1.Setup Error and Its Influencing Factors in Radiotherapy for Spinal Metastasis
Wenhua QIN ; Xin FENG ; Zengzhou WANG ; Shangnan CHU ; Hong WANG ; Shiyu WU ; Cheng CHEN ; Fukui HUAN ; Bin LIANG ; Tao ZHANG
Cancer Research on Prevention and Treatment 2025;52(5):400-404
Objective To investigate the setup error in patients with spinal bone metastasis who underwent radiotherapy under the guidance of kilovoltage cone-beam CT (KV-CBCT). Methods A total of 118 patients with spinal metastasis who underwent radiotherapy, including 17 cases of cervical spine, 62 cases of thoracic spine, and 39 cases of lumbar spine, were collected. KV-CBCT scans were performed using the linear accelerators from Elekta and Varian’s EDGE system. CBCT images were registered with reference CT images in the bone window mode. A total of 973 data were collected, and 3D linear errors were recorded. Results The patients with spinal bone metastasis were grouped by site, height, weight, and BMI. The P value of the patients grouped only by site was P<0.05, which was statistically significant. Conclusion When grouped by site in the 3D direction, the positioning effect of cervical spine is better than that of thoracic and lumbar spine. The positioning effect of the thoracic spine is better in the head and foot direction but worse in the left and right direction compared with that of the lumbar spine. Instead of extending or narrowing the margin according to the BMI of patients with spinal metastasis, the margin must be changed according to the site of spinal bone metastasis.
2.Role of prohibitin 2 in mitophagy pathway against atherosclerosis in rats undergoing endurance training
Mingxiao SONG ; Junshunzi CHEN ; Ningwei WANG ; Huan CAI ; Hong FENG
Chinese Journal of Tissue Engineering Research 2025;29(11):2294-2300
BACKGROUND:Exercises can reduce blood lipids and slow down the development of atherosclerosis.Atherosclerosis begins with mitochondrial dysfunction,and prohibitin 2 is involved in mitophagy by endurance training. OBJECTIVE:To explore the role of endurance training in the intervention of prohibitin 2 protein in the mitophagy autophagy pathway in atherosclerosis. METHODS:A total of 40 Wistar rats were randomly divided into control group,exercise group,atherosclerosis group and atherosclerosis combined with exercise group,with 10 rats in each group.A rat model of atherosclerosis was constructed by combining a high-fat diet(9 weeks)with vitamin D injections(weeks 1,3,and 6)in the latter two groups,while the two exercise groups were subjected to progressing intensity endurance training for 9 weeks.After the intervention,lipid and pathological detections were conducted to observe the modeling and interventional effects.Mitochondrial membrane potential and mitophagy proteins were detected by microplate reader and western blot.Immunofluorescence staining was used to observe the co-localization of mitophagy proteins in aortic tissue. RESULTS AND CONCLUSION:Lipid and pathological sections showed that compared with the atherosclerosis group,the serum low-density lipoprotein cholesterol and total cholesterol levels and aortic lipid deposition area were significantly reduced in the atherosclerosis combined with exercise group(P<0.001).The results of mitochondrial membrane potential showed that the significant decrease in mitochondrial membrane potential of the aorta in the atherosclerosis combined with exercise group was reversed(P<0.01).The results of western blot assay showed that compared with the control group,the mitochondrial protein expression of prohibitin 2,LC3Ⅱ/Ⅰ,PINK1 and Parkin was significantly increased(P<0.05),and the protein expression of PARL and PGAM5 decreased(P<0.05).Compared with the atherosclerosis group,the protein expression of PINK1 and Parkin in the mitchondria of rats in the atherosclerosis combined with exercise group was significantly decreased(P<0.05),and the protein expressions of prohibitin 2,LC3Ⅱ/Ⅰ,PARL and PGAM5 were significantly increased(P<0.05).Immunofluorescence results showed that compared with the control group,the co-localization of LC3 and PINK1 with TOMM20 was significantly increased in the atherosclerosis group(P<0.05),while compared with the atherosclerosis group,the co-localization of LC3 and PINK1 with TOMM20 was significantly increased in the atherosclerosis combined with exercise group(P<0.05).Co-localization of LC3 and PARL with prohibitin 2 was significantly increased in the atherosclerosis group compared with the control group(P<0.01),co-localization of LC3 with prohibitin 2 was significantly increased in the atherosclerosis combined with exercise group compared with the atherosclerosis group(P<0.01),and co-localization of PARL protein with prohibitin 2 was significantly decreased in the atherosclerosis combined with exercise group compared with the atherosclerosis group(P<0.01).To conclude,endurance training can induce the expression of prohibitin 2 in the inner mitochondrial membrane and promote the binding of prohibitin 2 to the mitophagy junction protein to complete mitophagy,restore mitochondrial function,and slow down the occurrence of atherosclerosis.
