1.The Near-infrared II Emission of Gold Clusters and Their Applications in Biomedicine
Zhen-Hua LI ; Hui-Zhen MA ; Hao WANG ; Chang-Long LIU ; Xiao-Dong ZHANG
Progress in Biochemistry and Biophysics 2025;52(8):2068-2086
Optical imaging is highly valued for its superior temporal and spatial resolution. This is particularly important in near-infrared II (NIR-II, 1 000-3 000 nm) imaging, which offers advantages such as reduced tissue absorption, minimal scattering, and low autofluorescence. These characteristics make NIR-II imaging especially suitable for deep tissue visualization, where high contrast and minimal background interference are critical for accurate diagnosis and monitoring. Currently, inorganic fluorescent probes—such as carbon nanotubes, rare earth nanoparticles, and quantum dots—offer high brightness and stability. However, they are hindered by ambiguous structures, larger sizes, and potential accumulation toxicity in vivo. In contrast, organic fluorescent probes, including small molecules and polymers, demonstrate higher biocompatibility but are limited by shorter emission wavelengths, lower quantum yields, and reduced stability. Recently, gold clusters have emerged as a promising class of nanomaterials with potential applications in biocatalysis, fluorescence sensing, biological imaging, and more. Water-soluble gold clusters are particularly attractive as fluorescent probes due to their remarkable optical properties, including strong photoluminescence, large Stokes shifts, and excellent photostability. Furthermore, their outstanding biocompatibility—attributed to good aqueous stability, ultra-small hydrodynamic size, and high renal clearance efficiency—makes them especially suitable for biomedical applications. Gold clusters hold significant potential for NIR-II fluorescence imaging. Atomic-precision gold clusters, typically composed of tens to hundreds of gold atoms and measuring only a few nanometers in diameter, possess well-defined three-dimensional structures and clear spatial coordination. This atomic-level precision enables fine-tuned structural regulation, further enhancing their fluorescence properties. Variations in cluster size, surface ligands, and alloying elements can result in distinct physicochemical characteristics. The incorporation of different atoms can modulate the atomic and electronic structures of gold clusters, while diverse ligands can influence surface polarity and steric hindrance. As such, strategies like alloying and ligand engineering are effective in enhancing both fluorescence and catalytic performance, thereby meeting a broader range of clinical needs. In recent years, gold clusters have attracted growing attention in the biomedical field. Their application in NIR-II imaging has led to significant progress in vascular, organ, and tumor imaging. The resulting high-resolution, high signal-to-noise imaging provides powerful tools for clinical diagnostics. Moreover, biologically active gold clusters can aid in drug delivery and disease diagnosis and treatment, offering new opportunities for clinical therapeutics. Despite the notable achievements in fundamental research and clinical translation, further studies are required to address challenges related to the standardized synthesis and complex metabolic behavior of gold clusters. Resolving these issues will help accelerate their clinical adoption and broaden their biomedical applications.
2.The Regulatory Mechanisms of Dopamine Homeostasis in Behavioral Functions Under Microgravity
Xin YANG ; Ke LI ; Ran LIU ; Xu-Dong ZHAO ; Hua-Lin WANG ; Lan-Qun MAO ; Li-Juan HOU
Progress in Biochemistry and Biophysics 2025;52(8):2087-2102
As China accelerates its efforts in deep space exploration and long-duration space missions, including the operationalization of the Tiangong Space Station and the development of manned lunar missions, safeguarding astronauts’ physiological and cognitive functions under extreme space conditions becomes a pressing scientific imperative. Among the multifactorial stressors of spaceflight, microgravity emerges as a particularly potent disruptor of neurobehavioral homeostasis. Dopamine (DA) plays a central role in regulating behavior under space microgravity by influencing reward processing, motivation, executive function and sensorimotor integration. Changes in gravity disrupt dopaminergic signaling at multiple levels, leading to impairments in motor coordination, cognitive flexibility, and emotional stability. Microgravity exposure induces a cascade of neurobiological changes that challenge dopaminergic stability at multiple levels: from the transcriptional regulation of DA synthesis enzymes and the excitability of DA neurons, to receptor distribution dynamics and the efficiency of downstream signaling pathways. These changes involve downregulation of tyrosine hydroxylase