1.Gut microbiota-mediated gut-liver axis: a breakthrough point for understanding and treating liver cancer
Chenyang LI ; Chujun CAI ; Chendong WANG ; Xiaoping CHEN ; Bixiang ZHANG ; Zhao HUANG
Clinical and Molecular Hepatology 2025;31(2):350-381
The trillions of commensal microorganisms living in the gut lumen profoundly influence the physiology and pathophysiology of the liver through a unique gut-liver axis. Disruptions in the gut microbial communities, arising from environmental and genetic factors, can lead to altered microbial metabolism, impaired intestinal barrier and translocation of microbial components to the liver. These alterations collaboratively contribute to the pathogenesis of liver disease, and their continuous impact throughout the disease course plays a critical role in hepatocarcinogenesis. Persistent inflammatory responses, metabolic rearrangements and suppressed immunosurveillance induced by microbial products underlie the pro-carcinogenic mechanisms of gut microbiota. Meanwhile, intrahepatic microbiota derived from the gut also emerges as a novel player in the development and progression of liver cancer. In this review, we first discuss the causes of gut dysbiosis in liver disease, and then specify the pivotal role of gut microbiota in the malignant progression from chronic liver diseases to hepatobiliary cancers. We also delve into the cellular and molecular interactions between microbes and liver cancer microenvironment, aiming to decipher the underlying mechanism for the malignant transition processes. At last, we summarize the current progress in the clinical implications of gut microbiota for liver cancer, shedding light on microbiota-based strategies for liver cancer prevention, diagnosis and therapy.
2.Gut microbiota-mediated gut-liver axis: a breakthrough point for understanding and treating liver cancer
Chenyang LI ; Chujun CAI ; Chendong WANG ; Xiaoping CHEN ; Bixiang ZHANG ; Zhao HUANG
Clinical and Molecular Hepatology 2025;31(2):350-381
The trillions of commensal microorganisms living in the gut lumen profoundly influence the physiology and pathophysiology of the liver through a unique gut-liver axis. Disruptions in the gut microbial communities, arising from environmental and genetic factors, can lead to altered microbial metabolism, impaired intestinal barrier and translocation of microbial components to the liver. These alterations collaboratively contribute to the pathogenesis of liver disease, and their continuous impact throughout the disease course plays a critical role in hepatocarcinogenesis. Persistent inflammatory responses, metabolic rearrangements and suppressed immunosurveillance induced by microbial products underlie the pro-carcinogenic mechanisms of gut microbiota. Meanwhile, intrahepatic microbiota derived from the gut also emerges as a novel player in the development and progression of liver cancer. In this review, we first discuss the causes of gut dysbiosis in liver disease, and then specify the pivotal role of gut microbiota in the malignant progression from chronic liver diseases to hepatobiliary cancers. We also delve into the cellular and molecular interactions between microbes and liver cancer microenvironment, aiming to decipher the underlying mechanism for the malignant transition processes. At last, we summarize the current progress in the clinical implications of gut microbiota for liver cancer, shedding light on microbiota-based strategies for liver cancer prevention, diagnosis and therapy.
3.Gut microbiota-mediated gut-liver axis: a breakthrough point for understanding and treating liver cancer
Chenyang LI ; Chujun CAI ; Chendong WANG ; Xiaoping CHEN ; Bixiang ZHANG ; Zhao HUANG
Clinical and Molecular Hepatology 2025;31(2):350-381
The trillions of commensal microorganisms living in the gut lumen profoundly influence the physiology and pathophysiology of the liver through a unique gut-liver axis. Disruptions in the gut microbial communities, arising from environmental and genetic factors, can lead to altered microbial metabolism, impaired intestinal barrier and translocation of microbial components to the liver. These alterations collaboratively contribute to the pathogenesis of liver disease, and their continuous impact throughout the disease course plays a critical role in hepatocarcinogenesis. Persistent inflammatory responses, metabolic rearrangements and suppressed immunosurveillance induced by microbial products underlie the pro-carcinogenic mechanisms of gut microbiota. Meanwhile, intrahepatic microbiota derived from the gut also emerges as a novel player in the development and progression of liver cancer. In this review, we first discuss the causes of gut dysbiosis in liver disease, and then specify the pivotal role of gut microbiota in the malignant progression from chronic liver diseases to hepatobiliary cancers. We also delve into the cellular and molecular interactions between microbes and liver cancer microenvironment, aiming to decipher the underlying mechanism for the malignant transition processes. At last, we summarize the current progress in the clinical implications of gut microbiota for liver cancer, shedding light on microbiota-based strategies for liver cancer prevention, diagnosis and therapy.
