1.Increased CT Attenuation of Pericolic Adipose Tissue as a Noninvasive Marker of Disease Severity in Ulcerative Colitis
Jun LU ; Hui XU ; Jing ZHENG ; Tianxin CHENG ; Xinjun HAN ; Yuxin WANG ; Xuxu MENG ; Xiaoyang LI ; Jiahui JIANG ; Xue DONG ; Xijie ZHANG ; Zhenchang WANG ; Zhenghan YANG ; Lixue XU
Korean Journal of Radiology 2025;26(5):411-421
Objective:
Accurate evaluation of inflammation severity in ulcerative colitis (UC) can guide treatment strategy selection. The potential value of the pericolic fat attenuation index (FAI) on CT as an indicator of disease severity remains unknown.This study aimed to assess the diagnostic accuracy of pericolic FAI in predicting UC severity.
Materials and Methods:
This retrospective study enrolled 148 patients (mean age 48 years; 87 males). The fat attenuation on CT was measured in four different locations: the mesocolic vascular side (MS) and opposite side of MS (OMS) around the most severe bowel lesion, the retroperitoneal space (RS), and the subcutaneous area. The fat attenuation indices (FAI MS, FAI OMS, and FAI RS) were calculated as the fat attenuation measured in MS, OMS, and RS, respectively, minus that of the subcutaneous area, and were obtained in the non-enhanced, arterial, and delayed phases. Correlations between the FAI and UC Endoscopic Index of Severity (UCEIS) were assessed using Spearman’s correlation. Predictors of severe UC (UCEIS ≥7) were selected by univariable analysis. The performance of FAI in predicting severe UC was evaluated using the area under the receiver operating characteristic curve (AUC).
Results:
The FAIMS and FAI OMS scores were significantly higher than FAI RS in three phases (all P < 0.001). The FAIMS and FAI OMS scores moderately correlated with the UCEIS score (r = 0.474–0.649 among the three phases). Additionally, FAI MS and FAI OMS identified severe UC, with AUC varying from 0.77 to 0.85.
Conclusion
Increased CT attenuation of pericolic adipose tissue could serve as a noninvasive marker for evaluating UC severity. FAI MS and FAI OMS of three phases showed similar prediction accuracies for severe UC identification.
2.Increased CT Attenuation of Pericolic Adipose Tissue as a Noninvasive Marker of Disease Severity in Ulcerative Colitis
Jun LU ; Hui XU ; Jing ZHENG ; Tianxin CHENG ; Xinjun HAN ; Yuxin WANG ; Xuxu MENG ; Xiaoyang LI ; Jiahui JIANG ; Xue DONG ; Xijie ZHANG ; Zhenchang WANG ; Zhenghan YANG ; Lixue XU
Korean Journal of Radiology 2025;26(5):411-421
Objective:
Accurate evaluation of inflammation severity in ulcerative colitis (UC) can guide treatment strategy selection. The potential value of the pericolic fat attenuation index (FAI) on CT as an indicator of disease severity remains unknown.This study aimed to assess the diagnostic accuracy of pericolic FAI in predicting UC severity.
Materials and Methods:
This retrospective study enrolled 148 patients (mean age 48 years; 87 males). The fat attenuation on CT was measured in four different locations: the mesocolic vascular side (MS) and opposite side of MS (OMS) around the most severe bowel lesion, the retroperitoneal space (RS), and the subcutaneous area. The fat attenuation indices (FAI MS, FAI OMS, and FAI RS) were calculated as the fat attenuation measured in MS, OMS, and RS, respectively, minus that of the subcutaneous area, and were obtained in the non-enhanced, arterial, and delayed phases. Correlations between the FAI and UC Endoscopic Index of Severity (UCEIS) were assessed using Spearman’s correlation. Predictors of severe UC (UCEIS ≥7) were selected by univariable analysis. The performance of FAI in predicting severe UC was evaluated using the area under the receiver operating characteristic curve (AUC).
Results:
The FAIMS and FAI OMS scores were significantly higher than FAI RS in three phases (all P < 0.001). The FAIMS and FAI OMS scores moderately correlated with the UCEIS score (r = 0.474–0.649 among the three phases). Additionally, FAI MS and FAI OMS identified severe UC, with AUC varying from 0.77 to 0.85.
Conclusion
Increased CT attenuation of pericolic adipose tissue could serve as a noninvasive marker for evaluating UC severity. FAI MS and FAI OMS of three phases showed similar prediction accuracies for severe UC identification.
