1.Prediction of Pulmonary Nodule Progression Based on Multi-modal Data Fusion of CCNet-DGNN Model
Lehua YU ; Yehui PENG ; Wei YANG ; Xinghua XIANG ; Rui LIU ; Xiongjun ZHAO ; Maolan AYIDANA ; Yue LI ; Wenyuan XU ; Min JIN ; Shaoliang PENG ; Baojin HUA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(24):135-143
ObjectiveThis study aims to develop and validate a novel multimodal predictive model, termed criss-cross network(CCNet)-directed graph neural network(DGNN)(CGN), for accurate assessment of pulmonary nodule progression in high-risk individuals for lung cancer, by integrating longitudinal chest computed tomography(CT) imaging with both traditional Chinese and western clinical evaluation data. MethodsA cohort of 4 432 patients with pulmonary nodules was retrospectively analyzed. A twin CCNet was employed to extract spatiotemporal representations from paired sequential CT scans. Structured clinical assessment and imaging-derived features were encoded via a multilayer perceptron, and a similarity-based alignment strategy was adopted to harmonize multimodal imaging features across temporal dimensions. Subsequently, a DGNN was constructed to integrate heterogeneous features, where nodes represented modality-specific embeddings and edges denoted inter-modal information flow. Finally, model optimization was performed using a joint loss function combining cross-entropy and cosine similarity loss, facilitating robust classification of nodule progression status. ResultsThe proposed CGN model demonstrated superior predictive performance on the held-out test set, achieving an area under the receiver operating characteristic curve(AUC) of 0.830, accuracy of 0.843, sensitivity of 0.657, specificity of 0.712, Cohen's Kappa of 0.417, and F1 score of 0.544. Compared with unimodal baselines, the CGN model yielded a 36%-48% relative improvement in AUC. Ablation studies revealed a 2%-22% increase in AUC when compared to simplified architectures lacking key components, substantiating the efficacy of the proposed multimodal fusion strategy and modular design. Incorporation of traditional Chinese medicine (TCM)-specific symptomatology led to an additional 5% improvement in AUC, underscoring the complementary value of integrating TCM and western clinical data. Through gradient-weighted activation mapping visualization analysis, it was found that the model's attention predominantly focused on nodule regions and effectively captured dynamic associations between clinical data and imaging-derived features. ConclusionThe CGN model, by synergistically combining cross-attention encoding with directed graph-based feature integration, enables effective alignment and fusion of heterogeneous multimodal data. The incorporation of both TCM and western clinical information facilitates complementary feature enrichment, thereby enhancing predictive accuracy for pulmonary nodule progression. This approach holds significant potential for supporting intelligent risk stratification and personalized surveillance strategies in lung cancer prevention.
2.The Role and Possible Mechanism of T Cell Costimulatory Molecule CD28 Activation in Pathogenesis of Multiple Myeloma.
Yang-Min ZHANG ; Li-Ying ZHANG ; Hua-Yu LING ; Jin-Xiang FU
Journal of Experimental Hematology 2025;33(4):1079-1085
OBJECTIVE:
To investigate the effect of signals mediated by activated CD28 in promoting survival of multiple myeloma (MM) cells and metabolic fitness and its possible mechanism.
METHODS:
The expression of CD28 on 4 MM cell lines (XG2, XG1, RPMI 8226 and U266) was determined by flow cytometry. Two cell lines with the highest or lowest CD28 expression were selected. The proliferation, cell cycle, migration and apoptosis of MM cells in vitro were determined in medium containing high glucose concentration or CD28 agonist monoclonal antibody with different bioassays. shRNA interference assay was used to knock down the expression of CD28 on U266 cells. Then, the effect of activated CD28 on glucose uptake rate and drug resistance in MM cells were analyzed using fluorescent glucose analogues (2-NBDG). The expression of Glut1/4, HkII and Fasn was determined with real time quantitative PCR.
RESULTS:
Flow cytometry analysis showed that all the four tested MM cell lines expressed CD28 and U266 cells had the highest positive rate. The results of in vitro experiment showed that CD28 activation could significantly up-regulate the expression of Glut4 and HkII, promote MM cell metabolic remodeling, enhance 2-NBDG/glucose uptake, increase energy metabolism, thereby elevating cell proliferation and migration abilities, leading to an increase in the number of cells in S- and G2-phases. Meanwhile, activated CD28 subsequently up-regulated resistance of MM cells to bortezomib or dexamethasone.