4.Expert consensus on the phase 0 clinical trials of positron-emitting radiopharmaceuticals (2025 edition)
Lu WANG ; Jinghao WANG ; Kuan HU ; Dongning YAO ; Benzhi CAI ; Chen SHI ; Baofeng YANG ; Rui WANG
China Pharmacy 2025;36(15):1825-1831
OBJECTIVE To provide a reference for standardizing the conduct of positron-emitting radiopharmaceuticals’ phase 0 clinical trials (hereinafter referred to as “phase 0 clinical trials”) and advancing the development of innovative drug by medical institutions. METHODS Initiated by the First Affiliated Hospital of Jinan University, a panel of experts consisting of pharmacy, clinical medicine and medical ethics from multiple institutions was established to investigate the current landscape, and discuss the necessary conditions, procedures, and other aspects for conducting phase 0 clinical trials in medical institutions by integrating relevant national policies, regulations and expert consensus. Finally, an agreement was reached to formulate this consensus. RESULTS & CONCLUSIONS Currently, most medical institutions have deficiencies in pharmaceutical care during the management of radiopharmaceuticals and the phase 0 clinical trials. In conjunction with the Expert Consensus on the Establishment of Nuclear Pharmacist Positions, this consensus explicitly defines the responsibilities of nuclear pharmacists in the phase 0 clinical trials on the basis of the Expert Consensus for the Application of Positron Emission Tomography Radioligands for Translational Study in the Phase 0 Clinical Trials (2020 edition), providing a guidance for high-quality participation of nuclear pharmacists from medical institutions in China in phase 0 clinical research. Additionally, in consideration of some constraints imposed by current relevant regulations, this consensus also proposes strategic recommendations, such as encouraging medical institutions to form a consortium, leading to the establishment of dedicated bases or industrial parks, holding significant implications to strengthen institutional capacity for advancing radiopharmaceutical innovation through phase 0 clinical trials.
5.Percutaneous coronary intervention vs . medical therapy in patients on dialysis with coronary artery disease in China.
Enmin XIE ; Yaxin WU ; Zixiang YE ; Yong HE ; Hesong ZENG ; Jianfang LUO ; Mulei CHEN ; Wenyue PANG ; Yanmin XU ; Chuanyu GAO ; Xiaogang GUO ; Lin CAI ; Qingwei JI ; Yining YANG ; Di WU ; Yiqiang YUAN ; Jing WAN ; Yuliang MA ; Jun ZHANG ; Zhimin DU ; Qing YANG ; Jinsong CHENG ; Chunhua DING ; Xiang MA ; Chunlin YIN ; Zeyuan FAN ; Qiang TANG ; Yue LI ; Lihua SUN ; Chengzhi LU ; Jufang CHI ; Zhuhua YAO ; Yanxiang GAO ; Changan YU ; Jingyi REN ; Jingang ZHENG
Chinese Medical Journal 2025;138(3):301-310
BACKGROUND:
The available evidence regarding the benefits of percutaneous coronary intervention (PCI) on patients receiving dialysis with coronary artery disease (CAD) is limited and inconsistent. This study aimed to evaluate the association between PCI and clinical outcomes as compared with medical therapy alone in patients undergoing dialysis with CAD in China.