in the substantia nigra, reduced phosphorylation of DA receptors, and alterations in vesicular monoamine transporter expression, all of which compromise synaptic DA availability. Experimental findings from space analog studies and simulated microgravity models suggest that gravitational unloading alters striatal and mesocorticolimbic DA circuitry, resulting in diminished motor coordination, impaired vestibular compensation, and decreased cognitive flexibility. These alterations not only compromise astronauts’ operational performance but also elevate the risk of mood disturbances and motivational deficits during prolonged missions. The review systematically synthesizes current findings across multiple domains: molecular neurobiology, behavioral neuroscience, and gravitational physiology. It highlights that maintaining DA homeostasis is pivotal in preserving neuroplasticity, particularly within brain regions critical to adaptation, such as the basal ganglia, prefrontal cortex, and cerebellum. The paper also discusses the dual-edged nature of DA plasticity: while adaptive remodeling of synapses and receptor sensitivity can serve as compensatory mechanisms under stress, chronic dopaminergic imbalance may lead to maladaptive outcomes, such as cognitive rigidity and motor dysregulation. Furthermore, we propose a conceptual framework that integrates homeostatic neuroregulation with the demands of space environmental adaptation. By drawing from interdisciplinary research, the review underscores the potential of multiple intervention strategies including pharmacological treatment, nutritional support, neural stimulation techniques, and most importantly, structured physical exercise. Recent rodent studies demonstrate that treadmill exercise upregulates DA transporter expression in the dorsal striatum, enhances tyrosine hydroxylase activity, and increases DA release during cognitive tasks, indicating both protective and restorative effects on dopaminergic networks. Thus, exercise is highlighted as a key approach because of its sustained effects on DA production, receptor function, and brain plasticity, making it a strong candidate for developing effective measures to support astronauts in maintaining cognitive and emotional stability during space missions. In conclusion, the paper not only underscores the centrality of DA homeostasis in space neuroscience but also reflects the authors’ broader academic viewpoint: understanding the neurochemical substrates of behavior under microgravity is fundamental to both space health and terrestrial neuroscience. By bridging basic neurobiology with applied space medicine, this work contributes to the emerging field of gravitational neurobiology and provides a foundation for future research into individualized performance optimization in extreme environments.
3.Adolescent Smoking Addiction Diagnosis Based on TI-GNN
Xu-Wen WANG ; Da-Hua YU ; Ting XUE ; Xiao-Jiao LI ; Zhen-Zhen MAI ; Fang DONG ; Yu-Xin MA ; Juan WANG ; Kai YUAN
Progress in Biochemistry and Biophysics 2025;52(9):2393-2405
ObjectiveTobacco-related diseases remain one of the leading preventable public health challenges worldwide and are among the primary causes of premature death. In recent years, accumulating evidence has supported the classification of nicotine addiction as a chronic brain disease, profoundly affecting both brain structure and function. Despite the urgency, effective diagnostic methods for smoking addiction remain lacking, posing significant challenges for early intervention and treatment. To address this issue and gain deeper insights into the neural mechanisms underlying nicotine dependence, this study proposes a novel graph neural network framework, termed TI-GNN. This model leverages functional magnetic resonance imaging (fMRI) data to identify complex and subtle abnormalities in brain connectivity patterns associated with smoking addiction. MethodsThe study utilizes fMRI data to construct functional connectivity matrices that represent interaction patterns among brain regions. These matrices are interpreted as graphs, where brain regions are nodes and the strength of functional connectivity between them serves as edges. The proposed TI-GNN model integrates a Transformer module to effectively capture global interactions across the entire brain network, enabling a comprehensive understanding of high-level connectivity patterns. Additionally, a spatial attention mechanism is employed to selectively focus on informative inter-regional connections while filtering out irrelevant or noisy features. This design enhances the model’s ability to learn meaningful neural representations crucial for classification tasks. A key innovation of TI-GNN lies in its built-in causal interpretation module, which aims to infer directional and potentially causal relationships among brain regions. This