1.Safety and efficacy of Angong Niuhuang Pills in patients with moderate-to-severe acute ischemic stroke (ANGONG TRIAL): A randomized double-blind placebo-controlled pilot clinical trial.
Shengde LI ; Anxin WANG ; Lin SHI ; Qin LIU ; Xiaoling GUO ; Kun LIU ; Xiaoli WANG ; Jie LI ; Jianming ZHU ; Qiuyi WU ; Qingcheng YANG ; Xianbo ZHUANG ; Hui YOU ; Feng FENG ; Yishan LUO ; Huiling LI ; Jun NI ; Bin PENG
Chinese Medical Journal 2025;138(5):579-588
BACKGROUND:
Preclinical studies have indicated that Angong Niuhuang Pills (ANP) reduce cerebral infarct and edema volumes. This study aimed to investigate whether ANP safely reduces cerebral infarct and edema volumes in patients with moderate to severe acute ischemic stroke.
METHODS:
This randomized, double-blind, placebo-controlled pilot trial included patients with acute ischemic stroke with National Institutes of Health Stroke Scale (NIHSS) scores ranging from 10 to 20 in 17 centers in China between April 2021 and July 2022. Patients were allocated within 36 h after onset via block randomization to receive ANP or placebo (3 g/day for 5 days). The primary outcomes were changes in cerebral infarct and edema volumes after 14 days of treatment. The primary safety outcome was severe adverse events (SAEs) for 90 days.
RESULTS:
There were 57 and 60 patients finally included in the ANP and placebo groups, respectively for modified intention-to-treat analysis. The median age was 66.0 years, and the median NIHSS score at baseline was 12.0. The changes in cerebral infarct volume at day 14 were 0.3 mL and 0.4 mL in the ANP and placebo groups, respectively (median difference: -7.1 mL; interquartile range [IQR]: -18.3 to 2.3 mL, P = 0.30). The changes in cerebral edema volume of the ANP and placebo groups on day 14 were 11.4 mL and 4.0 mL, respectively ( median difference: 3.0 mL, IQR: -1.3 to 9.9 mL, P = 0.15). The rates of SAE within 90 days were similar in the ANP (3/57, 5%) and placebo (7/60, 12%) groups ( P = 0.36). Changes in serum mercury and arsenic concentrations were comparable. In patients with large artery atherosclerosis, ANP reduced the cerebral infarct volume at 14 days (median difference: -12.3 mL; IQR: -27.7 to -0.3 mL, P = 0.03).
CONCLUSIONS:
ANP showed a similar safety profile to placebo and non-significant tendency to reduce cerebral infarct volume in patients with moderate-to-severe stroke. Further studies are warranted to assess the efficacy of ANP in reducing cerebral infarcts and improving clinical prognosis.
TRAIL REGISTRATION
Clinicaltrials.gov , No. NCT04475328.
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Double-Blind Method
;
Drugs, Chinese Herbal/adverse effects*
;
Ischemic Stroke/drug therapy*
;
Pilot Projects
;
Stroke/drug therapy*
;
Treatment Outcome
2.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
3.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
4.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
5.Drying kinetics of Salviae Miltiorrhizae Radix et Rhizoma and dynamics of active components in drying process.