CONCLUSION
MM cells express high levels of CD28 abnormally, and activation of CD28 can promote up-regulation of glucose uptake in MM cells, thereby promoting cell proliferation and enhancing drug resistance.
Humans
;
Multiple Myeloma/pathology*
;
CD28 Antigens/metabolism*
;
Cell Proliferation
;
Cell Line, Tumor
;
Apoptosis
;
Glucose/metabolism*
;
Glucose Transporter Type 4/metabolism*
;
Glucose Transporter Type 1
3.Predictive value of bpMRI for pelvic lymph node metastasis in prostate cancer patients with PSA≤20 μg/L.
Lai DONG ; Rong-Jie SHI ; Jin-Wei SHANG ; Zhi-Yi SHEN ; Kai-Yu ZHANG ; Cheng-Long ZHANG ; Bin YANG ; Tian-Bao HUANG ; Ya-Min WANG ; Rui-Zhe ZHAO ; Wei XIA ; Shang-Qian WANG ; Gong CHENG ; Li-Xin HUA
National Journal of Andrology 2025;31(5):426-431
Objective: The aim of this study is to explore the predictive value of biparametric magnetic resonance imaging(bpMRI)for pelvic lymph node metastasis in prostate cancer patients with PSA≤20 μg/L and establish a nomogram. Methods: The imaging data and clinical data of 363 patients undergoing radical prostatectomy and pelvic lymph node dissection in the First Affiliated Hospital of Nanjing Medical University from July 2018 to December 2023 were retrospectively analyzed. Univariate analysis and multivariate logistic regression were used to screen independent risk factors for pelvic lymph node metastasis in prostate cancer, and a nomogram of the clinical prediction model was established. Calibration curves were drawn to evaluate the accuracy of the model. Results: Multivariate logistic regression analysis showed extrocapusular extension (OR=8.08,95%CI=2.62-24.97, P<0.01), enlargement of pelvic lymph nodes (OR=4.45,95%CI=1.16-17.11,P=0.030), and biopsy ISUP grade(OR=1.97,95%CI=1.12-3.46, P=0.018)were independent risk factors for pelvic lymph node metastasis. The C-index of the prediction model was 0.834, which indicated that the model had a good prediction ability. The actual value of the model calibration curve and the prediction probability of the model fitted well, indicating that the model had a good accuracy. Further analysis of DCA curve showed that the model had good clinical application value when the risk threshold ranged from 0.05 to 0.70.Conclusion: For prostate cancer patients with PSA≤20 μg/L, bpMRI has a good predictive value for the pelvic lymph node metastasis of prostate cancer with extrocapusular extension, enlargement of pelvic lymph nodes and ISUP grade≥4.
Humans
;
Male
;
Prostatic Neoplasms/diagnostic imaging*
;
Lymphatic Metastasis
;
Retrospective Studies
;
Nomograms
;
Prostate-Specific Antigen/blood*
;
Lymph Nodes/pathology*
;
Pelvis
;
Predictive Value of Tests
;
Prostatectomy
;
Lymph Node Excision
;
Risk Factors
;
Magnetic Resonance Imaging
;
Logistic Models
;
Middle Aged
;
Aged
4.Rutaecarpine Attenuates Monosodium Urate Crystal-Induced Gouty Inflammation via Inhibition of TNFR-MAPK/NF-κB and NLRP3 Inflammasome Signaling Pathways.
Min LI ; Zhu-Jun YIN ; Li LI ; Yun-Yun QUAN ; Ting WANG ; Xin ZHU ; Rui-Rong TAN ; Jin ZENG ; Hua HUA ; Qin-Xuan WU ; Jun-Ning ZHAO
Chinese journal of integrative medicine 2025;31(7):590-599
OBJECTIVE:
To investigate the anti-inflammatory effect of rutaecarpine (RUT) on monosodium urate crystal (MSU)-induced murine peritonitis in mice and further explored the underlying mechanism of RUT in lipopolysaccharide (LPS)/MSU-induced gout model in vitro.