3.The Mechanisms of Quercetin in Improving Alzheimer’s Disease
Yu-Meng ZHANG ; Yu-Shan TIAN ; Jie LI ; Wen-Jun MU ; Chang-Feng YIN ; Huan CHEN ; Hong-Wei HOU
Progress in Biochemistry and Biophysics 2025;52(2):334-347
Alzheimer’s disease (AD) is a prevalent neurodegenerative condition characterized by progressive cognitive decline and memory loss. As the incidence of AD continues to rise annually, researchers have shown keen interest in the active components found in natural plants and their neuroprotective effects against AD. Quercetin, a flavonol widely present in fruits and vegetables, has multiple biological effects including anticancer, anti-inflammatory, and antioxidant. Oxidative stress plays a central role in the pathogenesis of AD, and the antioxidant properties of quercetin are essential for its neuroprotective function. Quercetin can modulate multiple signaling pathways related to AD, such as Nrf2-ARE, JNK, p38 MAPK, PON2, PI3K/Akt, and PKC, all of which are closely related to oxidative stress. Furthermore, quercetin is capable of inhibiting the aggregation of β‑amyloid protein (Aβ) and the phosphorylation of tau protein, as well as the activity of β‑secretase 1 and acetylcholinesterase, thus slowing down the progression of the disease.The review also provides insights into the pharmacokinetic properties of quercetin, including its absorption, metabolism, and excretion, as well as its bioavailability challenges and clinical applications. To improve the bioavailability and enhance the targeting of quercetin, the potential of quercetin nanomedicine delivery systems in the treatment of AD is also discussed. In summary, the multifaceted mechanisms of quercetin against AD provide a new perspective for drug development. However, translating these findings into clinical practice requires overcoming current limitations and ongoing research. In this way, its therapeutic potential in the treatment of AD can be fully utilized.
4.Application of Recombinant Collagen in Biomedicine
Huan HU ; Hong ZHANG ; Jian WANG ; Li-Wen WANG ; Qian LIU ; Ning-Wen CHENG ; Xin-Yue ZHANG ; Yun-Lan LI
Progress in Biochemistry and Biophysics 2025;52(2):395-416
Collagen is a major structural protein in the matrix of animal cells and the most widely distributed and abundant functional protein in mammals. Collagen’s good biocompatibility, biodegradability and biological activity make it a very valuable biomaterial. According to the source of collagen, it can be broadly categorized into two types: one is animal collagen; the other is recombinant collagen. Animal collagen is mainly extracted and purified from animal connective tissues by chemical methods, such as acid, alkali and enzyme methods, etc. Recombinant collagen refers to collagen produced by gene splicing technology, where the amino acid sequence is first designed and improved according to one’s own needs, and the gene sequence of improved recombinant collagen is highly consistent with that of human beings, and then the designed gene sequence is cloned into the appropriate vector, and then transferred to the appropriate expression vector. The designed gene sequence is cloned into a suitable vector, and then transferred to a suitable expression system for full expression, and finally the target protein is obtained by extraction and purification technology. Recombinant collagen has excellent histocompatibility and water solubility, can be directly absorbed by the human body and participate in the construction of collagen, remodeling of the extracellular matrix, cell growth, wound healing and site filling, etc., which has demonstrated significant effects, and has become the focus of the development of modern biomedical materials. This paper firstly elaborates the structure, type, and tissue distribution of human collagen, as well as the associated genetic diseases of different types of collagen, then introduces the specific process of producing animal source collagen and recombinant collagen, explains the advantages of recombinant collagen production method, and then introduces the various systems of expressing recombinant collagen, as well as their advantages and disadvantages, and finally briefly introduces the application of animal collagen, focusing on the use of animal collagen in the development of biopharmaceutical materials. In terms of application, it focuses on the use of animal