1.Exploring the treatment approach for bone marrow suppression after radiotherapy and chemotherapy from the perspective of "acute deficiency syndrome"
Zhiming LI ; Fen HUANG ; Jiawang JIANG ; Wei JIANG ; Xiaochun CHEN ; Xin LI
Journal of Beijing University of Traditional Chinese Medicine 2025;48(1):122-126
Bone marrow suppression is one of the common adverse reactions to radiotherapy and chemotherapy. Anticancer treatments such as radiotherapy and chemotherapy first directly damage the patient′s peripheral blood cells, impairing qi and blood; further, they damage the actively proliferating cell populations in the bone marrow, impairing yin and blood; and then they interfere with hematopoietic stem cells, impairing essence and blood. This process is rapid and intense, consistent with the characteristics of " acute deficiency syndrome" , marked by sudden onset, rapid changes, critical condition, complexity and variability, multiple complications, and poor prognosis. Given this, its diagnosis and treatment should differ from those of general deficiency syndromes. This paper advocates the principles and ideas of diagnosis and treatment such as " preventing first and treating early to prevent changes; supplementing for deficiency and strengthening vital qi to eliminate pathogenic factor; urgent rescue for critical conditions, no time to lose; and comprehensive supplementing throughout the process, with severe cases requiring singular action" . This approach is intended to provide theoretical reference and practical guidance for bone marrow suppression after radiotherapy and chemotherapy.
2.Research progress on the anti-tumor effects of traditional Chinese medicine through intervention in the Nrf2/GPX4 signaling pathway
Jie HUANG ; Si LIN ; Chunjuan JIANG ; Ling WEI
China Pharmacy 2025;36(4):507-512
Nuclear factor-erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4) signaling pathway plays a key role in the occurrence and development of tumors, and is involved in tumor cell proliferation, apoptosis, ferroptosis, invasion, migration, and drug resistance. Based on the Nrf2/GPX4 signaling pathway, this paper summarizes the research progress of the anti- tumor effects of traditional Chinese medicine. It is found that flavonoids (ginkgetin, luteolin, etc.), terpenoids (atractylenolide, cucurbitacin B, etc.), saponins (polyphyllin Ⅰ, polyphyllin Ⅶ), ester (brusatol) and other effective components, and traditional Chinese medicine extracts (total coumarins in Pileostegia tomentella and total flavonoids of Pterocarya hupehensis Skan), traditional Chinese medicine compounds (Fushao diqin fang, Xiaoai jiedu fang, etc.) can promote ferroptosis in tumor cells by inhibiting Nrf2/GPX4 signaling pathway and the expressions of its upstream and downstream factor proteins, as well as by increasing Fe2+ levels and lipid peroxidation, thereby exerting an antitumor effect.
3.Target of neohesperidin in treatment of osteoporosis and its effect on osteogenic differentiation of bone marrow mesenchymal stem cells
Zhenyu ZHANG ; Qiujian LIANG ; Jun YANG ; Xiangyu WEI ; Jie JIANG ; Linke HUANG ; Zhen TAN
Chinese Journal of Tissue Engineering Research 2025;29(7):1437-1447
BACKGROUND:Previous studies have found that neohesperidin can delay bone loss in ovariectomized mice and has the potential to treat osteoporosis,but its specific mechanism of action remains to be explored. OBJECTIVE:To explore the key targets and possible mechanisms of neohesperidin in the treatment of osteoporosis based on bioinformatics and cell experiments in vitro. METHODS:The gene expression dataset related to osteoporosis was obtained from GEO database,and the differentially expressed genes were screened and analyzed in R language.The osteoporosis-related targets were screened from GeneCards and DisGeNET databases,and the neohesperidin-related targets were screened from ChEMBL and PubChem databases,and the common targets were obtained by intersection of the three.The String database was used to construct the PPI network of intersection genes,and the key targets were screened.The DAVID database was used for GO and KEGG enrichment analysis.The AutoDock software was used to verify the molecular docking between the neohesperidin and the target protein.The effect of neohesperidin on osteogenic differentiation of C57 mouse bone marrow mesenchymal stem cells was detected.Complete medium was used as blank control group;osteogenic induction medium was used as the control group;and osteogenic induction medium containing different concentrations of neohesperidin(25,50 μmol/L)was used as experimental group.The expression of alkaline phosphatase,the degree of mineralization,the expression of osteogenic-related genes and target genes during osteogenic differentiation of cells were measured at corresponding time points. RESULTS AND CONCLUSION:(1)9 253 differentially expressed genes,2 161 osteoporosis-related targets,and 326 neohesperidin-related targets were screened.There were 53 common targets among the three.All 53 genes were up-regulated in osteoporosis samples.The PPI network screened the target gene PRKACA of research significance.GO function and KEGG pathway enrichment analysis showed that neohesperidin's treatment of osteoporosis through PRKACA target mainly depended on biological processes such as protein phosphorylation and protein autophosphorylation,acting on endocrine resistance,proteoglycan in cancer,and estrogen signaling pathway to play a therapeutic role.Molecular docking results showed that neohesperidin had a certain binding ability to the protein corresponding to the target PRKACA.(2)The results of alkaline phosphatase staining showed that neohesperidin could promote the expression of alkaline phosphatase in the early stage of osteogenic differentiation of mesenchymal stem cells.Alizarin red staining showed that neohesperidin could promote the mineralization of osteogenic differentiation of mesenchymal stem cells.RT-qPCR results showed that neohesperidin could increase the mRNA expression of alkaline phosphatase,PRKACA,and osteocalcin.(3)These results indicate that neohesperidin may promote osteogenic differentiation through PRKACA target on the estrogen signaling pathway to prevent and treat osteoporosis.