METHODS:
In MSU-induced mice, 36 male C57BL/6 mice were randomly divided into 6 groups of 8 mice each group, including the control group, model group, RUT low-, medium-, and high-doses groups, and prednisone acetate group. The mice in each group were orally administered the corresponding drugs or vehicle once a day for 7 consecutive days. The gout inflammation model was established by intraperitoneal injection of MSU to evaluate the anti-gout inflammatory effects of RUT. Then the proinflammatory cytokines were measured by enzyme-linked immunosorbent assay (ELISA) and the proportions of infiltrating neutrophils cytokines were detected by flow cytometry. In LPS/MSU-treated or untreated THP-1 macrophages, cell viability was observed by cell counting kit 8 and proinflammatory cytokines were measured by ELISA. The percentage of pyroptotic cells were detected by flow cytometry. Respectively, the mRNA and protein levels were measured by real-time quantitative polymerase chain reaction (qRT-PCR) and Western blot, the nuclear translocation of nuclear factor κB (NF-κB) p65 was observed by laser confocal imaging. Additionally, surface plasmon resonance (SPR) and molecular docking were applied to validate the binding ability of RUT components to tumor necrosis factor α (TNF-α) targets.
RESULTS:
RUT reduced the levels of infiltrating neutrophils and monocytes and decreased the levels of the proinflammatory cytokines interleukin 1β (IL-1β) and interleukin 6 (IL-6, all P<0.01). In vitro, RUT reduced the production of IL-1β, IL-6 and TNF-α. In addition, RT-PCR revealed the inhibitory effects of RUT on the mRNA levels of IL-1β, IL-6, cyclooxygenase-2 and TNF-α (P<0.05 or P<0.01). Mechanistically, RUT markedly reduced protein expressions of tumor necrosis factor receptor (TNFR), phospho-mitogen-activated protein kinase (p-MAPK), phospho-extracellular signal-regulated kinase, phospho-c-Jun N-terminal kinase, phospho-NF-κB, phospho-kinase α/β, NOD-like receptor thermal protein domain associated protein 3 (NLRPS), cleaved-cysteinyl aspartate specific proteinase-1 and cleaved-gasdermin D in macrophages (P<0.05 or P<0.01). Molecularly, SPR revealed that RUT bound to TNF-α with a calculated equilibrium dissociation constant of 31.7 µmol/L. Molecular docking further confirmed that RUT could interact directly with the TNF-α protein via hydrogen bonding, van der Waals interactions, and carbon-hydrogen bonding.
CONCLUSION
RUT alleviated MSU-induced peritonitis and inhibited the TNFR1-MAPK/NF-κB and NLRP3 inflammasome signaling pathway to attenuate gouty inflammation induced by LPS/MSU in THP-1 macrophages, suggesting that RUT could be a potential therapeutic candidate for gout.
Animals
;
NF-kappa B/metabolism*
;
Male
;
Indole Alkaloids/therapeutic use*
;
Signal Transduction/drug effects*
;
Mice, Inbred C57BL
;
Inflammation/complications*
;
Uric Acid
;
Quinazolines/therapeutic use*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Humans
;
Gout/chemically induced*
;
Inflammasomes/metabolism*
;
Cytokines/metabolism*
;
THP-1 Cells
;
Mitogen-Activated Protein Kinases/metabolism*
;
Mice
;
Molecular Docking Simulation
;
Lipopolysaccharides
;
Quinazolinones
5.Early warning method for invasive mechanical ventilation in septic patients based on machine learning model.
Wanjun LIU ; Wenyan XIAO ; Jin ZHANG ; Juanjuan HU ; Shanshan HUANG ; Yu LIU ; Tianfeng HUA ; Min YANG
Chinese Critical Care Medicine 2025;37(7):644-650
OBJECTIVE:
To develop a method for identifying high-risk patients among septic populations requiring mechanical ventilation, and to conduct phenotypic analysis based on this method.
METHODS:
Data from four sources were utilized: the Medical Information Mart for Intensive Care (MIMIC-IV 2.0, MIMIC-III 1.4), the Philips eICU-Collaborative Research Database 2.0 (eICU-CRD 2.0), and the Anhui Medical University Second Affiliated Hospital dataset. The adult patients in intensive care unit (ICU) who met Sepsis-3 and received invasive mechanical ventilation (IMV) on the first day of first admission were enrolled. The MIMIC-IV dataset with the highest data integrity was divided into a training set and a test set at a 6:1 ratio, while the remaining datasets were served as validation sets. The demographic information, comorbidities, laboratory indicators, commonly used ICU scores, and treatment measures of patients were extracted. Clinical data collected within first day of ICU admission were used to calculate the sequential organ failure assessment (SOFA) score. K-means clustering was applied to cluster SOFA score components, and the sum of squared errors (SSE) and Davies-Bouldin index (DBI) were used to determine the optimal number of disease subtypes. For clustering results, normalized methods were employed to compare baseline characteristics by visualization, and Kaplan-Meier curves were used to analyze clinical outcomes across phenotypes.