disease models exploring the application effects of recombinant collagen in wound hemostasis, wound repair, corneal therapy, female pelvic floor dysfunction (FPFD), vaginal atrophy (VA) and vaginal dryness, thin endometritis (TE), chronic endometritis (CE), bone tissue regeneration in vivo, cardiovascular diseases, breast cancer (BC) and anti-aging. The mechanism of action of recombinant collagen in the treatment of FPFD and CE was introduced, and the clinical application and curative effect of recombinant collagen in skin burn, skin wound, dermatitis, acne and menopausal urogenital syndrome (GSM) were summarized. From the exploratory studies and clinical applications, it is evident that recombinant collagen has demonstrated surprising effects in the treatment of all types of diseases, such as reducing inflammation, promoting cell proliferation, migration and adhesion, increasing collagen deposition, and remodeling the extracellular matrix. At the end of the review, the challenges faced by recombinant collagen are summarized: to develop new recombinant collagen types and dosage forms, to explore the mechanism of action of recombinant collagen, and to provide an outlook for the future development and application of recombinant collagen.
5.Four Weeks of HIIT Modulates Lactate-mediated Synaptic Plasticity to Improve Depressive-like Behavior in CUMS Rats
Yu-Mei HAN ; Zi-Wei ZHANG ; Jia-Ren LIANG ; Chun-Hui BAO ; Jun-Sheng TIAN ; Shi ZHOU ; Huan XIANG ; Yong-Hong YANG
Progress in Biochemistry and Biophysics 2025;52(6):1499-1510
ObjectiveThis study aimed to investigate the effects of 4-week high-intensity interval training (HIIT) on synaptic plasticity in the prefrontal cortex (PFC) of rats exposed to chronic unpredictable mild stress (CUMS), and to explore its potential mechanisms. MethodsA total of 48 male Sprague-Dawley rats were randomly divided into 4 groups: control (C), model (M), control plus HIIT (HC), and model plus HIIT (HM). Rats in groups M and HM underwent 8 weeks of CUMS to establish depression-like behaviors, while groups HC and HM received HIIT intervention beginning from the 5th week for 4 consecutive weeks. The HIIT protocol consisted of repeated intervals of 3 min at high speed (85%-90% maximal training speed, Smax) alternated with one minute at low speed (50%-55% Smax), with 3 to 5 sets per session, conducted 5 d per week. Behavioral assessments and tail-vein blood lactate levels were measured at the end of the 4th and 8th weeks. After the intervention, rat PFC tissues were collected for Golgi staining to analyze synaptic morphology. Enzyme-linked immunosorbent assays (ELISA) were employed to detect brain-derived neurotrophic factor (BDNF), monocarboxylate transporter 1 (MCT1), lactate, and glutamate levels in the PFC, as well as serotonin (5-HT) levels in serum. Additionally, Western blot analysis was conducted to quantify the expression of synaptic plasticity-related proteins, including c-Fos, activity-regulated cytoskeleton-associated protein (Arc), and N-methyl-D-aspartate receptor 1 (NMDAR1). ResultsCompared to the control group (C), the CUMS-exposed rats (group M) exhibited significant reductions in sucrose preference rates, number of grid crossings, frequency of upright postures, and entries into and duration spent in open arms of the elevated plus maze, indicating marked depressive-like behaviors. Additionally, the group M showed significantly reduced dendritic spine density in the PFC, along with elevated levels of c-Fos, Arc, NMDAR1 protein expression, and increased concentrations of lactate and glutamate. Conversely, BDNF and MCT1 contents in the PFC and 5-HT levels in serum were significantly decreased. Following HIIT intervention, rats in the group HM displayed considerable improvement in behavioral indicators compared with the group M, accompanied by significant elevations in PFC MCT1 and lactate concentrations. Furthermore, HIIT notably normalized the expression levels of c-Fos, Arc, NMDAR1, as well as glutamate and BDNF contents in the PFC. Synaptic spine density also exhibited significant recovery. ConclusionFour weeks of HIIT intervention may alleviate depressive-like behaviors in CUMS rats by increasing lactate levels and reducing glutamate concentration in the PFC, thereby downregulating the overexpression of NMDAR, attenuating excitotoxicity, and enhancing synaptic plasticity.