4.Scientific connotation of "blood stasis toxin" in hypoxic microenvironment: its "soil" function in tumor progression and micro-level treatment approaches.
Wei FAN ; Yuan-Lin LYU ; Xiao-Chen NI ; Kai-Yuan ZHANG ; Chu-Hang WANG ; Jia-Ning GUO ; Guang-Ji ZHANG ; Jian-Bo HUANG ; Tao JIANG
China Journal of Chinese Materia Medica 2025;50(12):3483-3488
The tumor microenvironment is a crucial factor in tumor occurrence and progression. The hypoxic microenvironment is widely present in tumor tissue and is a key endogenous factor accelerating tumor deterioration. The "blood stasis toxin" theory, as an emerging perspective in tumor research, is regarded as the unique "soil" in tumor progression from the perspective of traditional Chinese medicine(TCM) due to its dynamic evolution mechanism, which closely resembles the formation of the hypoxic microenvironment. Scientifically integrating TCM theories with the biological characteristics of tumors and exploring precise syndrome differentiation and treatment strategies are key to achieving comprehensive tumor prevention and control. This article focused on the hypoxic microenvironment of the tumor, elucidating its formation mechanisms and evolutionary processes and carefully analyzing the internal relationship between the "blood stasis toxin" theory and the hypoxic microenvironment. Additionally, it explored the interaction among blood stasis, toxic pathogens, and hypoxic environment and proposed micro-level prevention and treatment strategies targeting the hypoxic microenvironment based on the "blood stasis toxin" theory, aiming to provide TCM-based theoretical support and therapeutic approaches for precise regulation of the hypoxic microenvironment.
Humans
;
Tumor Microenvironment/drug effects*
;
Neoplasms/therapy*
;
Animals
;
Medicine, Chinese Traditional
;
Disease Progression
;
Drugs, Chinese Herbal
5.Mechanism of Yishen Jiangtang Decoction in regulating endoplasmic reticulum stress-mediated NLRP3 inflammasome to improve renal damage in diabetic nephropathy db/db mice.