not only improves predictive performance but also enhances model interpretability—an essential attribute for clinical applications. The identification of causal links provides valuable insights into the neuropathological basis of addiction and contributes to the development of biologically plausible and trustworthy diagnostic tools. ResultsExperimental results demonstrate that the TI-GNN model achieves superior classification performance on the smoking addiction dataset, outperforming several state-of-the-art baseline models. Specifically, TI-GNN attains an accuracy of 0.91, an F1-score of 0.91, and a Matthews correlation coefficient (MCC) of 0.83, indicating strong robustness and reliability. Beyond performance metrics, TI-GNN identifies critical abnormal connectivity patterns in several brain regions implicated in addiction. Notably, it highlights dysregulations in the amygdala and the anterior cingulate cortex, consistent with prior clinical and neuroimaging findings. These regions are well known for their roles in emotional regulation, reward processing, and impulse control—functions that are frequently disrupted in nicotine dependence. ConclusionThe TI-GNN framework offers a powerful and interpretable tool for the objective diagnosis of smoking addiction. By integrating advanced graph learning techniques with causal inference capabilities, the model not only achieves high diagnostic accuracy but also elucidates the neurobiological underpinnings of addiction. The identification of specific abnormal brain networks and their causal interactions deepens our understanding of addiction pathophysiology and lays the groundwork for developing targeted intervention strategies and personalized treatment approaches in the future.
4.Research progress of mitochondrial quality control in methamphetamine-induced neurotoxicity
Qian-Yun NIE ; Wen-Juan DONG ; Gen-Meng YANG ; Li-Xiang QIN ; Chun-Hui SONG ; Li-Hua LI ; Shi-Jun HONG
Chinese Pharmacological Bulletin 2024;40(7):1201-1205
Methamphetamine abuse is a major public health problem in the world,and in recent years,methamphetamine is also the most abused synthetic drug in China.The neurotoxic or addiction mechanism of methamphetamine has not been fully clarified,and there is still a lack of specific withdrawal methods and drugs for methamphetamine abuse.Mitochondria are not on-ly the organelles to which methamphetamine directly produces toxic effects,but also participate in regulating the neurotoxic damage process of methamphetamine.Mitochondrial quality is the regulatory basis for maintaining mitochondrial homeostasis and is regulated by three main mechanisms,which are mitochon-drial biogenesis,mitochondrial dynamic,and mitophagy.This review summarizes the research progress of mitochondrial quality control in methamphetamine-induced neurotoxicity,which may provide theoretical support for further research on the mechanism of methamphetamine neurotoxicity and development the mito-chondria-targeting drugs.
5.Effects of butin on regulation of pyroptosis related proteins on proliferation,migration and cycle arrest of human rheumatoid arthritis synovial fibroblast
Hao LI ; Xue-Ming YAO ; Xiao-Ling YAO ; Hua-Yong LOU ; Wei-Dong PAN ; Wu-Kai MA
Chinese Pharmacological Bulletin 2024;40(10):1937-1944
Aim To investigate the regulatory mecha-nism of butin on the proliferation,migration,cycle blockage and pyroptosis related inflammatory factors in human fibroblast-like synoviocytes of rheumatoid arthri-tis(HFLS-RA).Methods Cell proliferation,migra-tion and invasion were studied using cell migration and invasion assays.Cell cycle was detected by flow cytom-etry,and the expression of the pyroptosis-associated in-flammatory factors IL-1β,IL-18,caspase-1 and caspase-3 was detected by ELISA,RT-qPCR and West-ern blot.Results Migration and invasion experiments showed that the cell proliferation rate of the butin group was lower than that of the blank control group(P<0.05).Cell cycle analysis demonstrated that in the G0/G1 phase,the DNA expression was elevated in the medium and high-dose groups of butin(P<0.05),while in the G2 and S phases,the DNA expression was reduced in the medium and high-dose groups of butin(P<0.05).The results of ELISA,RT-qPCR and Western blot assay revealed that the expression of IL-1β,IL-1 8,caspase-1,and caspase-3 decreased in the butin group compared with the IL-1β+caspase-3 in-hibitor group(P<0.05).Conclusions Butin inhib-its HFLS-RA proliferation by inhibiting the synthesis of inflammatory vesicles by caspase-1 in the pyroptosis pathway,thereby reducing the production and release of inflammatory factors such as IL-1β and IL-18 down-stream of the pathway,and also inhibits HFLS-RA pro-liferation by exerting a significant blocking effect in the G1 phase,which may be one of the potential mecha-nisms of butin in the treatment of RA.