RESULTS:
This study enrolled patients from MIMIC-IV dataset (n = 11 166), MIMIC-III dataset (n = 4 821), eICU-CRD dataset (n = 6 624), and a local dataset (n = 110), with the four datasets showing similar median ages and male proportions exceeding 50%; using 85% of the MIMIC-IV dataset as the training set, 15% as the test set, and the rest dataset as the validation set. K-means clustering based on the six-item SOFA score was performed to determine the optimal number of clusters as 3, and patients were finally classified into three phenotypes. In the training set, compared with the patients with phenotype II and phenotype III, those with phenotype I had the more severe circulatory and respiratory dysfunction, a higher proportion of vasoactive drug usage, more obvious metabolic acidosis and hypoxia, and a higher incidence of congestive heart failure. The patients with phenotype II was dominated by respiratory dysfunction with higher visceral injury. The patients with phenotype III had relatively stable organ function. The above characteristics were consistent in both the test and validation sets. Analysis of infection-related indicators showed that the patients with phenotype I had the highest SOFA score within 7 days after ICU admission, initial decreases and later increases in platelet count (PLT), and higher counts of neutrophils, lymphocytes, and monocytes as compared with those with phenotype II and phenotype III, their blood cultures had a higher positivity rates for Gram-positive bacteria, Gram-negative bacteria and fungi as compared with those with phenotype II and phenotype III. The Kaplan-Meier curve indicated that in the training, test, and validation sets, the 28-day cumulative mortality of patients with phenotype I was significantly higher than that of patients with phenotypes II and phenotype III.
CONCLUSIONS
Three distinct phenotypes in septic patients receiving IMV based on unsupervised machine learning is derived, among which phenotype I, characterized by cardiorespiratory failure, can be used for the early identification of high-risk patients in this population. Moreover, this population is more prone to bloodstream infections, posing a high risk and having a poor prognosis.
Humans
;
Machine Learning
;
Sepsis/therapy*
;
Respiration, Artificial
;
Intensive Care Units
;
Organ Dysfunction Scores
;
Male
;
Female
;
Middle Aged
;
Adult
6.Role of intestinal flora in hypertension complicated with osteoporosis
Mei-Long SI ; Hua JIN ; Min-Ke LIU ; Shuang-Fang LIU ; Bi-Shi LING ; Shang-Wen QI ; Xue-Li MA
The Chinese Journal of Clinical Pharmacology 2024;40(3):449-453
Hypertension and osteoporosis(OP)are common diseases in middle-aged and elderly people,and the number of patients with both diseases has gradually increased in recent years.Because the onset of the disease is hidden,it is easy to cause fractures and serious complications of heart,brain and kidney in the later stage,which not only seriously damages the quality of life of patients,but also increases the difficulty of clinical treatment.Therefore,it is particularly necessary to strengthen the research on this disease.More and more studies have found that the disorder of intestinal flora will lead to the occurrence of OP,while the intestinal flora of patients with hypertension is obviously out of balance.Therefore,this paper thinks that intestinal flora may be the key influencing factor of hypertension complicated with OP,and the imbalance of intestinal flora will lead to the imbalance of short-chain fatty acid metabolism,immune inflammatory reaction and increased sympathetic nerve activity,thus causing the imbalance of bone homeostasis and promoting the occurrence of OP.Therefore,it is suggested that regulating intestinal flora may be a new way to intervene hypertension complicated with OP.