Yun-Jie YANG ; Bin-Hua YE ; Chen QIU ; Han-Qing WU ; Bo-Wei HUANG ; Tong WANG ; Shi-Wei RUAN ; Fang GUO ; Jian-Ting WANG ; Ming-Qian JIANG
China Journal of Chinese Materia Medica 2025;50(10):2740-2749
This study aims to explore the mechanism through which Yishen Jiangtang Decoction(YSJTD) regulates endoplasmic reticulum stress(ERS)-mediated NOD-like receptor thermal protein domain associated protein 3(NLRP3) inflammasome to improve diabetic nephropathy(DN) in db/db mice. Thirty db/db mice were randomly divided into the model group, YSJTD group, ERS inhibitor 4-phenylbutyric acid(4-PBA) group, with 10 mice in each group. Additionally, 10 db/m mice were selected as the control group. The YSJTD group was orally administered YSJTD at a dose of 0.01 mL·g~(-1), the 4-PBA group was orally administered 4-PBA at a dose of 0.5 mg·g~(-1), and the control and model groups were given an equal volume of carboxylmethyl cellulose sodium. The treatments were administered once daily for 8 weeks. Food intake, water consumption, and body weight were recorded every 2 weeks. After the intervention, fasting blood glucose(FBG), glycosylated hemoglobin(HbA1c), urine microalbumin(U-mALB), 24-hour urine volume, serum creatinine(Scr), and blood urea nitrogen(BUN) were measured. Inflammatory markers interleukin-1β(IL-1β) and interleukin-18(IL-18) were detected using the enzyme-linked immunosorbent assay(ELISA). Renal pathology was assessed through hematoxylin-eosin(HE), periodic acid-Schiff(PAS), and Masson staining, and transmission electron microscopy(TEM). Western blot was used to detect the expression levels of glucose-regulated protein 78(GRP78), C/EBP homologous protein(CHOP), NLRP3, apoptosis-associated speck-like protein containing CARD(ASC), cysteinyl aspartate-specific proteinase(caspase-1), and gasdermin D(GSDMD) in kidney tissues. The results showed that compared to the control group, the model group exhibited poor general condition, increased weight and food and water intake, and significantly higher levels of FBG, HbA1c, U-mALB, kidney index, 24-hour urine volume, IL-1β, and IL-18. Compared to the model group, the YSJTD and 4-PBA groups showed improved general condition, increased body weight, decreased food intake, and lower levels of FBG, U-mALB, kidney index, 24-hour urine volume, and IL-1β. Specifically, the YSJTD group showed a significant reduction in IL-18 levels compared to the model group, while the 4-PBA group exhibited decreased water intake and HbA1c levels compared to the model group. Although there was a decreasing trend in water intake and HbA1c in the YSJTD group, the differences were not statistically significant. No significant differences were observed in BUN, Scr, and kidney weight among the groups. Renal pathology revealed that the model group exhibited more severe renal damage compared to the control group. Kidney sections from the model group showed diffuse mesangial proliferation in the glomeruli, tubular edema, tubular dilation, significant inflammatory cell infiltration in the interstitium, and increased glycogen staining and blue collagen deposition in the basement membrane. In contrast, the YSJTD and 4-PBA groups showed varying degrees of improvement in renal damage, glycogen staining, and collagen deposition, with the YSJTD group showing more significant improvements. TEM analysis indicated that the model group had extensive cytoplasmic edema, homogeneous thickening of the basement membrane, fewer foot processes, and widening of fused foot processes. In the YSJTD and 4-PBA groups, cytoplasmic swelling of renal tissues was reduced, the basement membrane remained intact and uniform, and foot process fusion improved.Western blot results indicated that compared to the control group, the model group showed upregulation of GRP78, CHOP, GSDMD, NLRP3, ASC, and caspase-1 expression. In contrast, both the YSJTD and 4-PBA groups showed downregulation of these markers compared to the model group. These findings suggest that YSJTD exerts a protective effect against DN by alleviating NLRP3 inflammasome activation through the inhibition of ERS, thereby improving the inflammatory response in db/db DN mice.
Animals
;
Endoplasmic Reticulum Stress/drug effects*
;
Diabetic Nephropathies/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Inflammasomes/drug effects*
;
Male
;
Kidney/pathology*
;
Endoplasmic Reticulum Chaperone BiP
;
Humans
;
Interleukin-18/genetics*
;
Mice, Inbred C57BL
6.Research on arrhythmia classification algorithm based on adaptive multi-feature fusion network.
Mengmeng HUANG ; Mingfeng JIANG ; Yang LI ; Xiaoyu HE ; Zefeng WANG ; Yongquan WU ; Wei KE
Journal of Biomedical Engineering 2025;42(1):49-56
Deep learning method can be used to automatically analyze electrocardiogram (ECG) data and rapidly implement arrhythmia classification, which provides significant clinical value for the early screening of arrhythmias. How to select arrhythmia features effectively under limited abnormal sample supervision is an urgent issue to address. This paper proposed an arrhythmia classification algorithm based on an adaptive multi-feature fusion network. The algorithm extracted RR interval features from ECG signals, employed one-dimensional convolutional neural network (1D-CNN) to extract time-domain deep features, employed Mel frequency cepstral coefficients (MFCC) and two-dimensional convolutional neural network (2D-CNN) to extract frequency-domain deep features. The features were fused using adaptive weighting strategy for arrhythmia classification. The paper used the arrhythmia database jointly developed by the Massachusetts Institute of Technology and Beth Israel Hospital (MIT-BIH) and evaluated the algorithm under the inter-patient paradigm. Experimental results demonstrated that the proposed algorithm achieved an average precision of 75.2%, an average recall of 70.1% and an average F 1-score of 71.3%, demonstrating high classification accuracy and being able to provide algorithmic support for arrhythmia classification in wearable devices.