3.The edible ethanol extract of Rosa hybrida suppresses colon cancer progression by inhibiting the proliferation-cell signaling-metastasis axis
Hong-Man KIM ; Daeun LEE ; Jun-Hui SONG ; Hoon KIM ; Sanghyun LEE ; Sangah SHIN ; Sun-Dong PARK ; Young Woo KIM ; Yung Hyun CHOI ; Wun-Jae KIM ; Sung-Kwon MOON
Nutrition Research and Practice 2025;19(1):14-29
BACKGROUND/OBJECTIVES:
Rosa hybrida has been demonstrated to exert biological effects on several cell types. This study investigated the efficacy of the edible ethanol extract of R.hybrida (EERH) against human colorectal carcinoma cell line (HCT116) cells.MATERIALS/METHODS: HCT116 cells were cultured with different concentrations of EERH (0, 400, 600, 800, and 1,000 µg/mL) in Dulbecco’s modified Eagle medium. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide and viable cell counting assays. Cell cycle pattern was observed by flow cytometry analysis. The wound-healing migration assay, invasion assay, and zymography were used to determine the migratory and invasive level of HCT116 cells treated with EERH. The protein expression and binding ability level of HCT116 cells following EERH treatment were analyzed via immunoblotting and the electrophoretic mobility shift assay.
RESULTS:
EERH suppressed HCT116 cell proliferation, thus arresting the G1-phase cell cycle.It also reduced cyclin-dependent kinases and cyclins, which are associated with p27KIP1 expression. Additionally, EERH differentially regulated the phosphorylation of extracellular signal-regulated kinase 1/2, c-Jun NH2-terminal kinase, p38, and protein kinase B. Moreover, EERH treatment inhibited the enzymatic activity of matrix metalloproteinase-9 (MMP-9) and MMP-2, resulting in HCT116 cell migration and invasion. The EERH-induced inhibition of MMP-9 and MMP-2 was attributed to the reduced transcriptional binding of activator protein-1, specificity protein-1, and nuclear factor-κB motifs in HCT116 cells. Kaempferol was identified as the main compound contributing to EERH's antitumor activity.
CONCLUSION
EERH inhibits HCT116 cell proliferation and metastatic potential. Therefore, it is potentially useful as a preventive and curative nutraceutical agent against colorectal cancer.
4.The edible ethanol extract of Rosa hybrida suppresses colon cancer progression by inhibiting the proliferation-cell signaling-metastasis axis
Hong-Man KIM ; Daeun LEE ; Jun-Hui SONG ; Hoon KIM ; Sanghyun LEE ; Sangah SHIN ; Sun-Dong PARK ; Young Woo KIM ; Yung Hyun CHOI ; Wun-Jae KIM ; Sung-Kwon MOON
Nutrition Research and Practice 2025;19(1):14-29
BACKGROUND/OBJECTIVES:
Rosa hybrida has been demonstrated to exert biological effects on several cell types. This study investigated the efficacy of the edible ethanol extract of R.hybrida (EERH) against human colorectal carcinoma cell line (HCT116) cells.MATERIALS/METHODS: HCT116 cells were cultured with different concentrations of EERH (0, 400, 600, 800, and 1,000 µg/mL) in Dulbecco’s modified Eagle medium. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide and viable cell counting assays. Cell cycle pattern was observed by flow cytometry analysis. The wound-healing migration assay, invasion assay, and zymography were used to determine the migratory and invasive level of HCT116 cells treated with EERH. The protein expression and binding ability level of HCT116 cells following EERH treatment were analyzed via immunoblotting and the electrophoretic mobility shift assay.
RESULTS:
EERH suppressed HCT116 cell proliferation, thus arresting the G1-phase cell cycle.It also reduced cyclin-dependent kinases and cyclins, which are associated with p27KIP1 expression. Additionally, EERH differentially regulated the phosphorylation of extracellular signal-regulated kinase 1/2, c-Jun NH2-terminal kinase, p38, and protein kinase B. Moreover, EERH treatment inhibited the enzymatic activity of matrix metalloproteinase-9 (MMP-9) and MMP-2, resulting in HCT116 cell migration and invasion. The EERH-induced inhibition of MMP-9 and MMP-2 was attributed to the reduced transcriptional binding of activator protein-1, specificity protein-1, and nuclear factor-κB motifs in HCT116 cells. Kaempferol was identified as the main compound contributing to EERH's antitumor activity.
CONCLUSION
EERH inhibits HCT116 cell proliferation and metastatic potential. Therefore, it is potentially useful as a preventive and curative nutraceutical agent against colorectal cancer.