6.Effect of Kümmell's disease with kyphosis on spinal-pelvic sagittal parameters
Shou-Yu HE ; Ji-Kang MIN ; Hai-Dong LI ; Qiang-Hua ZHANG ; Ji-Lin DAI
China Journal of Orthopaedics and Traumatology 2024;37(2):142-147
Objective To explore the effect of Kümmell's disease with kyphosis on the sagittal morphology of the spine-pelvis.Methods A retrospective analysis of 34 patients of Kümmell's disease with kyphosis(Kümmell group)admitted from August 2015 to September 2022,including 10 males and 24 females with an average age of(71.1±8.5)years old.A control group of 37 asymptomatic population aged(69.3±6.7)years old was matched.Spinal-pelvic sagittal parameters were measured on the anterior-posterior and lateral X-rays of the whole spine in the standing position,including segmental kyphosis(SK)or thoracolumbar kyphosis(TLK),thoracic kyphosis(TK),lumbar lordosis(LL),pelvic incidence(PI),pelvic tilt(PT),sacral slope(SS),sagittal vertical axis(SVA),T1 pelvic angle(TPA)and PI-LL.Vertebral wedge angle(WA)in Kümmell was mea-sured and differences in parameters among groups were analyzed and the relationship between spino-pelvic parameters and WA,SK were also investigated.Results TK,SK,PT,SVA,TPA and PI-LL in Kümmell group were significantly larger than those in control group(P<0.05),LL and SS in Kümmell group were significantly decreased than those in control group(P<0.05),and there was no significant difference in PI between two groups(P>0.05).In Kümmell group,WA(30.8±5.9)° showed a positive correlation with SK and TK(r=0.366,0.597,P<0.05),and SK was significantly correlated with LL and SS(r=0.539,-0.591,P<0.05).Strong positive correlation between LL and PI,SS,SVA,TPA,PI-LL were also confirmed in patients with Kümmell with kyphosis(r=0.559,0.741,-0.273,-0.356,-0.882,P<0.05).Conclusion Patients with Kümmell with kyphosis not only have segmental kyphosis,but also changes the overall spinal-pelvic sagittal parameters,including loss of lumbar lordosis,pelvic retrorotation,trunk forward tilt.The surgical treatment of Kümmell disease should not only pay attention to the recovery of the height of the collapsed vertebra,but also focus on the overall balance of the spine-pelvic sagittal plane for patients with kyphosis.
7.Effects of CircNRIP1 on proliferation,apoptosis and chemotherapy resistance of breast cancer cells through regulating miR-136-5p/RAC1 axis
Lu DONG ; Ming LI ; Jian-Li XU ; Yan-Hua XU
Journal of Regional Anatomy and Operative Surgery 2024;33(5):383-387
Objective To investigate the effects of CircNRIP1 on the proliferation,apoptosis and chemotherapy resistance of breast cancer cells by regulating miR-136-5p/Ras related C3 botulinum toxin substrate 1(RAC1)axis.Methods The mRNA expression of CircNRIP1,miR-136-5p and RAC1 in normal breast epithelial cells of MCF10A,breast cancer cells of MCF-7 and paclitaxel(PTX)resistant cell line of MCF-7/PTX were detected by qRT-PCR.MCF-7/PTX cells were divided into the CK group(normal culture),the si-NC group(transfected with si-NC),the si-CircNRIP1 group(transfected with si-CircNRIP1),the si-CircNRIP1+inhibitor NC group(transfected with si-CircNRIP1 and inhibitor NC),and the si-CircNRIP1+miR-136-5p inhibitor group(transfected with si-CircNRIP1 and miR-136-5p inhibitor).The cell proliferation rate of each group was detected by CCK-8 method;the cell apoptosis of each group was detected by flow cytometry;the expression of CircNRIP1,miR-136-5p,and RAC1 mRNA of each group were detected by qRT-PCR;the expression of Ki-67,Bax,Bcl-2,and RAC1 proteins of each group were detected by Western blot;the relationships between miR-136-5p and CircNRIP1 and RAC1 were verified by dual luciferase experiment.Results Compared with the normal breast epithelial cells of MCF10A,the expression of CircNRIP1 and RAC1 in the