6.The Application of Spatial Resolved Metabolomics in Neurodegenerative Diseases
Lu-Tao XU ; Qian LI ; Shu-Lei HAN ; Huan CHEN ; Hong-Wei HOU ; Qing-Yuan HU
Progress in Biochemistry and Biophysics 2025;52(9):2346-2359
The pathogenesis of neurodegenerative diseases (NDDs) is fundamentally linked to complex and profound alterations in metabolic networks within the brain, which exhibit marked spatial heterogeneity. While conventional bulk metabolomics is powerful for detecting global metabolic shifts, it inherently lacks spatial resolution. This methodological limitation hampers the ability to interrogate critical metabolic dysregulation within discrete anatomical brain regions and specific cellular microenvironments, thereby constraining a deeper understanding of the core pathological mechanisms that initiate and drive NDDs. To address this critical gap, spatial metabolomics, with mass spectrometry imaging (MSI) at its core, has emerged as a transformative approach. It uniquely overcomes the limitations of bulk methods by enabling high-resolution, simultaneous detection and precise localization of hundreds to thousands of endogenous molecules—including primary metabolites, complex lipids, neurotransmitters, neuropeptides, and essential metal ions—directly in situ from tissue sections. This powerful capability offers an unprecedented spatial perspective for investigating the intricate and heterogeneous chemical landscape of NDD pathology, opening new avenues for discovery. Accordingly, this review provides a comprehensive overview of the field, beginning with a discussion of the technical features, optimal application scenarios, and current limitations of major MSI platforms. These include the widely adopted matrix-assisted laser desorption/ionization (MALDI)-MSI, the ultra-high-resolution technique of secondary ion mass spectrometry (SIMS)-MSI, and the ambient ionization method of desorption electrospray ionization (DESI)-MSI, along with other emerging technologies. We then highlight the pivotal applications of spatial metabolomics in NDD research, particularly its role in elucidating the profound chemical heterogeneity within distinct pathological microenvironments. These applications include mapping unique molecular signatures around amyloid β‑protein (Aβ) plaques, uncovering the metabolic consequences of neurofibrillary tangles composed of hyperphosphorylated tau protein, and characterizing the lipid and metabolite composition of Lewy bodies. Moreover, we examine how spatial metabolomics contributes to constructing detailed metabolic vulnerability maps across the brain, shedding light on the biochemical factors that render certain neuronal populations and anatomical regions selectively susceptible to degeneration while others remain resilient. Looking beyond current applications, we explore the immense potential of integrating spatial metabolomics with other advanced research methodologies. This includes its combination with three-dimensional brain organoid models to recapitulate disease-relevant metabolic processes, its linkage with multi-organ axis studies to investigate how systemic metabolic health influences neurodegeneration, and its convergence with single-cell and subcellular analyses to achieve unprecedented molecular resolution. In conclusion, this review not only summarizes the current state and critical role of spatial metabolomics in NDD research but also offers a forward-looking perspective on its transformative potential. We envision its continued impact in advancing our fundamental understanding of NDDs and accelerating translation into clinical practice—from the discovery of novel biomarkers for early diagnosis to the development of high-throughput drug screening platforms and the realization of precision medicine for individuals affected by these devastating disorders.