Yu-Qin LI ; Xiu-Xiu SHA ; Zhe ZHANG ; Shu-Lan SU ; Liang NI ; Sheng GUO ; Hui YAN ; Da-Wei QIAN ; Jin-Ao DUAN
China Journal of Chinese Materia Medica 2025;50(1):128-139
This study explored the drying kinetics of Salviae Miltiorrhizae Radix et Rhizoma(SM), established the suitable models simulating the drying kinetics, and then analyzed the dynamic changes of active components during the drying processes with different methods, aiming to provide a basis for the establishment of suitable drying methods and the quality control of SM. The drying kinetics were studied based on the drying curve, drying rate, moisture effective diffusion coefficient, and drying activation energy, and the appropriate drying kinetics model of SM was established. The drying performance of different methods, such as hot air drying, infrared drying, and microwave drying of SM was evaluated, and the changes in the content of 10 salvianolic acids and 6 tanshinones during drying were analyzed by UPLC-TQ-MS. The Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS) was employed to evaluate the quality of SM dried with different methods. The results showed that the drying rate and moisture effective diffusion coefficient of SM increased with the rise in drying temperature, and the maximum drying rates of different methods were in the order of microwave drying > infrared drying > hot air drying, slice > whole root. The drying rate decreased with the rise in temperature and the extension of drying time. The activation energy of hot air drying was higher than that of infrared drying in SM. The most suitable model for simulating the drying process of SM was the Page model. The TOPSIS results suggested infrared drying at 50 ℃ was the optimal drying method for SM. During the drying process, the content of salvianolic acids increased in different degrees with the loss of moisture, among which salvianolic acid B showed the largest increase of 44 times compared with that in the fresh medicinal material. Tanshinones also existed in the fresh herb of SM, and the content of tanshinone Ⅱ_A increased by 3 times after drying. The results provided a basis for the establishment of suitable drying methods and the quality control of SM.
Salvia miltiorrhiza/chemistry*
;
Desiccation/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Rhizome/chemistry*
;
Kinetics
;
Quality Control
;
Abietanes
6.Advances in role and mechanism of traditional Chinese medicine active ingredients in regulating balance of Th1/Th2 and Th17/Treg immune responses in asthma patients.
Ya-Sheng DENG ; Lan-Hua XI ; Yan-Ping FAN ; Wen-Yue LI ; Yong-Hui LIU ; Zhao-Bing NI ; Ming-Chan WEI ; Jiang LIN
China Journal of Chinese Materia Medica 2025;50(4):1000-1021
Asthma is a chronic inflammatory disease involving multiple inflammatory cells and cytokines. Its pathogenesis is complex, involving various cells and cytokines. Traditional Chinese medicine(TCM) theory suggests that the pathogenesis of asthma is closely related to the dysfunction of internal organs such as the lungs, spleen, and kidneys. In contrast, modern immunological studies have revealed the central role of T helper 1(Th1)/T helper 2(Th2) and T helper 17(Th17)/regulatory T(Treg) cellular immune imbalance in the pathogenesis of asthma. Th1/Th2 imbalance is manifested as hyperfunction of Th2 cells, which promotes the synthesis of immunoglobulin E(IgE) and the activation of eosinophil granulocytes, leading to airway hyperresponsiveness and inflammation.Meanwhile, Th17/Treg imbalance exacerbates the inflammatory response in the airways, further contributing to asthma pathology.Currently, therapeutic strategies for asthma are actively exploring potential targets for regulating the balance of Th1/Th2 and Th17/Treg immune responses. These targets include cytokines, transcription factors, key proteins, and non-coding RNAs. Precisely regulating the expression and function of these targets can effectively modulate the activation and differentiation of immune cells. In recent years,traditional Chinese medicine active ingredients have shown unique potential and prospects in the field of asthma treatment. Based on this, the present study systematically summarizes the efficacy and specific mechanisms of TCM active ingredients in treating asthma by regulating Th1/Th2 and Th17/Treg immune balance through literature review and analysis. These active ingredients, including flavonoids, terpenoids, polysaccharides, alkaloids, and phenolic acids, exert their effects through various mechanisms, such as inhibiting the activation of inflammatory cells, reducing the release of cytokines, and promoting the normal differentiation of immune cells. This study aims to provide a solid foundation for the widespread application and in-depth development of TCM in asthma treatment and to offer new ideas for clinical research and drug development of asthma.
Asthma/genetics*
;
Humans
;
Drugs, Chinese Herbal/chemistry*
;
Th2 Cells/drug effects*
;
Th17 Cells/drug effects*
;
T-Lymphocytes, Regulatory/drug effects*
;
Th1 Cells/drug effects*
;
Animals
;
Cytokines/immunology*
;
Medicine, Chinese Traditional
7.Xinyang Tablets ameliorate ventricular remodeling in heart failure via FTO/m6A signaling pathway.