5.Increased CT Attenuation of Pericolic Adipose Tissue as a Noninvasive Marker of Disease Severity in Ulcerative Colitis
Jun LU ; Hui XU ; Jing ZHENG ; Tianxin CHENG ; Xinjun HAN ; Yuxin WANG ; Xuxu MENG ; Xiaoyang LI ; Jiahui JIANG ; Xue DONG ; Xijie ZHANG ; Zhenchang WANG ; Zhenghan YANG ; Lixue XU
Korean Journal of Radiology 2025;26(5):411-421
Objective:
Accurate evaluation of inflammation severity in ulcerative colitis (UC) can guide treatment strategy selection. The potential value of the pericolic fat attenuation index (FAI) on CT as an indicator of disease severity remains unknown.This study aimed to assess the diagnostic accuracy of pericolic FAI in predicting UC severity.
Materials and Methods:
This retrospective study enrolled 148 patients (mean age 48 years; 87 males). The fat attenuation on CT was measured in four different locations: the mesocolic vascular side (MS) and opposite side of MS (OMS) around the most severe bowel lesion, the retroperitoneal space (RS), and the subcutaneous area. The fat attenuation indices (FAI MS, FAI OMS, and FAI RS) were calculated as the fat attenuation measured in MS, OMS, and RS, respectively, minus that of the subcutaneous area, and were obtained in the non-enhanced, arterial, and delayed phases. Correlations between the FAI and UC Endoscopic Index of Severity (UCEIS) were assessed using Spearman’s correlation. Predictors of severe UC (UCEIS ≥7) were selected by univariable analysis. The performance of FAI in predicting severe UC was evaluated using the area under the receiver operating characteristic curve (AUC).
Results:
The FAIMS and FAI OMS scores were significantly higher than FAI RS in three phases (all P < 0.001). The FAIMS and FAI OMS scores moderately correlated with the UCEIS score (r = 0.474–0.649 among the three phases). Additionally, FAI MS and FAI OMS identified severe UC, with AUC varying from 0.77 to 0.85.
Conclusion
Increased CT attenuation of pericolic adipose tissue could serve as a noninvasive marker for evaluating UC severity. FAI MS and FAI OMS of three phases showed similar prediction accuracies for severe UC identification.
6.Increased CT Attenuation of Pericolic Adipose Tissue as a Noninvasive Marker of Disease Severity in Ulcerative Colitis
Jun LU ; Hui XU ; Jing ZHENG ; Tianxin CHENG ; Xinjun HAN ; Yuxin WANG ; Xuxu MENG ; Xiaoyang LI ; Jiahui JIANG ; Xue DONG ; Xijie ZHANG ; Zhenchang WANG ; Zhenghan YANG ; Lixue XU
Korean Journal of Radiology 2025;26(5):411-421
Objective:
Accurate evaluation of inflammation severity in ulcerative colitis (UC) can guide treatment strategy selection. The potential value of the pericolic fat attenuation index (FAI) on CT as an indicator of disease severity remains unknown.This study aimed to assess the diagnostic accuracy of pericolic FAI in predicting UC severity.
Materials and Methods:
This retrospective study enrolled 148 patients (mean age 48 years; 87 males). The fat attenuation on CT was measured in four different locations: the mesocolic vascular side (MS) and opposite side of MS (OMS) around the most severe bowel lesion, the retroperitoneal space (RS), and the subcutaneous area. The fat attenuation indices (FAI MS, FAI OMS, and FAI RS) were calculated as the fat attenuation measured in MS, OMS, and RS, respectively, minus that of the subcutaneous area, and were obtained in the non-enhanced, arterial, and delayed phases. Correlations between the FAI and UC Endoscopic Index of Severity (UCEIS) were assessed using Spearman’s correlation. Predictors of severe UC (UCEIS ≥7) were selected by univariable analysis. The performance of FAI in predicting severe UC was evaluated using the area under the receiver operating characteristic curve (AUC).
Results:
The FAIMS and FAI OMS scores were significantly higher than FAI RS in three phases (all P < 0.001). The FAIMS and FAI OMS scores moderately correlated with the UCEIS score (r = 0.474–0.649 among the three phases). Additionally, FAI MS and FAI OMS identified severe UC, with AUC varying from 0.77 to 0.85.
Conclusion
Increased CT attenuation of pericolic adipose tissue could serve as a noninvasive marker for evaluating UC severity. FAI MS and FAI OMS of three phases showed similar prediction accuracies for severe UC identification.
