1.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
2.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
3.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
4.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
5.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
6.Mechanism related to bile acids metabolism of liver injury induced by long-term administration of emodin.
Jing-Zhuo TIAN ; Lian-Mei WANG ; Yan YI ; Zhong XIAN ; Nuo DENG ; Yong ZHAO ; Chun-Ying LI ; Yu-Shi ZHANG ; Su-Yan LIU ; Jia-Yin HAN ; Chen PAN ; Chen-Yue LIU ; Jing MENG ; Ai-Hua LIANG
China Journal of Chinese Materia Medica 2025;50(11):3079-3087
Emodin is a hydroxyanthraquinone compound that is widely distributed and has multiple pharmacological activities, including anti-diarrheal, anti-inflammatory, and liver-protective effects. Research indicates that emodin may be one of the main components responsible for inducing hepatotoxicity. However, studies on the mechanisms of liver injury are relatively limited, particularly those related to bile acids(BAs) metabolism. This study aims to systematically investigate the effects of different dosages of emodin on BAs metabolism, providing a basis for the safe clinical use of traditional Chinese medicine(TCM)containing emodin. First, this study evaluated the safety of repeated administration of different dosages of emodin over a 5-week period, with a particular focus on its impact on the liver. Next, the composition and content of BAs in serum and liver were analyzed. Subsequently, qRT-PCR was used to detect the mRNA expression of nuclear receptors and transporters related to BAs metabolism. The results showed that 1 g·kg~(-1) emodin induced hepatic damage, with bile duct hyperplasia as the primary pathological manifestation. It significantly increased the levels of various BAs in the serum and primary BAs(including taurine-conjugated and free BAs) in the liver. Additionally, it downregulated the mRNA expression of farnesoid X receptor(FXR), retinoid X receptor(RXR), and sodium taurocholate cotransporting polypeptide(NTCP), and upregulated the mRNA expression of cholesterol 7α-hydroxylase(CYP7A1) in the liver. Although 0.01 g·kg~(-1) and 0.03 g·kg~(-1) emodin did not induce obvious liver injury, they significantly increased the level of taurine-conjugated BAs in the liver, suggesting a potential interference with BAs homeostasis. In conclusion, 1 g·kg~(-1) emodin may promote the production of primary BAs in the liver by affecting the FXR-RXR-CYP7A1 pathway, inhibit NTCP expression, and reduce BA reabsorption in the liver, resulting in BA accumulation in the peripheral blood. This disruption of BA homeostasis leads to liver injury. Even doses of emodin close to the clinical dose can also have a certain effect on the homeostasis of BAs. Therefore, when using traditional Chinese medicine or formulas containing emodin in clinical practice, it is necessary to regularly monitor liver function indicators and closely monitor the risk of drug-induced liver injury.
Emodin/administration & dosage*
;
Bile Acids and Salts/metabolism*
;
Animals
;
Male
;
Liver/injuries*
;
Chemical and Drug Induced Liver Injury/genetics*
;
Drugs, Chinese Herbal/adverse effects*
;
Humans
;
Rats, Sprague-Dawley
;
Mice
;
Rats
8.Analysis of gene expression in synovial fluid and blood of patients with knee osteoarthritis of Yang deficiency and blood stasis type.
Hao-Tian HUA ; Zhong-Yi ZHANG ; Zhao-Kai JIN ; Peng-Qiang LOU ; Zhuo MENG ; An-Qi ZHANG ; Yang ZHANG ; Pei-Jian TONG
China Journal of Orthopaedics and Traumatology 2025;38(8):792-799
OBJECTIVE:
To reveal the molecular basis of knee osteoarthritis (KOA) with Yang deficiency and blood stasis syndrome by analyzing the gene expression profiles in synovial fluid and blood of KOA patients with this syndrome.
METHODS:
A total of 80 KOA patients were recruited from October 2022 to June 2024, including 40 cases in the non-Yang deficiency and blood stasis group (27 males and 13 females), with an average age of (61.75±3.45) years old;and 40 cases in the Yang deficiency and blood stasis group (22 males and 18 females), with an average age of (62.00±2.76) years old. The levels of body mass index (BMI), high-density lipoprotein (HDL), low-density lipoprotein (LDL), fibrinogen, total cholesterol, and D-dimer were recorded and summarized. Blood and synovial fluid samples from patients were collected for gene expression profile microarray sequencing, and then PCR and immunohistochemistry were used for clinical verification on the patients' synovial fluid and cartilage samples.