Dong-Hua LIU ; Zi-Ru LI ; Si-Jing LI ; Xing-Ling HE ; Xiao-Jiao ZHANG ; Shi-Hao NI ; Wen-Jie LONG ; Hui-Li LIAO ; Zhong-Qi YANG ; Xiao-Ming DONG
China Journal of Chinese Materia Medica 2025;50(4):1075-1086
The study was conducted to investigate the mechanism of Xinyang Tablets( XYP) in modulating the fat mass and obesity-associated protein(FTO)/N6-methyladenosine(m6A) signaling pathway to ameliorate ventricular remodeling in heart failure(HF). A mouse model of HF was established by transverse aortic constriction(TAC). Mice were randomized into sham, model, XYP(low, medium, and high doses), and positive control( perindopril) groups(n= 10). From day 3 post-surgery, mice were administrated with corresponding drugs by gavage for 6 consecutive weeks. Following the treatment, echocardiography was employed to evaluate the cardiac function, and RT-qPCR was employed to determine the relative m RNA levels of key markers, including atrial natriuretic peptide( ANP), B-type natriuretic peptide( BNP), β-myosin heavy chain(β-MHC), collagen type I alpha chain(Col1α), collagen type Ⅲ alpha chain(Col3α), alpha smooth muscle actin(α-SMA), and FTO. The cardiac tissue was stained with Masson's trichrome and wheat germ agglutinin(WGA) to reveal the pathological changes. Immunohistochemistry was employed to detect the expression levels of Col1α, Col3α, α-SMA, and FTO in the myocardial tissue. The m6A modification level in the myocardial tissue was measured by the m6A assay kit. An H9c2 cell model of cardiomyocyte injury was induced by angiotensin Ⅱ(AngⅡ), and small interfering RNA(siRNA) was employed to knock down FTO expression. RT-qPCR was conducted to assess the relative m RNA levels of FTO and other genes associated with cardiac remodeling. The m6A modification level was measured by the m6A assay kit, and Western blot was employed to determine the phosphorylated phosphatidylinositol 3-kinase(p-PI3K)/phosphatidylinositol 3-kinase(PI3K) and phosphorylated serine/threonine kinase(p-Akt)/serine/threonine kinase(Akt) ratios in cardiomyocytes. The results of animal experiments showed that the XYP treatment significantly improved the cardiac function, reduced fibrosis, up-regulated the m RNA and protein levels of FTO, and lowered the m6A modification level compared with the model group. The results of cell experiments showed that the XYP-containing serum markedly up-regulated the m RNA level of FTO while decreasing the m6A modification level and the p-PI3K/PI3K and p-Akt/Akt ratios in cardiomyocytes. Furthermore, FTO knockdown reversed the protective effects of XYP-containing serum on Ang Ⅱ-induced cardiomyocyte hypertrophy. In conclusion, XYP may ameliorate ventricular remodeling by regulating the FTO/m6A axis, thereby inhibiting the activation of the PI3K/Akt signaling pathway.
Animals
;
Ventricular Remodeling/drug effects*
;
Heart Failure/physiopathology*
;
Signal Transduction/drug effects*
;
Mice
;
Male
;
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice, Inbred C57BL
;
Humans
;
Adenosine/analogs & derivatives*
;
Myocytes, Cardiac/metabolism*
;
Disease Models, Animal
8.Heart Yin deficiency and cardiac fibrosis: from pathological mechanisms to therapeutic strategies.