7.The edible ethanol extract of Rosa hybrida suppresses colon cancer progression by inhibiting the proliferation-cell signaling-metastasis axis
Hong-Man KIM ; Daeun LEE ; Jun-Hui SONG ; Hoon KIM ; Sanghyun LEE ; Sangah SHIN ; Sun-Dong PARK ; Young Woo KIM ; Yung Hyun CHOI ; Wun-Jae KIM ; Sung-Kwon MOON
Nutrition Research and Practice 2025;19(1):14-29
BACKGROUND/OBJECTIVES:
Rosa hybrida has been demonstrated to exert biological effects on several cell types. This study investigated the efficacy of the edible ethanol extract of R.hybrida (EERH) against human colorectal carcinoma cell line (HCT116) cells.MATERIALS/METHODS: HCT116 cells were cultured with different concentrations of EERH (0, 400, 600, 800, and 1,000 µg/mL) in Dulbecco’s modified Eagle medium. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide and viable cell counting assays. Cell cycle pattern was observed by flow cytometry analysis. The wound-healing migration assay, invasion assay, and zymography were used to determine the migratory and invasive level of HCT116 cells treated with EERH. The protein expression and binding ability level of HCT116 cells following EERH treatment were analyzed via immunoblotting and the electrophoretic mobility shift assay.
RESULTS:
EERH suppressed HCT116 cell proliferation, thus arresting the G1-phase cell cycle.It also reduced cyclin-dependent kinases and cyclins, which are associated with p27KIP1 expression. Additionally, EERH differentially regulated the phosphorylation of extracellular signal-regulated kinase 1/2, c-Jun NH2-terminal kinase, p38, and protein kinase B. Moreover, EERH treatment inhibited the enzymatic activity of matrix metalloproteinase-9 (MMP-9) and MMP-2, resulting in HCT116 cell migration and invasion. The EERH-induced inhibition of MMP-9 and MMP-2 was attributed to the reduced transcriptional binding of activator protein-1, specificity protein-1, and nuclear factor-κB motifs in HCT116 cells. Kaempferol was identified as the main compound contributing to EERH's antitumor activity.
CONCLUSION
EERH inhibits HCT116 cell proliferation and metastatic potential. Therefore, it is potentially useful as a preventive and curative nutraceutical agent against colorectal cancer.
8.The edible ethanol extract of Rosa hybrida suppresses colon cancer progression by inhibiting the proliferation-cell signaling-metastasis axis
Hong-Man KIM ; Daeun LEE ; Jun-Hui SONG ; Hoon KIM ; Sanghyun LEE ; Sangah SHIN ; Sun-Dong PARK ; Young Woo KIM ; Yung Hyun CHOI ; Wun-Jae KIM ; Sung-Kwon MOON
Nutrition Research and Practice 2025;19(1):14-29
BACKGROUND/OBJECTIVES:
Rosa hybrida has been demonstrated to exert biological effects on several cell types. This study investigated the efficacy of the edible ethanol extract of R.hybrida (EERH) against human colorectal carcinoma cell line (HCT116) cells.MATERIALS/METHODS: HCT116 cells were cultured with different concentrations of EERH (0, 400, 600, 800, and 1,000 µg/mL) in Dulbecco’s modified Eagle medium. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide and viable cell counting assays. Cell cycle pattern was observed by flow cytometry analysis. The wound-healing migration assay, invasion assay, and zymography were used to determine the migratory and invasive level of HCT116 cells treated with EERH. The protein expression and binding ability level of HCT116 cells following EERH treatment were analyzed via immunoblotting and the electrophoretic mobility shift assay.
RESULTS:
EERH suppressed HCT116 cell proliferation, thus arresting the G1-phase cell cycle.It also reduced cyclin-dependent kinases and cyclins, which are associated with p27KIP1 expression. Additionally, EERH differentially regulated the phosphorylation of extracellular signal-regulated kinase 1/2, c-Jun NH2-terminal kinase, p38, and protein kinase B. Moreover, EERH treatment inhibited the enzymatic activity of matrix metalloproteinase-9 (MMP-9) and MMP-2, resulting in HCT116 cell migration and invasion. The EERH-induced inhibition of MMP-9 and MMP-2 was attributed to the reduced transcriptional binding of activator protein-1, specificity protein-1, and nuclear factor-κB motifs in HCT116 cells. Kaempferol was identified as the main compound contributing to EERH's antitumor activity.
CONCLUSION
EERH inhibits HCT116 cell proliferation and metastatic potential. Therefore, it is potentially useful as a preventive and curative nutraceutical agent against colorectal cancer.