RESULTS:
Logistic regression analysis showed that compared with KOA patients with non-Yang deficiency and blood stasis syndrome, those with Yang deficiency and blood stasis syndrome had increased BMI, LDL, fibrinogen, total cholesterol, and D-dimer, and decreased HDL, with a clear correlation between the two groups. There were 562 differential genes in the blood, among which 322 were up-regulated and 240 were down-regulated;755 differential genes were found in the synovial fluid, with 350 up-regulated and 405 down-regulated. KEGG signaling pathway analysis of synovial fluid revealed changes in lipid metabolism-related pathways, including cholesterol metabolism, fatty acid metabolism, and PPARG signaling pathway. Analysis of the involved differential genes identified 6 genes in synovial fluid that were closely related to lipid metabolism, namely LRP1, LPL, ACOT6, TM6SF2, DGKK, and PPARG. Subsequently, PCR and immunohistochemical verification were performed using synovial fluid and cartilage samples, and the results were consistent with those of microarray sequencing.
CONCLUSION
This study explores the clinical and genomic correlation between traditional Chinese medicine syndromes and knee osteoarthritis from the perspective of lipid metabolism, and proves that abnormal lipid metabolism is closely related to KOA with Yang deficiency and blood stasis syndrome from both clinical and basic aspects.
Humans
;
Male
;
Female
;
Middle Aged
;
Synovial Fluid/metabolism*
;
Osteoarthritis, Knee/metabolism*
;
Yang Deficiency/complications*
;
Aged
9.Association of redundant foreskin with sexual dysfunction: a cross-sectional study from 5700 participants.
Yuan-Qi ZHAO ; Nian LI ; Xiao-Hua JIANG ; Yang-Yang WAN ; Bo XU ; Xue-Chun HU ; Yi-Fu HOU ; Ji-Yan LI ; Shun BAI
Asian Journal of Andrology 2025;27(1):90-95
A previous study showed that the length of the foreskin plays a role in the risk of sexually transmitted infections and chronic prostatitis, which can lead to poor quality of sexual life. Here, the association between foreskin length and sexual dysfunction was evaluated. A total of 5700 participants were recruited from the andrology clinic at The First Affiliated Hospital of University of Science and Technology of China (Hefei, China). Clinical characteristics, including foreskin length, were collected, and sexual function was assessed by the International Index of Erectile Function-5 (IIEF-5) and Premature Ejaculation Diagnostic Tool (PEDT) questionnaires. Men with sexual dysfunction were more likely to have redundant foreskin than men without sexual dysfunction. Among the 2721 erectile dysfunction (ED) patients and 1064 premature ejaculation (PE) patients, 301 (11.1%) ED patients and 135 (12.7%) PE patients had redundant foreskin, respectively. Men in the PE group were more likely to have redundant foreskin than men in the non-PE group ( P = 0.004). Logistic regression analyses revealed that the presence of redundant foreskin was associated with increased odds of moderate/severe ED (adjusted odds ratio [aOR] = 1.31, adjusted P = 0.04), moderate PE (aOR = 1.38, adjusted P = 0.02), and probable PE (aOR = 1.37, adjusted P = 0.03) after adjusting for confounding variables. Our study revealed a positive correlation between the presence of redundant foreskin and the risk of sexual dysfunction, especially in PE patients. Assessment of the length of the foreskin during routine clinical diagnosis may provide information for patients with sexual dysfunction.
Humans
;
Male
;
Foreskin
;
Cross-Sectional Studies
;
Adult
;
Erectile Dysfunction/epidemiology*
;
Premature Ejaculation/epidemiology*
;
Middle Aged
;
China/epidemiology*
;
Surveys and Questionnaires
;
Sexual Dysfunction, Physiological/epidemiology*
;
Young Adult
10.Explanation and interpretation of blood transfusion provisions for children with hematological diseases in the national health standard "Guideline for pediatric transfusion".
Ming-Yi ZHAO ; Rong HUANG ; Rong GUI ; Qing-Nan HE ; Ming-Yan HEI ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Ming-Hua YANG
Chinese Journal of Contemporary Pediatrics 2025;27(1):18-25
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Blood transfusion is one of the most commonly used supportive treatments for children with hematological diseases. This guideline provides guidance and recommendations for blood transfusions in children with aplastic anemia, thalassemia, autoimmune hemolytic anemia, glucose-6-phosphate dehydrogenase deficiency, acute leukemia, myelodysplastic syndromes, immune thrombocytopenic purpura, and thrombotic thrombocytopenic purpura. This article presents the evidence and interpretation of the blood transfusion provisions for children with hematological diseases in the "Guideline for pediatric transfusion", aiming to assist in the understanding and implementing the blood transfusion section of this guideline.
Humans
;
Child
;
Hematologic Diseases/therapy*
;
Blood Transfusion/standards*
;
Practice Guidelines as Topic

Result Analysis
Print
Save
E-mail