Humans
;
Arrhythmias, Cardiac/diagnosis*
;
Algorithms
;
Electrocardiography/methods*
;
Neural Networks, Computer
;
Signal Processing, Computer-Assisted
;
Deep Learning
;
Classification Algorithms
7.Research progress of spinal-pelvic characteristics in adolescent patients with idiopathic scoliosis.
Zi-Cheng WEI ; Zhi-Zhen LYU ; Zi-Han HUA ; Qiong XIA ; Tao LI ; Yuan-Shen HUANG ; Chao YANG ; Li-Jiang LYU
China Journal of Orthopaedics and Traumatology 2025;38(10):1076-1082
Adolescent idiopathic scoliosis (AIS) is a common spinal deformity in adolescents, with potential causes etiologies associated with mesenchymal stem cells, genetic factors, histological features, and biomechanical aspects. Biomechanically, the pelvis, serving as the central and majort load-bearing structure, exhibits morphological and alignment abnormalities highly correlated with the development of AIS. Recent studies have extensively explored three-dimensional pelvic parameters and kinematics, demonstrating that abnormal pelvic characteristics may contribute to AIS onset and progression and are increasingly incorporated into clinical interventions. This review summarizes sagittal and coronal features of the spine-pelvis, as well as the influence of three-dimensional kinematic features on the pathogenesis of AIS, providing insights for advancing the study of spine-pelvis features related to AIS.
Humans
;
Scoliosis/pathology*
;
Adolescent
;
Spine/pathology*
;
Pelvis/pathology*
;
Biomechanical Phenomena
8.Exploring the clinical implications of novel SRD5A2 variants in 46,XY disorders of sex development.
Yu MAO ; Jian-Mei HUANG ; Yu-Wei CHEN-ZHANG ; He LIN ; Yu-Huan ZHANG ; Ji-Yang JIANG ; Xue-Mei WU ; Ling LIAO ; Yun-Man TANG ; Ji-Yun YANG
Asian Journal of Andrology 2025;27(2):211-218
This study was conducted retrospectively on a cohort of 68 patients with steroid 5 α-reductase 2 (SRD5A2) deficiency and 46,XY disorders of sex development (DSD). Whole-exon sequencing revealed 28 variants of SRD5A2 , and further analysis identified seven novel mutants. The preponderance of variants was observed in exon 1 and exon 4, specifically within the nicotinamide adenine dinucleotide phosphate (NADPH)-binding region. Among the entire cohort, 53 patients underwent initial surgery at Sichuan Provincial People's Hospital (Chengdu, China). The external genitalia scores (EGS) of these participants varied from 2.0 to 11.0, with a mean of 6.8 (standard deviation [s.d.]: 2.5). Thirty patients consented to hormone testing. Their average testosterone-to-dihydrotestosterone (T/DHT) ratio was 49.3 (s.d.: 23.4). Genetic testing identified four patients with EGS scores between 6 and 9 as having this syndrome; and their T/DHT ratios were below the diagnostic threshold. Furthermore, assessments conducted using the crystal structure of human SRD5A2 have provided insights into the potential pathogenic mechanisms of these novel variants. These mechanisms include interference with NADPH binding (c.356G>C, c.365A>G, c.492C>G, and c.662T>G) and destabilization of the protein structure (c.727C>T). The c.446-1G>T and c.380delG variants were verified to result in large alterations in the transcripts. Seven novel variations were identified, and the variant database for the SRD5A2 gene was expanded. These findings contribute to the progress of diagnostic and therapeutic approaches for individuals with SRD5A2 deficiency.
Humans
;
3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics*
;
Disorder of Sex Development, 46,XY/blood*
;
Male
;
Membrane Proteins/genetics*
;
Child, Preschool
;
Child
;
Retrospective Studies
;
Adolescent
;
Female
;
Mutation
;
Testosterone/blood*
;
Infant
;
Dihydrotestosterone/blood*
9.Single-cell transcriptomic analysis reveals immune dysregula-tion and macrophage reprogramming in diabetic foot ulcers.
Chunli HUANG ; Yu JIANG ; Wei JIAO ; Ying SUI ; Chunlei WANG ; Yongtao SU
Journal of Zhejiang University. Medical sciences 2025;54(5):602-610
OBJECTIVES:
To elucidate the underlying mechanisms of macrophage-mediated inflammation and tissue injury in diabetic foot ulcer (DFU).
