation, and dissemination and implementation. The evolution of research topics progressed from critiques of common misconceptions and hot topies in the field to multidimensional evaluations of thecurrent state of Chinese guidelines, culminating in the fommulation of industry standards for guidelines. These contributions have provided critical references for translating guideline theory into practice in China and have garnered widespread attention and discussion among scholars in the field. The "Clinical Practice Guidelines" column and others in the
5.Identification of blood-entering components of Anshen Dropping Pills based on UPLC-Q-TOF-MS/MS combined with network pharmacology and evaluation of their anti-insomnia effects and mechanisms.
Xia-Xia REN ; Jin-Na YANG ; Xue-Jun LUO ; Hui-Ping LI ; Miao QIAO ; Wen-Jia WANG ; Yi HE ; Shui-Ping ZHOU ; Yun-Hui HU ; Rui-Ming LI
China Journal of Chinese Materia Medica 2025;50(7):1928-1937
This study identified blood-entering components of Anshen Dropping Pills and explored their anti-insomnia effects and mechanisms. The main blood-entering components of Anshen Dropping Pills were detected and identified by UPLC-Q-TOF-MS/MS. The rationality of the formula was assessed by using enrichment analysis based on the relationship between drugs and symptoms, and core targets of its active components were selected as the the potential anti-insomnia targets of Anshen Dropping Pills through network pharmacology analysis. Furthermore, protein-protein interaction(PPI) network, Gene Ontology(GO) enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis were performed on the core targets. An active component-core target network for Anshen Dropping Pills was constructed. Finally, the effects of low-, medium-, and high-dose groups of Anshen Dropping Pills on sleep episodes, sleep duration, and sleep latency in mice were measured by supraliminal and subliminal pentobarbital sodium experiments. Moreover, total scores of the Pittsburgh sleep quality index(PSQI) scale was used to evaluate the changes before and after the treatment with Anshen Dropping Pills in a clinical study. The enrichment analysis based on the relationship between drugs and symptoms verified the rationality of the Anshen Dropping Pills formula, and nine blood-entering components of Anshen Dropping Pills were identified by UPLC-Q-TOF-MS/MS. The network proximity revealed a significant correlation between eight components and insomnia, including magnoflorine, liquiritin, spinosin, quercitrin, jujuboside A, ginsenoside Rb_3, glycyrrhizic acid, and glycyrrhetinic acid. Network pharmacology analysis indicated that the major anti-insomnia pathways of Anshen Dropping Pills involved substance and energy metabolism, neuroprotection, immune system regulation, and endocrine regulation. Seven core genes related to insomnia were identified: APOE, ALB, BDNF, PPARG, INS, TP53, and TNF. In summary, Anshen Dropping Pills could increase sleep episodes, prolong sleep duration, and reduce sleep latency in mice. Clinical study results demonstrated that Anshen Dropping Pills could decrease total scores of PSQI scale. This study reveals the pharmacodynamic basis and potential multi-component, multi-target, and multi-pathway effects of Anshen Dropping Pills, suggesting that its anti-insomnia mechanisms may be associated with the regulation of insomnia-related signaling pathways. These findings offer a theoretical foundation for the clinical application of Anshen Dropping Pills.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Tandem Mass Spectrometry/methods*
;
Sleep Initiation and Maintenance Disorders/metabolism*
;
Mice
;
Network Pharmacology
;
Male
;
Chromatography, High Pressure Liquid
;
Humans
;
Protein Interaction Maps/drug effects*
;
Sleep/drug effects*
;
Female
;
Adult
6.Establishment of tissue culture and rapid propagation system of Artemisia stolonifera.