7.Bioequivalence study of rasagiline mesylate tablets in Chinese healthy subjects
Gang CHEN ; Xiao-Lin WANG ; Si-Qi ZANG ; Ze-Juan WANG ; Xiao-Na LIU ; Ai-Hua DU ; Min LI ; Ya-Nan ZHANG ; Dan ZHANG ; Li-Na ZHANG ; Jin WANG
The Chinese Journal of Clinical Pharmacology 2024;40(19):2885-2890
Objective To study the pharmacokinetics and bioequivalence of two formulations of rasagiline mesylate tablets in healthy subjects under fasting and fed conditions.Methods The two-period,two-sequence,crossover study design was adopted in the fasting study.Thirty-six subjects were enrolled and given either test preparation or reference preparation 1 mg respectively in two periods.After collecting plasma samples,the plasma concentration of rasagiline was determined by liquid chromatography-tandem mass spectrometry(LC-MS/MS)and the bioequivalence was evaluated using the average bioequivalence(ABE)method.The four-period,two-sequence,fully replicate crossover study design was adopted in the fed study.Forty-eight subjects were enrolled and given the test preparation or the reference preparation at a dose of 1 mg twice respectively in four periods.According to the degree of intra-individual variation of Cmax,AUC0-t and AUC0-∞,the equivalence was evaluated using the reference-scaled average bioequivalence and ABE method,respectively.Results In the fasting study,the pharmacokinetic parameters of rasagiline of the test and reference preparation were as follow:Cmax were(9.70±3.14)and(9.62±3.85)ng·mL-1,AUC0-t were(6.03±1.47)and(6.02±1.95)ng·h·mL-1,AUC0-∞ were(6.13±1.51)and(6.12±1.97)ng·h·mL-1.The 90%confidence interval(CI)of the geometric mean ratio(GMR)were 94.11%-118.06%,99.22%-107.74%and 99.16%-107.44%for Cmax,AUC0-t and AUC0-∞,respectively,which were within the acceptance criteria of 80.00%-125.00%.In the fed study,the pharmacokinetic parameters of rasagiline of the test and reference preparation were as follow:Cmax were(3.00±1.92)and(3.52±1.77)ng·mL-1,AUC0_t were(5.02±1.20)and(5.06±1.20)ng·h·mL-1,AUC0-∞ were(5.11±1.23)and(5.14±1.22)ng·h·mL-1.The 90%CI of GMR were 96.99%-101.19%and 97.17%-101.41%for AUC0-t and AUC0-∞,which were within the acceptance criteria of 80.00%-125.00%.The 95%upper confidence bound of Cmax for were less than"0",and the point estimate of GMR were within the acceptance criteria of 80.00%-125.00%.The incidence of adverse events in fasting and fed studies was 22.86%and 22.92%,respectively,and all adverse events were moderate to mild.Conclusion The two rasagiline mesylate tablets were bioequivalent,and both the formulations were well tolerated.
8.Mechanistic investigation on the hypoglycemic effect of Panax notoginseng saponins in type 2 diabetic mice based on plasma metabolomics
Jin-hua ZHANG ; Han-xiang LIU ; Yu-xuan LIU ; Min WU ; Jin-xia CHANG ; Wen-hu LIU
Acta Pharmaceutica Sinica 2024;59(4):1028-1039
Plasma metabolomics combined experimental verification was employed for investigating of the hypoglycemic effect of
9.Proteomics study the protective effects of Panax notoginsenosides on liver in mice with type 2 diabetes mellitus
Wen-hu LIU ; Jin-hua ZHANG ; Min WU ; Nan XIE ; Shuang WANG ; Jin-xia CHANG ; Fan ZHANG
Acta Pharmaceutica Sinica 2024;59(8):2255-2264
Liver is the main organ of glucose and lipid metabolism, and persistent hyperglycemia is a common cause of liver injury.
10.Drug-free targeted thrombolytic strategy based on gold nanoparticles-loaded human serum albumin fusion protein delivery system
Jin-jin LU ; Chun LIU ; Si-rong SUN ; Jing-hua CHEN ; Min GAO
Acta Pharmaceutica Sinica 2024;59(2):455-463
Thrombus is a major factor leading to cardiovascular diseases such as myocardial infarction and stroke. Although fibrinolytic anti-thrombotic drugs have been widely used in clinical practice, they are still limited by narrow therapeutic windows, short half-lives, susceptibility to inactivation, and abnormal bleeding caused by non-targeting. Therefore, it is crucial to effectively deliver thrombolytic agents to the site of thrombus with minimal adverse effects. Based on the long blood circulation and excellent drug-loading properties of human serum albumin (HSA), we employed genetic engineering techniques to insert a functional peptide (P-selectin binding peptide, PBP) which can target the thrombus site to the

Result Analysis
Print
Save
E-mail