METHODS:
This multicenter, retrospective study was conducted in 30 tertiary medical centers across 12 provinces in China from January 2015 to June 2021 to include patients on dialysis with CAD. The primary outcome was major adverse cardiovascular events (MACE), defined as a composite of cardiovascular death, non-fatal myocardial infarction, and non-fatal stroke. Secondary outcomes included all-cause death, the individual components of MACE, and Bleeding Academic Research Consortium criteria types 2, 3, or 5 bleeding. Multivariable Cox proportional hazard models were used to assess the association between PCI and outcomes. Inverse probability of treatment weighting (IPTW) and propensity score matching (PSM) were performed to account for potential between-group differences.
RESULTS:
Of the 1146 patients on dialysis with significant CAD, 821 (71.6%) underwent PCI. After a median follow-up of 23.0 months, PCI was associated with a 43.0% significantly lower risk for MACE (33.9% [ n = 278] vs . 43.7% [ n = 142]; adjusted hazards ratio 0.57, 95% confidence interval 0.45-0.71), along with a slightly increased risk for bleeding outcomes that did not reach statistical significance (11.1% vs . 8.3%; adjusted hazards ratio 1.31, 95% confidence interval, 0.82-2.11). Furthermore, PCI was associated with a significant reduction in all-cause and cardiovascular mortalities. Subgroup analysis did not modify the association of PCI with patient outcomes. These primary findings were consistent across IPTW, PSM, and competing risk analyses.
CONCLUSION
This study indicated that PCI in patients on dialysis with CAD was significantly associated with lower MACE and mortality when comparing with those with medical therapy alone, albeit with a slightly increased risk for bleeding events that did not reach statistical significance.
Humans
;
Percutaneous Coronary Intervention/methods*
;
Male
;
Female
;
Coronary Artery Disease/drug therapy*
;
Retrospective Studies
;
Renal Dialysis/methods*
;
Middle Aged
;
Aged
;
China
;
Proportional Hazards Models
;
Treatment Outcome
6.Omics in IgG4-related disease.
Shaozhe CAI ; Yu CHEN ; Ziwei HU ; Shengyan LIN ; Rongfen GAO ; Bingxia MING ; Jixin ZHONG ; Wei SUN ; Qian CHEN ; John H STONE ; Lingli DONG
Chinese Medical Journal 2025;138(14):1665-1675
Research on IgG4-related disease (IgG4-RD), an autoimmune condition recognized to be a unique disease entity only two decades ago, has processed from describing patients' symptoms and signs to summarizing its critical pathological features, and further to investigating key pathogenic mechanisms. Challenges in gaining a better understanding of the disease, however, stem from its relative rarity-potentially attributed to underrecognition-and the absence of ideal experimental animal models. Recently, with the development of various high-throughput techniques, "omics" studies at different levels (particularly the single-cell omics) have shown promise in providing detailed molecular features of IgG4-RD. While, the application of omics approaches in IgG4-RD is still at an early stage. In this paper, we review the current progress of omics research in IgG4-RD and discuss the value of machine learning methods in analyzing the data with high dimensionality.
Humans
;
Immunoglobulin G4-Related Disease/metabolism*
;
Immunoglobulin G/metabolism*
;
Machine Learning
;
Animals
;
Proteomics/methods*
7.Intermittent hypoxia aggravates asthma inflammation via NLRP3/IL-1β-dependent pyroptosis mediated by HIF-1α signalling pathway.
Ling ZHOU ; Huojun ZHANG ; Lu LIU ; Fengqin ZHANG ; Lingling WANG ; Pengdou ZHENG ; Zhenyu MAO ; Xiaoyan ZHU ; Guisha ZI ; Lixiang CHEN ; Xiaojing CAI ; Huiguo LIU ; Wei LIU
Chinese Medical Journal 2025;138(14):1714-1729
BACKGROUND:
Asthma is a common chronic inflammatory airway disease and intermittent hypoxia is increasingly recognized as a factor that may impact disease progression. The present study investigated whether intermittent hypoxia (IH) could aggravate asthma by promoting hypoxia-inducible factor-1α (HIF-1α)/nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain-containing protein 3 (NLRP3)/interleukin (IL)-1β-dependent pyroptosis and the inflammatory response and further elucidated the underlying molecular mechanisms involved.