Chu WANG ; Ya XU ; Yang XU ; Ye WANG ; Na-Na CHANG ; Lu-Qi HUANG ; Hui LI
China Journal of Chinese Materia Medica 2025;50(11):2994-3000
As a high-quality moxibustion material, Artemisia stolonifera has high economic value and research prospects. However, due to difficulties in seed germination, its wild germplasm resources are sparsely distributed in China. This study used young stem segments grown in the current year to investigate the effects of explant sterilization, different combinations and concentrations of plant growth regulators on the proliferation and rooting of adventitious shoots, with the aim of constructing an in vitro rapid propagation technology system for A. stolonifera. The results showed that the lowest contamination rate of 25.83% was achieved when sterilizing the stem segments by rinsing with running water for 30 min, soaking in 75% ethanol for 30 s, followed by a 5 min treatment with 0.1% HgCl_2, 10 min with 8% NaClO, and 10 min with 0.6% phytosaniline. There was no browning of the stem segments, and surface sterilization of the A. stolonifera stem segments was successfully achieved. In the induction culture phase, when the concentration of kinetin(KT) was 0.05 mg·L~(-1) and 6-benzylaminopurine(6-BA) was 0.05 mg·L~(-1), the adventitious shoot proliferation coefficient was 2.02, effectively promoting the proliferation and growth of A. stolonifera. In the rooting culture phase, 0.1 mg·L~(-1) 1-naphthaleneacetic acid(NAA) effectively induced A. stolonifera test-tube seedlings to root within a short period, achieving a rooting rate of 100%. The addition of a small amount of activated charcoal also promoted rooting and strengthened seedling growth. The survival rate of A. stolonifera seedlings transplanted into a substrate consisting of 90% nutrient soil and 10% perlite was 100%. This study established an efficient in vitro rapid propagation system for A. stolonifera, overcoming difficulties with seed germination, shortening the breeding cycle, and reducing production and planting costs. It provides technical support for the introduction, domestication, seedling propagation, germplasm conservation, and industrial development of A. stolonifera.
Artemisia/drug effects*
;
Tissue Culture Techniques/methods*
;
Plant Growth Regulators/pharmacology*
;
Plant Stems/drug effects*
;
Plant Shoots/drug effects*
7.Studies on pharmacological effects and chemical components of different extracts from Bawei Chenxiang Pills.
Jia-Tong WANG ; Lu-Lu KANG ; Feng ZHOU ; Luo-Bu GESANG ; Ya-Na LIANG ; Guo-Dong YANG ; Xiao-Li GAO ; Hui-Chao WU ; Xing-Yun CHAI
China Journal of Chinese Materia Medica 2025;50(11):3035-3042
The medicinal materials of Bawei Chenxiang Pills(BCPs) were extracted via three methods: reflux extraction by water, reflux extraction by 70% ethanol, and extraction by pure water following reflux extraction by 70% ethanol, yielding three extracts of ST, CT, and CST. The efficacy of ST(760 mg·kg~(-1)), CT(620 mg·kg~(-1)), and CST(1 040 mg·kg~(-1)) were evaluated by acute myocardial ischemia(AMI) and p-chlorophenylalanine(PCPA)-induced insomnia in mice, respectively. Western blot was further utilized to investigate their hypnosis mechanisms. The main chemical components of different extracts were identified by the UPLC-Q-Exactive-MS technique. The results showed that CT and CST significantly increased the ejection fraction(EF) and fractional shortening(FS) of myocardial infarction mice, reduced left ventricular internal dimension at end-diastole(LVIDd) and left ventricular internal dimension at end-systole(LVIDs). In contrast, ST did not exhibit significant effects on these parameters. In the insomnia model, CT significantly reduced sleep latency and prolonged sleep duration, whereas ST only prolonged sleep duration without shortening sleep latency. CST showed no significant effects on either sleep latency or sleep duration. Additionally, both CT and ST upregulated glutamic acid decarboxylase 67(GAD67) protein expression in brain tissue. A total of 15 main chemical components were identified from CT, including 2-(2-phenylethyl) chromone and 6-methoxy-2-(2-phenylethyl) chromone. Six chemical components including chebulidic acid were identified from ST. The results suggested that chromones and terpenes were potential anti-myocardial ischemia drugs of BCPs, and tannin and phenolic acids were potential hypnosis drugs. This study enriches the pharmacological and chemical research of BCPs, providing a basis and reference for their secondary development, quality standard improvement, and clinical application.