METHODS:
Skin tissue samples were collected from patients with DFU and with non-DFU. A total of 79 272 high-quality cell transcriptomes were obtained using single-cell RNA sequencing. An unbiased clustering approach was employed to identify cell subpopulations. Seurat functions were used to identify differentially expressed genes between DFU and non-DFU groups, and gene ontology (GO) enrichment analysis was used to reveal gene function. Furthermore, cell-cell communication network construction and ligand-receptor interaction analysis were performed to reveal the mechanisms underlying cellular interactions and signaling regulation in the DFU microenvironment from multiple perspectives.
RESULTS:
The results revealed a significant expansion of myeloid cells in DFU tissues, alongside a marked reduction in structural cells such as endothelial cells, epithelial cells, and smooth muscle cells. Major cell types underwent functional reprogramming, characterized by immune activation and impaired tissue remodeling. Specifically, macrophages in DFU skin tissues exhibited a shift toward a pro-inflammatory M1 phenotype, with upregulation of genes associated with inflammation and oxidative stress. Cell communication analysis further demonstrated that M1 macrophages served as both primary signal receivers and influencers in the COMPLEMENT pathway mediated communication network, and as key signal senders and mediators in the secreted phosphoprotein 1 (SPP1) pathway mediated communication network, actively shaping the inflammatory microenvironment. Key ligand-receptor interactions driving macrophage signaling were identified, including C3-(ITGAM+ITGB2) and SPP1-CD44.
CONCLUSIONS
This study establishes a comprehensive single-cell atlas of DFU, revealing the role of macrophage-driven cellular networks in chronic inflammation and impaired healing. These findings may offer potential novel therapeutic targets for DFU treatment.
Humans
;
Macrophages/immunology*
;
Diabetic Foot/pathology*
;
Single-Cell Analysis
;
Transcriptome
;
Gene Expression Profiling
;
Inflammation
;
Skin
;
Cell Communication
;
Signal Transduction
;
Cellular Reprogramming
10.Clinical Applications of Circulating Tumor DNA in Response Evaluation and Relapse Monitoring of Primary Mediastinal Large B-Cell Lymphoma.
Lu PAN ; Xin-Miao JIANG ; Yan TENG ; Ning WANG ; Ling HUANG ; Han-Guo GUO ; Si-Chu LIU ; Xiao-Juan WEI ; Fei-Li CHEN ; Zhan-Li LIANG ; Wen-Yu LI
Journal of Experimental Hematology 2025;33(2):407-415
OBJECTIVE:
To explore the clinical significance of circulating tumor DNA (ctDNA) in response evaluation and relapse monitoring for patients with primary mediastinal large B-cell lymphoma (PMBCL).
METHODS:
The clinical characteristics, efficacy and survival of 38 PMBCL patients in our hospital from January 2010 to April 2020 were retrospectively analyzed. The ctDNA monitoring was conducted by targeted next-generation sequencing (NGS).
RESULTS:
Among the 38 patients, 26 cases were female, and 32 cases were diagnosed with Ann Arbor stage I-II. The 5-year overall survival (OS) rate and progression-free survival (PFS) rate were 74.7% and 61.7%, respectively. Males and those with high aaIPI scores (3 points) had a relatively poor prognosis. The NGS results of 23 patients showed that STAT6 (65.2%), SOCS1 (56.5%), and TNFAIP3 (56.5%) were the most common mutated genes. Patients with stable disease (SD)/progressive disease (PD) exhibited enrichment in cell cycle, FoxO, and TNF signaling pathways. A total of 29 patients underwent end-of-treatment PET/CT (EOT PET/CT), and 16 of them received ctDNA monitoring with 12 negative. Among 6 patients with EOT PET/CT positive (Deauville 4), 4 underwent ctDNA monitoring, and 3 of them were negative, being still in continuous remission without any subsequent anti-tumor therapy.
CONCLUSION
CtDNA may be combined with PET/CT to assess efficacy, monitor relapse, and guide treatment of PMBCL.
Humans
;
Circulating Tumor DNA/blood*
;
Female
;
Mediastinal Neoplasms
;
Male
;
Retrospective Studies
;
High-Throughput Nucleotide Sequencing
;
Prognosis
;
Lymphoma, Large B-Cell, Diffuse/genetics*
;
Middle Aged
;
Adult
;
Aged
;
Neoplasm Recurrence, Local
;
Mutation


Result Analysis
Print
Save
E-mail