METHODS:
A total of 49 patients diagnosed with severe bronchial asthma and diagnosed by polysomnography were enrolled at Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, between January 2022 and December 2022, and their general data and induced sputum were collected. BEAS-2B cells were treated with IL-13 and subjected to IH. An ovalbumin (OVA)-treated mouse model was also used to assess the effects of chronic intermittent hypoxia (CIH) on asthma. Pyroptosis, the inflammatory response, and related signalling pathways were assessed in vivo and in vitro .
RESULTS:
In this study, as the apnoea and hypopnea index (AHI) increased, the proportion of patients with uncontrolled asthma increased. The proportions of neutrophils and the levels of IL-6, IL-8, HIF-1α and NLRP3 in induced sputum were related to the AHI. NLRP3-mediated pyroptosis, which could be mediated by the HIF-1α signalling pathway, was activated in IL-13 plus IH-treated BEAS-2B cells and in the lungs of OVA/CIH mice. HIF-1α downregulation significantly reduced lung pyroptosis and ameliorated neutrophil inflammation by modulating the NLRP3/IL-1β pathway both in vitro and in vivo . Similarly, pretreatment with LW6, an inhibitor of HIF-1α, effectively blocked the generation of inflammatory cytokines in neutrophils. In addition, administration of the NLRP3 activator nigericin obviously increased lung neutrophil inflammation.
CONCLUSIONS
Obstructive sleep apnoea-hypopnea syndrome (OSAHS) is a risk factor for asthma exacerbation. IH aggravates neutrophil inflammation in asthma via NLRP3/IL-1β-dependent pyroptosis mediated by the HIF-1α signalling pathway, which should be considered a potential therapeutic target for the treatment of asthma with OSAHS.
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Humans
;
Asthma/metabolism*
;
Animals
;
Pyroptosis/physiology*
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Mice
;
Signal Transduction/physiology*
;
Male
;
Hypoxia/metabolism*
;
Female
;
Interleukin-1beta/metabolism*
;
Adult
;
Inflammation/metabolism*
;
Middle Aged
;
Mice, Inbred C57BL
8.Diabetic vascular calcification inhibited by soluble epoxide hydrolase gene deletion via regressing NID2-mediated IGF2-ERK1/2 signaling pathway.
Yueting CAI ; Shuiqing HU ; Jingrui LIU ; Jinlan LUO ; Wenhua LI ; Jiaxin TANG ; Siyang LIU ; Ruolan DONG ; Yan YANG ; Ling TU ; Xizhen XU
Chinese Medical Journal 2025;138(20):2657-2668
BACKGROUND:
Epoxyeicosatrienoic acids (EETs), which are metabolites of arachidonic acid catalyzed by cytochrome P450 epoxygenase, are degraded into inactive dihydroxyeicosatrienoic acids by soluble epoxide hydrolase (sEH). Many studies have revealed that sEH gene deletion exerts protective effects against diabetes. Vascular calcification is a common complication of diabetes, but the potential effects of sEH on diabetic vascular calcification are still unknown.
METHODS:
The level of aortic calcification in wild-type and Ephx2-/- C57BL/6 diabetic mice induced with streptozotocin was evaluated by measuring the aortic calcium content through alizarin red staining, immunohistochemistry staining, and immunofluorescence staining. Mouse vascular smooth muscle cell lines (MOVAS cells) treated with β-glycerol phosphate (0.01 mol/L) plus advanced glycation end products (50 mg/L) were used to investigate the effects of sEH inhibitors or sEH knockdown and EETs on the calcification of vascular smooth muscle cells, which was detected by Western blotting, alizarin red staining, and Von Kossa staining.