7.Dynamic changes of neuronal cells at different time points following cerebral ischemia-reperfusion injury in rats
Xu-Huan ZOU ; Rui LAN ; Xue-Qin FU ; Wei-Wei WANG ; Man-Man WANG ; Chen TANG ; Shuang LIU ; Hong-Yu LI ; Xiao-Ming SHEN
Chinese Pharmacological Bulletin 2024;40(6):1056-1066
Aim To investigate the dynamic changes of neuronal cells at different time points following acute cerebral ischemia-reperfusion injury by establishing a model of brain ischemia-reperfusion injury.Methods Thirty male Sprague-Dawley(SD)rats were ran-domly divided into six groups:sham group and cere-bral ischemia-reperfusion injury(IR)groups at differ-ent time points.Focal cerebral ischemia-reperfusion injury model was established using the middle cerebral artery occlusion(MCAO)technique.The Longa sco-ring method was used to assess neurobehavioral scores in rats.After successful model preparation,routine paraffin sections were made,and TUNEL staining and immunohistochemistry staining with NeuN antibody were performed to observe cell apoptosis and neuronal cell survival,respectively.Immunohistochemistry stai-ning was also performed to investigate the changes in glial fibrillary acidic protein(GFAP)as a marker for astrocytes,ionized calcium-binding adapter molecule 1(IBA-1)as a marker for microglia,and CD31 as a marker for endothelial cells at different time points.Results No significant changes were observed in neu-ronal cells of the sham group at different time points.In the cerebral ischemia-reperfusion injury groups,cell apoptosis was activated at IR3h and increased in quan-tity with morphological damage as time progressed.Ne-uN+neurons showed signs of ischemic injury after IR3h,with abnormal cell morphology.From 12 h,Ne-uN+neurons decreased in a time-dependent manner and reached their peak severity at 24 h.GFAP+astro-cytes decreased significantly after IR3h,while poorly labeled GFAP+astrocytes increased at IR 6 h and al-most disappeared in the infarcted area at 24 h and 48 h.The number of IBA-1+microglia-positive cells de-creased at IR3h,and their volume increased at IR6h.Microglial cell death was observed in the infarcted area at IR12h.CD31+endothelial cells around the infarc-ted cortex and striatum increased significantly after IR3h and persisted until 48 h.Conclusions After cerebral ischemia-reperfusion injury,the number of ap-optotic cells increases with the prolongation of time,and NeuN+neurons exhibit the most severe damage at 24 h.GFAP+astrocytes and microglial cells gradually die over time.The number of CD31+endothelial cells increases significantly around the infarcted cortex and striatum after 3 h of reperfusion and persists until 48 h.
8.Effects of emetine on insulin secretion in rat islets through GLP-1R
Huan XUE ; Zhi-Hong LU ; Bin WANG ; Si-Ting YU ; Xi ZHANG ; Bin HU ; Qing-Xuan ZENG ; Yi ZHANG
Chinese Pharmacological Bulletin 2024;40(7):1267-1272
Aim To study the effect of emetine on in-sulin secretion through glucagon-like peptide-1 receptor(GLP-1R).Methods Isolating rat islets were used to carry out insulin secretion experiment.Islets were incubated with different concentrations of emetine(2,10,50 μmol·L-1),different concentrations of glu-cose solution(2.8,11.1,16.7 mmol·L-1)or spe-cific GLP-1R antagonist Exendin(9-39).The amount of insulin secretion in the supernatant of each group was determined by an enzyme-linked radioimmunoas-say.Small molecule compounds were docked to GLP-1R(PDB code:5NX2)using SYBYL-X2.0 software.Results Emetine could promote insulin secretion in high glucose(11.1 mmol·L-1)in a dose-dependent manner.In low glucose(2.8 mmol·L-1),insulin secretion did not change after intervention of emetine.But in high glucose(11.1,16.7 mmol·L-1),insu-lin secretion significantly increased under the treatment of emetine in a glucose-dependent manner.The doc-king score of emetine and GLP-1R was Total Score=6.82,C Score=5,indicating that emetine had a good binding affinity with GLP-1R.Using Exendin(9-39)to block GLP-1R,the insulinotropic effect of emetine was reduced.Conclusion Emetine could promote in-sulin secretion,which is related to the activation of GLP-1R.
