1.Correlation between brain white matter lesions and insulin resistance in non-diabetic elderly individuals based on magnetic resonance imaging
Mei LI ; Fang YUAN ; Xizi XING ; Feng XIE ; Hua ZHANG
Chinese Journal of Radiological Health 2025;34(1):96-101
Objective To investigate the relationship between brain white matter lesions (WML) and triglyceride glucose (TyG) index in non-diabetic elderly individuals based on magnetic resonance imaging. Methods A total of 523 non-diabetic elderly individuals aged ≥ 60 years were selected from Jinan, Shandong Province, China from June 2018 to December 2019. According to the quartiles of TyG index, there were 133 participants in the first quartile (Q1) group, 127 in the second quartile (Q2) group, 132 in the third quartile (Q3) group, and 131 in the fourth quartile (Q4) group. All participants underwent brain magnetic resonance imaging to evaluate paraventricular, deep, and total WML volumes, as well as Fazekas scores. Results Compared with Q1, Q2, and Q3 groups, Q4 group showed significant increase in periventricular, deep, and total WML volumes (P < 0.05). The proportion of participants with a Fazekas score ≥ 2 in the periventricular, deep, and total WML was higher in the Q4 group compared with the Q1 and Q2 groups (P < 0.05). The proportion of participants with a Fazekas score ≥ 2 in deep WML was higher in Q4 group than in Q3 group (P < 0.05). TyG index was significantly positively correlated with periventricular, deep, and total WML volumes (r = 0.401, 0.405, and 0.445, P < 0.001). After adjusting for confounding factors, TyG index was still significantly positively correlated with periventricular, deep, and total WML volumes (P < 0.001). Logistic regression analysis showed that compared with Q1 group, the risk of Fazekas score ≥ 2 in periventricular WML was 1.950-fold (95% confidence interval [CI]: 1.154-3.294, P = 0.013) in Q3 group and 3.411-fold (95% CI: 1.984-5.863, P < 0.001) in Q4 group, the risk of Fazekas score ≥ 2 in total WML was 2.529-fold (95%CI: 1.444-4.430, P = 0.001) in Q3 group and 4.486-fold (95%CI: 2.314-8.696, P < 0.001) in Q4 group. The risk of Fazekas score ≥ 2 in deep WML was 2.953-fold (95%CI: 1.708-5.106, P < 0.001) in Q4 group compared with Q1 group. Conclusion Increased TyG index is an independent risk factor for WML in non-diabetic elderly individuals.
2.Adolescent Smoking Addiction Diagnosis Based on TI-GNN
Xu-Wen WANG ; Da-Hua YU ; Ting XUE ; Xiao-Jiao LI ; Zhen-Zhen MAI ; Fang DONG ; Yu-Xin MA ; Juan WANG ; Kai YUAN
Progress in Biochemistry and Biophysics 2025;52(9):2393-2405
ObjectiveTobacco-related diseases remain one of the leading preventable public health challenges worldwide and are among the primary causes of premature death. In recent years, accumulating evidence has supported the classification of nicotine addiction as a chronic brain disease, profoundly affecting both brain structure and function. Despite the urgency, effective diagnostic methods for smoking addiction remain lacking, posing significant challenges for early intervention and treatment. To address this issue and gain deeper insights into the neural mechanisms underlying nicotine dependence, this study proposes a novel graph neural network framework, termed TI-GNN. This model leverages functional magnetic resonance imaging (fMRI) data to identify complex and subtle abnormalities in brain connectivity patterns associated with smoking addiction. MethodsThe study utilizes fMRI data to construct functional connectivity matrices that represent interaction patterns among brain regions. These matrices are interpreted as graphs, where brain regions are nodes and the strength of functional connectivity between them serves as edges. The proposed TI-GNN model integrates a Transformer module to effectively capture global interactions across the entire brain network, enabling a comprehensive understanding of high-level connectivity patterns. Additionally, a spatial attention mechanism is employed to selectively focus on informative inter-regional connections while filtering out irrelevant or noisy features. This design enhances the model’s ability to learn meaningful neural representations crucial for classification tasks. A key innovation of TI-GNN lies in its built-in causal interpretation module, which aims to infer directional and potentially causal relationships among brain regions. This not only improves predictive performance but also enhances model interpretability—an essential attribute for clinical applications. The identification of causal links provides valuable insights into the neuropathological basis of addiction and contributes to the development of biologically plausible and trustworthy diagnostic tools. ResultsExperimental results demonstrate that the TI-GNN model achieves superior classification performance on the smoking addiction dataset, outperforming several state-of-the-art baseline models. Specifically, TI-GNN attains an accuracy of 0.91, an F1-score of 0.91, and a Matthews correlation coefficient (MCC) of 0.83, indicating strong robustness and reliability. Beyond performance metrics, TI-GNN identifies critical abnormal connectivity patterns in several brain regions implicated in addiction. Notably, it highlights dysregulations in the amygdala and the anterior cingulate cortex, consistent with prior clinical and neuroimaging findings. These regions are well known for their roles in emotional regulation, reward processing, and impulse control—functions that are frequently disrupted in nicotine dependence. ConclusionThe TI-GNN framework offers a powerful and interpretable tool for the objective diagnosis of smoking addiction. By integrating advanced graph learning techniques with causal inference capabilities, the model not only achieves high diagnostic accuracy but also elucidates the neurobiological underpinnings of addiction. The identification of specific abnormal brain networks and their causal interactions deepens our understanding of addiction pathophysiology and lays the groundwork for developing targeted intervention strategies and personalized treatment approaches in the future.