Jia-Hui CHEN ; Si-Jing LI ; Xiao-Jiao ZHANG ; Zi-Ru LI ; Xing-Ling HE ; Xing-Ling CHEN ; Tao-Chun YE ; Zhi-Ying LIU ; Hui-Li LIAO ; Lu LU ; Zhong-Qi YANG ; Shi-Hao NI
China Journal of Chinese Materia Medica 2025;50(7):1987-1993
Cardiac fibrosis(CF) is a cardiac pathological process characterized by excessive deposition of extracellular matrix(ECM). When the heart is damaged by adverse stimuli, cardiac fibroblasts are activated and secrete a large amount of ECM, leading to changes in cardiac fibrosis, myocardial stiffness, and cardiac function declines and accelerating the development of heart failure. There is a close relationship between heart yin deficiency and cardiac fibrosis, which have similar pathogenic mechanisms. Heart Yin deficiency, characterized by insufficient Yin fluids, causes the heart to lose its nourishing function, which acts as the initiating factor for myocardial dystrophy. The deficiency of body fluids leads to stagnation of blood flow, resulting in blood stasis and water retention. Blood stasis and water retention accumulate in the heart, which aligns with the pathological manifestation of excessive deposition of ECM, as a tangible pathogenic factor. This is an inevitable stage of the disease process. The lingering of blood stasis combined with water retention eventually leads to the generation of heat and toxins, triggering inflammatory responses similar to heat toxins, which continuously stimulate the heart and cause the ultimate outcome of CF. Considering the syndrome of heart Yin deficiency, traditional Chinese medicine capable of nourishing Yin, activating blood, and promoting urination can reduce myocardial cell apoptosis, inhibit fibroblast activation, and lower the inflammation level, showing significant advantages in combating CF.
Humans
;
Fibrosis/drug therapy*
;
Animals
;
Yin Deficiency/metabolism*
;
Myocardium/metabolism*
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/therapeutic use*
9.Efficacy and mechanism of Guizhi Tongluo Tablets in alleviating atherosclerosis by inhibiting CD72hi macrophages.
Xing-Ling HE ; Si-Jing LI ; Zi-Ru LI ; Dong-Hua LIU ; Xiao-Jiao ZHANG ; Huan HE ; Xiao-Ming DONG ; Wen-Jie LONG ; Wei-Wei ZHANG ; Hui-Li LIAO ; Lu LU ; Zhong-Qi YANG ; Shi-Hao NI
China Journal of Chinese Materia Medica 2025;50(5):1298-1309
This study investigates the effect and underlying mechanism of Guizhi Tongluo Tablets(GZTL) in treating atherosclerosis(AS) in a mouse model. Apolipoprotein E-knockout(ApoE~(-/-)) mice were randomly assigned to the following groups: model, high-, medium-, and low-dose GZTL, and atorvastatin(ATV), and age-matched C57BL/6J mice were selected as the control group. ApoE~(-/-) mice in other groups except the control group were fed with a high-fat diet for the modeling of AS and administrated with corresponding drugs via gavage for 8 weeks. General conditions, signs of blood stasis, and body mass of mice were monitored. Aortic plaques and their stability were assessed by hematoxylin-eosin, Masson, and oil red O staining. Serum levels of total cholesterol(TC), triglycerides(TG), and low-density lipoprotein cholesterol(LDL-C) were measured by biochemical assays, and those of interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6) were determined via enzyme-linked immunosorbent assay. Apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL). Single-cell RNA sequencing(scRNA-seq) was employed to analyze the differential expression of CD72hi macrophages(CD72hi-Mφ) in the aortas of AS patients and mice. The immunofluorescence assay was employed to visualize CD72hi-Mφ expression in mouse aortic plaques, and real-time fluorescence quantitative PCR was utilized to determine the mRNA levels of IL-1β, TNF-α, and IL-6 in the aorta. The results demonstrated that compared with the control group, the model group exhibited significant increases in body mass, aortic plaque area proportion, necrotic core area proportion, and lipid deposition, a notable decrease in collagen fiber content, and an increase in apoptosis. Additionally, the