9.Mechanism of effect of rosiglitazone on pancreatic cancer in diabetic mice based on impact of PPARy on glucose transport and metabolism
Rui-Ping HU ; Li-Feng SHANG ; He-Jing WANG ; Hong-Xia CHE ; Ming-Liang WANG ; Huan YANG ; Yuan-Yuan JIN ; Fei-Fei ZHANG ; Jian-Ling ZHANG
Chinese Pharmacological Bulletin 2024;40(7):1325-1334
Aim To explore the mechanism of the effect of rosiglitazone(Rsg)on the pancreatic cancer in diabetic mice based on the impact of PPARγ on glu-cose transport and metabolism.Methods A high-fat and high sugar diet combined with STZ was used to construct T2DM model;T2DM mice and normal mice were subcutaneously injected with PANC02 cells to construct a transplanted tumor model.T2DM trans-planted tumor mice and normal transplanted tumor mice were divided into the following groups:Rsg,PPARy inhibitor(PIN-2),rosiglitazone+PPARγ in-hibitor(Rsg+PIN-2),and normal transplanted tumor mice(NDM)and T2DM transplanted tumor mice(DM)were used as control groups,respectively.Tis-sue samples were collected after intervention.Tissue pathological changes were observed by HE staining.The expressions of Ki67 and PCNA proteins were de-tected by immunohistochemistry.Cell apoptosis was detected by TUNEL assay.The expression of PPARγwas detected by immunofluorescence.The expressions of Glucokinase,GLUT2,Nkx6.1,PDX-1RT-PCR were determined by Western blot.Results Rsg could significantly reduce the tumor mass,pathological chan-ges,Ki67 and PCNA expression of transplanted tumors(P<0.05),increase cell apoptosis and the expression of PPARγ,Glucokinase,GLUT2,Nkx6.1,PDX-1 proteins in NDM and DM mice(P<0.05).PIN-2 could reverse the indicator changes caused by Rsg in NDM and DM mice.However,compared with NDM mice,the above related indicators of the DM group mice were more sensitive to Rsg and PIN-2.Conclu-sions Compared to non-diabetic pancreatic cancer,rosiglitazone can more sensitively inhibit the prolifera-tion of pancreatic cancer with T2DM,induce apopto-sis,and reprogram the metabolism of pancreatic cancer with T2DM by activating PPA Rγ and altering the ex-pression of glucose and lipid metabolism genes,there-by exerting an anti-cancer effect.
10.Effects of mycotoxins on immune response of dendritic cells
Huan YU ; Guofu SHANG ; Sha OU ; Liang HONG ; Zhu ZENG ; Zuquan HU
Chinese Journal of Immunology 2024;40(4):862-865,871
Mycotoxins are secondary metabolites produced by pathogenic fungi.They often contaminate various crops,and are detrimental to human and animal health.Mycotoxins have a variety of toxic effects,such as neurotoxicity,hepatotoxicity,immunotox-icity,teratogenicity,and carcinogenicity.However,the mechanism of immunotoxicity is still unclear.Dendritic cells(DCs),as the most potent antigen presenting cells,play a vital role in initiating innate and adaptive immune responses.Previous studies have found that mycotoxins can affect the endocytosis of DCs,the ability to stimulate T cell activation,the secretion of cytokines and chemokines.Thus,this review is aim to summarize the effects of mycotoxins on DCs-mediated immune responses,which may provide reference for researches to clarify the immunotoxicity mechanism of mycotoxins.

Result Analysis
Print
Save
E-mail