Animals
;
Drugs, Chinese Herbal/isolation & purification*
;
Mice
;
Male
;
Sleep Initiation and Maintenance Disorders/physiopathology*
;
Humans
;
Myocardial Infarction/drug therapy*
;
Myocardial Ischemia/drug therapy*
8.Seminal plasma miR-26a-5p influences sperm DNA integrity by targeting and regulating the PTEN gene.
Chun-Hui LIU ; Wen-Sheng SHAN ; Zhi-Qiang WANG ; Shao-Jun LI ; Chen ZHU ; Hai WANG ; Yu-Na ZHOU ; Rui-Peng WU
National Journal of Andrology 2025;31(9):780-790
OBJECTIVE:
By analyzing the differential miRNA in seminal plasma between individuals with normal and abnormal sperm DNA fragmentation index(DFI), we aim to identify miRNA that may impact sperm DNA integrity and target genes, and attempt to analyze their potential mechanisms of action.
METHODS:
A total of 161 study subjects were collected and divided into normal control group, DFI-medium group and DFI-abnormal group based on the DFI detection values. Differential miRNA were identified through miRNA chip analysis. Through bioinformatics analysis and target gene prediction, miRNA related to DFI and specific target genes were identified. The relative expression levels of differential miRNA and target genes in each group were compared to explore the impact of their differential expression on DFI.
RESULTS:
Through miRNA chip analysis, a total of 11 differential miRNA were detected. Bioinformatics analysis suggested that miR-26a-5p may be associated with reduced sperm DNA integrity. And gene prediction indicated that PTEN was a specific target gene of miR-26a-5p. Compared to the normal control group, the relative expression levels of miR-26a-5p in both the DFI-medium group and the DFI-abnormal group showed a decrease, while the relative expression levels of PTEN showed an increase. The relative expression levels of miR-26a-5p in all groups were negatively correlated with DFI values, while the relative expression levels of PTEN showed a positive correlation with DFI values in the DFI-medium group and the DFI-abnormal group. The AUC of miR-26a-5p in the DFI-medium group was 0.740 (P<0.05), with a sensitivity of 73.6% and a specificity of 71.5%; the AUC of PTEN was 0.797 (P<0.05), with a sensitivity of 76.5% and a specificity of 78.4%. In the DFI-abnormal group, the AUC of miR-26a-5p was 0.848 (P<0.05), with a sensitivity of 81.3% and a specificity of 78.1%. While the AUC of PTEN was 0.763 (P<0.05), with a sensitivity of 77.2% and a specificity of 80.2%.
CONCLUSION
miR-26a-5p affects the integrity of sperm DNA by regulating the expression of PTEN negatively. The relative expression levels of seminal plasma miR-26a-5p and PTEN have good diagnostic value for sperm DNA integrity damage, which can help in the etiological diagnosis and prognosis analysis of abnormal DFI. This provides a diagnostic and treatment approach for the study and diagnosis of DFI abnormalities without clear etiology.
Male
;
Humans
;
MicroRNAs/genetics*
;
PTEN Phosphohydrolase/genetics*
;
Spermatozoa
;
Semen/metabolism*
;
DNA Fragmentation
9.Integrative transcriptomic and epigenomic analysis identifies BCL6B as a novel regulator of human pluripotent stem cell to endothelial differentiation.
Yonglin ZHU ; Jinyang LIU ; Jia WANG ; Shuangyuan DING ; Hui QIU ; Xia CHEN ; Jianying GUO ; Peiliang WANG ; Xingwu ZHANG ; Fengzhi ZHANG ; Rujin HUANG ; Fuyu DUAN ; Lin WANG ; Jie NA
Protein & Cell 2025;16(11):985-990
10.A DPAL method for the identification of the synergistic target of drugs.
Dongyao WANG ; Yuxiao TANG ; Na LI ; Chenghua WU ; Jianxin YANG ; Mengpu WU ; Feng LU ; Yifeng CHAI ; Chenqi LI ; Hui SHEN ; Xin DONG ; Changquan LING
Journal of Pharmaceutical Analysis 2025;15(11):101351-101351
Image 1.

Result Analysis
Print
Save
E-mail