model group showcased elevated serum levels of TC, TG, LDL-C, IL-1β, TNF-α, and IL-6, alongside marked upregulations in the mRNA levels of IL-1β, TNF-α, and IL-6 in the aorta. In comparison with the model group, the GZTL groups and the ATV group showed a reduction in body mass, and the medium-and high-dose GZTL groups and the ATV group demonstrated reductions in aortic plaque area proportion, necrotic core area proportion, and lipid deposition, an increase in collagen fiber content, and a decrease in apoptosis. Furthermore, the treatment goups showcased lowered serum levels of TC, TG, LDL-C, IL-1β, TNF-α, and IL-6. The data of scRNA-seq revealed significantly elevated CD72hi-Mφ signaling in carotid plaques of AS patients compared with that in the normal arterial tissue. Animal experiments confirmed that CD72hi-Mφ expression, along with several pro-inflammatory cytokines, was significantly upregulated in the aortas of AS mice, which were downregulated by GZTL treatment. In conclusion, GZTL may alleviate AS by inhibiting CD72hi-Mφ activity.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Atherosclerosis/immunology*
;
Mice
;
Mice, Inbred C57BL
;
Macrophages/immunology*
;
Male
;
Humans
;
Apolipoproteins E/genetics*
;
Tablets
;
Tumor Necrosis Factor-alpha/genetics*
;
Apoptosis/drug effects*
;
Interleukin-1beta/genetics*
;
Interleukin-6/genetics*
;
Disease Models, Animal
;
Mice, Knockout
10.Advances in pathogenesis of asthma airway remodeling and intervention mechanism of traditional Chinese medicine.
Ya-Sheng DENG ; Jiang LIN ; Yu-Jiang XI ; Yan-Ping FAN ; Wen-Yue LI ; Yong-Hui LIU ; Zhao-Bing NI ; Xi MING
China Journal of Chinese Materia Medica 2025;50(8):2050-2070
Asthma, a chronic inflammatory airway disease with a high global prevalence, has a complex pathogenesis, in which airway remodeling plays a key role in the chronicity of the disease. Airway remodeling involves a series of pathophysiological changes, including airway epithelial damage, proliferation of mucous glands and goblet cells, subepithelial fibrosis, proliferation and migration of airway smooth muscle cells, and epithelial-mesenchymal transition. These complex pathological changes significantly increase airway resistance and responsiveness, forming an important pathological basis for refractory asthma. Currently, the regulatory mechanisms of airway remodeling focus on signaling pathways and regulatory targets. The signaling pathways include phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt), nuclear factor-κB(NF-κB), transforming growth factor-β1(TGF-β1)/Smads, and mitogen-activated protein kinase(MAPK). The regulatory targets include microRNAs(miRNAs), competing endogenous RNAs(ceRNAs), long non-coding RNAs(lncRNAs), and circular RNAs(circRNAs). Key proteins involved in these processes include TGF-β1, silencing information regulator 2-related enzyme 1(SIRT1), chitinase 3-like protein 1(YKL-40), and adenosine deaminase-metalloproteinase 33(ADAM33). In recent years, the potential of traditional Chinese medicine in the treatment of asthma has become increasingly evident. Its active ingredients, extracts, and complexes can inhibit airway remodeling in asthma through multiple pathways, demonstrating a variety of effects, including anti-inflammatory actions, inhibition of smooth muscle cell proliferation and migration, regulation of epithelial-mesenchymal transition, attenuation of fibrosis and basement membrane thickening, reduction of mucus secretion, inhibition of vascular remodeling, modulation of immune imbalance, and antioxidative stress. This paper aims to provide an in-depth analysis of the pathogenesis and therapeutic targets of asthma, offering theoretical support and innovative strategies for clinical research and drug development in the treatment of asthma.
Asthma/pathology*
;
Humans
;
Airway Remodeling/drug effects*
;
Drugs, Chinese Herbal/therapeutic use*
;
Animals
;
Signal Transduction/drug effects*
;
Medicine, Chinese Traditional
;
Transforming Growth Factor beta1/metabolism*

Result Analysis
Print
Save
E-mail