RESULTS:
sEH gene deletion significantly inhibited diabetic vascular calcification by increasing levels of EETs in the aortas of mice. EETs (especially 11,12-EET and 14,15-EET) efficiently prevented the osteogenic transdifferentiation of MOVAS cells by decreasing nidogen-2 (NID2) expression. Interestingly, suppressing sEH activity by small interfering ribonucleic acid or specific inhibitors did not block osteogenic transdifferentiation of MOVAS cells induced by β-glycerol phosphate and advanced glycation end products. NID2 overexpression significantly abolished the inhibitory effect of sEH gene deletion on diabetic vascular calcification. Moreover, NID2 overexpression mediated by adeno-associated virus 9 vectors markedly increased insulin-like growth factor 2 (IGF2) and phospho-ERK1/2 expression in MOVAS cells. Overall, sEH gene knockout inhibited diabetic vascular calcification by decreasing aortic NID2 expression and, then, inactivating the downstream IGF2-ERK1/2 signaling pathway.
CONCLUSIONS
sEH gene deletion markedly inhibited diabetic vascular calcification through repressed osteogenic transdifferentiation of vascular smooth muscle cells mediated by increased aortic EET levels, which was associated with decreased NID2 expression and inactivation of the downstream IGF2-ERK1/2 signaling pathway.
Animals
;
Mice
;
Vascular Calcification/metabolism*
;
Mice, Inbred C57BL
;
Epoxide Hydrolases/metabolism*
;
Diabetes Mellitus, Experimental/genetics*
;
Male
;
Gene Deletion
;
MAP Kinase Signaling System/genetics*
;
Cell Line
;
Immunohistochemistry
;
Muscle, Smooth, Vascular/metabolism*
;
Signal Transduction/genetics*
;
Mice, Knockout
9.NSD1 regulates H3K36me2 in the pathogenesis of non-obstructive azoospermia.
Xuan ZHUANG ; Zhen-Xin CAI ; Yu-Feng YANG ; Zhi-Ming LI
National Journal of Andrology 2025;31(3):195-201
OBJECTIVE:
To explore the role of nuclear receptor-binding SET-domain protein 1 (NSD1) in the pathogenesis of nonobstructive azoospermia (NOA) by regulating the expressions of relevant genes.
METHODS:
We detected the expression of NSD1 in the testis tissue of 7 male patients with obstructive azoospermia (OA) and 18 with NOA by qPCR and immunofluorescence assay, and determined the modification level of H3K36me2 in the testes of two groups of patients by immunofluorescence staining, Western blot and immunoprecipitation (IP). We examined the difference in the enrichment of H3K36me2 in the testis tissue by chromatin IP-based sequencing (ChIP-Seq), analyzed the genomic distribution and target genes using bioinformatics, and verified the expression levels of the target genes in the testes of the two groups of patients by qPCR.
RESULTS:
Compared with the patients with OA, those with NOA showed dramatically decreased mRNA and protein expressions of NSD1 (P=0.000 8). The binding of NSD1 to H3K36me2 was observed in the testis tissue of both the two groups of patients, while the modification level of H3K36me2 was evidently reduced in the NOA males. H3K36me2 was distributed mainly in the intergenic region in the testes of the two groups of patients, but the enrichment of H3K36me2 was obviously decreased in the NOA group. The differentially H3K36me2-enriched genes were involved in various biological processes, including tissue development, and cell morphogenesis. Results of ChIP-Seq and qPCR showed significantly down-regulated expressions of the target genes KIT, SPO11 and ACRV1 in the testis tissue of the NOA males compared with those in the OA patients (P<0.01).
CONCLUSION
The levels of NSD1 and H3K36me2 are decreased in testis tissue of the NOA patient, H3K36me2 is highly enriched in the spermatogenesis-related key genes KIT, SPO11 and ACRV1, and the down-regulated expression of NSD1 impairs spermatogenesis.
Humans
;
Male
;
Azoospermia/genetics*
;
Testis/metabolism*
;
Histone-Lysine N-Methyltransferase/metabolism*
;
Histones/metabolism*

Result Analysis
Print
Save
E-mail