9.Increased CT Attenuation of Pericolic Adipose Tissue as a Noninvasive Marker of Disease Severity in Ulcerative Colitis
Jun LU ; Hui XU ; Jing ZHENG ; Tianxin CHENG ; Xinjun HAN ; Yuxin WANG ; Xuxu MENG ; Xiaoyang LI ; Jiahui JIANG ; Xue DONG ; Xijie ZHANG ; Zhenchang WANG ; Zhenghan YANG ; Lixue XU
Korean Journal of Radiology 2025;26(5):411-421
Objective:
Accurate evaluation of inflammation severity in ulcerative colitis (UC) can guide treatment strategy selection. The potential value of the pericolic fat attenuation index (FAI) on CT as an indicator of disease severity remains unknown.This study aimed to assess the diagnostic accuracy of pericolic FAI in predicting UC severity.
Materials and Methods:
This retrospective study enrolled 148 patients (mean age 48 years; 87 males). The fat attenuation on CT was measured in four different locations: the mesocolic vascular side (MS) and opposite side of MS (OMS) around the most severe bowel lesion, the retroperitoneal space (RS), and the subcutaneous area. The fat attenuation indices (FAI MS, FAI OMS, and FAI RS) were calculated as the fat attenuation measured in MS, OMS, and RS, respectively, minus that of the subcutaneous area, and were obtained in the non-enhanced, arterial, and delayed phases. Correlations between the FAI and UC Endoscopic Index of Severity (UCEIS) were assessed using Spearman’s correlation. Predictors of severe UC (UCEIS ≥7) were selected by univariable analysis. The performance of FAI in predicting severe UC was evaluated using the area under the receiver operating characteristic curve (AUC).
Results:
The FAIMS and FAI OMS scores were significantly higher than FAI RS in three phases (all P < 0.001). The FAIMS and FAI OMS scores moderately correlated with the UCEIS score (r = 0.474–0.649 among the three phases). Additionally, FAI MS and FAI OMS identified severe UC, with AUC varying from 0.77 to 0.85.
Conclusion
Increased CT attenuation of pericolic adipose tissue could serve as a noninvasive marker for evaluating UC severity. FAI MS and FAI OMS of three phases showed similar prediction accuracies for severe UC identification.
10.The edible ethanol extract of Rosa hybrida suppresses colon cancer progression by inhibiting the proliferation-cell signaling-metastasis axis
Hong-Man KIM ; Daeun LEE ; Jun-Hui SONG ; Hoon KIM ; Sanghyun LEE ; Sangah SHIN ; Sun-Dong PARK ; Young Woo KIM ; Yung Hyun CHOI ; Wun-Jae KIM ; Sung-Kwon MOON
Nutrition Research and Practice 2025;19(1):14-29
BACKGROUND/OBJECTIVES:
Rosa hybrida has been demonstrated to exert biological effects on several cell types. This study investigated the efficacy of the edible ethanol extract of R.hybrida (EERH) against human colorectal carcinoma cell line (HCT116) cells.MATERIALS/METHODS: HCT116 cells were cultured with different concentrations of EERH (0, 400, 600, 800, and 1,000 µg/mL) in Dulbecco’s modified Eagle medium. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide and viable cell counting assays. Cell cycle pattern was observed by flow cytometry analysis. The wound-healing migration assay, invasion assay, and zymography were used to determine the migratory and invasive level of HCT116 cells treated with EERH. The protein expression and binding ability level of HCT116 cells following EERH treatment were analyzed via immunoblotting and the electrophoretic mobility shift assay.
RESULTS:
EERH suppressed HCT116 cell proliferation, thus arresting the G1-phase cell cycle.It also reduced cyclin-dependent kinases and cyclins, which are associated with p27KIP1 expression. Additionally, EERH differentially regulated the phosphorylation of extracellular signal-regulated kinase 1/2, c-Jun NH2-terminal kinase, p38, and protein kinase B. Moreover, EERH treatment inhibited the enzymatic activity of matrix metalloproteinase-9 (MMP-9) and MMP-2, resulting in HCT116 cell migration and invasion. The EERH-induced inhibition of MMP-9 and MMP-2 was attributed to the reduced transcriptional binding of activator protein-1, specificity protein-1, and nuclear factor-κB motifs in HCT116 cells. Kaempferol was identified as the main compound contributing to EERH's antitumor activity.
CONCLUSION
EERH inhibits HCT116 cell proliferation and metastatic potential. Therefore, it is potentially useful as a preventive and curative nutraceutical agent against colorectal cancer.

Result Analysis
Print
Save
E-mail