MCF-7 and MCF-7/PTX cells were increased(P<0.05),the expression of miR-136-5p was decreased(P<0.05);compared with the MCF-7 cells,the expression of CircNRIP1 and RAC1 in the MCF-7/PTX cells were increased(P<0.05),while the expression of miR-136-5p was decreased(P<0.05).Compared with the CK group and the si-NC group,the cell proliferation rate,the expression of CircNRIP1 and RAC1 mRNA,and the protein expression of Ki-67,Bcl-2,and RAC1 in the si-CircNRIP1 group were decreased(P<0.05),the apoptosis rate,and the expression of miR-136-5p and Bax were increased(P<0.05).Knocking down the expression of miR-136-5p could weaken the inhibitory effect of silencing CircNRIP1 on MCF-7/PTX cells(P<0.05).The dual luciferase experiment verified that miR-136-5p had targeting relationships with CircNRIP1 and RAC1.Conclusion Silencing CircNRIP1 expression can inhibit the malignant biological behavior of MCF-7/PTX cells,and reduce their PTX resistance,which may be related to regulating the miR-136-5p/RAC1 axis.
8.Study on the influencing factors related with the size of vestibular schwannomas
Wen-Zhuang LI ; Ze-Ning WANG ; Guo-Hua ZHU ; Yan-Dong LI ; Dangmurenjiafu GENG
Journal of Regional Anatomy and Operative Surgery 2024;33(5):416-419
Objective To preliminarily investigate the related factors influencing the size of vestibular schwannomas.Methods The clinical data of patients with vestibular schwannomas who underwent retrosigmoid approach surgery at the department of neurosurgery of First Affiliated Hospital of Xinjiang Medical University from June 2013 to June 2023 were retrospectively analyzed.The tumor size of the patients was evaluated based on their preoperative imaging data.Univariate and multiple linear regression analyses were performed to explore the factors affecting the size of vestibular schwannomas.Results The tumor size of patients was ranging from 0.63 to 6.60 cm,with a median size of 2.97(2.20,3.80)cm.Univariate analysis showed that gender(P=0.010),ethnicity(P=0.001),age(P=0.049)and cystic solid tumor(P<0.001)were related to the size of vestibular schwannomas.Large-sized vestibular schwannomas were most commonly cystic-solid,and small and medium-sized vestibular schwannomas were most commonly solid.BMI,surgical side and place of residence were not correlated with the size of vestibular schwannomas(P>0.05).Multiple linear regression results showed that male(B=0.390,P=0.001)and Uyghur(B=0.611,P<0.001)patients were more likely to develop large tumors;with every 1-year increase in age,the maximum diameter of the tumor was reduced by an average of 0.011 cm(B=-0.011,P=0.027).Conclusion The gender,age,and ethnicity of patients are correlated with the size of vestibular schwannomas,and male,Uyghur,or younger patients were at higher risk of developing larger vestibular schwannomas.
9.Transcatheter edge-to-edge repair in acute mitral regurgitation following acute myocardial infarction:a case report
Tong KAN ; Xing-Hua SHAN ; Song-Hua LI ; Fei-Fei DONG ; Ke-Yu CHEN ; Hua WANG ; Rui BAO ; Sai-Nan GU ; Yong-Wen QIN ; Yuan BAI
Chinese Journal of Interventional Cardiology 2024;32(11):658-660
Acute mitral regurgitation(MR)in the setting of myocardial infarction(MI)may be the result of papillary muscle rupture(PMR).The clinical presentation can be catastrophic,with refractory cardiogenic shock.This condition is associated with high morbidity and mortality.Transcatheter edge-to-edge repair(TEER)has become increasingly common in treating severe mitral regurgitation.This case details a successful TEER is feasible and safe in patients with acute MR following MI.TEER is an emerging treatment option in this clinical scenario that should be taken into consideration.
10.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.

Result Analysis
Print
Save
E-mail