3.Quercetin alleviates podocyte injury by inhibiting inflammation and pyroptosis through SIRT1/STAT3/GSDME
Jie-Qiong WANG ; Ge LI ; Shao-Hua WANG ; Yu WAN ; Yun LIU ; Cong-Gai HUANG ; Qu-Lian GUO ; Fang-Fang ZHONG
Chinese Pharmacological Bulletin 2024;40(7):1279-1287
Aim To investigate the effect of quercetin(Que)on podocyte inflammatory injury and the under-lying mechanism.Methods MPC5 cells were divided into normal glucose group(NG),mannitol group(MA),high glucose group(HG)and high glucose+quercetin group(HG+Que).Cell proliferation and apoptosis were detected by CCK-8 and flow cytometry.The expression of SIRT1,STAT3,apoptosis-related proteins(Bax,Bcl-2,caspase-3)and pyroptosis pro-tein GSDME was detected by Western blot.The ex-pression levels of inflammatory factors(IL-6,TNF-α,IL-18,IL-1β)in cell supernatants were detected by ELISA.Then small interfering RNA technology was used to knockdown SIRT1 expression.To further eval-uate the biological significance of SIRT1 in response to high glucose and Que treatment,negative control group(HG+si-NC+Que)and SIRT1 interference group(HG+si-SIRT1+Que)were added in the presence of high glucose and Que.Results Compared with the high glucose group,40 μmol·L-1 Que could alleviate the apoptosis of MPC5 cells induced by high glucose,decrease the expression of apoptosis related protein Bax and caspase-3,as well as increase the expression of anti-apoptotic protein Bcl-2;ELISA results showed that Que could decrease the expression of TNF-α,IL-6,IL-1 β and IL-18 induced by high glucose.Mechanical-ly,Que could alleviate the inhibitory effect of high glu-cose on the expression of SIRT1,and further decrease the activation of STAT3 and N-GSDME,and inhibit pyroptosis.Compared with the si-NC group,si-SIRT1 group could reverse the protective effect of Que on the high glucose induced inflammatory damage of podo-cytes,the expression of apoptotic proteins Bax and caspase-3 increased,while the expression of anti-apop-totic protein Bcl-2 decreased.At the same time,the levels of inflammatory cytokines TNF-α,IL-6,IL-1 βand IL-18 in supernatants increased,and the expres-sion of STAT3 and N-GSDME increased.Conclusion Que could inhibit pyroptosis and relieve the inflam-matory damage of podocytes through SIRT1/STAT3/GSDME pathway.
4.Effect of Cigu Xiaozhi decoction on EGFR/PI3K/AKT signaling pathway in NASH's"inflammatory cancer"transformation based on network pharmacology and animal experiments
Lan-Lan ZHENG ; Li WANG ; Cai GUO ; Yan-Fang HE ; Jiao-Jiao XIE ; Yan-Hua MA
Chinese Pharmacological Bulletin 2024;40(8):1573-1582
Aim To study the main active ingredients,key targets and pathways of Cigu Xiaozhi Decoction(CXD)based on network pharmacology,and to ana-lyze and verify the mechanism of CXD on the transfor-mation of"inflammatory cancer"in non-alcoholic steatohepatitis(NASH)by animal experiments.Meth-ods The potential targets and signaling pathways of CXD in the treatment of NASH"inflammatory carcino-ma"were predicted based on network pharmacology.The mouse model of NASH was induced by methionine-choline deficiency diet(MCD),and CXD and epider-mal growth factor receptor(EGFR)inhibitors were given for 28 days.The mice were killed after the inter-vention,and the liver histopathology of each group was observed by hematoxylin-eosin method(HE).The rel-ative expression levels of EGFR,phosphatidylinositol 3-kinase(PI3K)and protein kinase B(AKT)in liver tissue of mice in each group were detected by Western blot.The contents of interleukin-6(IL-6),interleu-kin-1 β(IL-1β)and tumor necrosis factor-α(TNF-α)in serum were detected by enzyme-linked immunosor-bent assay(ELISA).Results A total of 284 poten-tial active components,159 potential therapeutic tar-gets and 20 key targets of CXD were identified by net-work pharmacological screening.CXD could affect multiple biological processes such as cell proliferation and inflammatory response,involving multiple signa-ling pathways such as tumor and PI3K/AKT.Animal experiments showed that CXD could reduce the levels of IL-6,IL-1β and TNF-α in serum of NASH mice.The relative expression of PI3K and AKT protein in liv-er tissue decreased,and the relative expression of EG-FR protein was increased.Conclusion CXD can reg-ulate EGFR/PI3K/AKT signaling pathway by partici-pating in biological processes such as cell proliferation and inflammatory response,and improve liver tissue injury in NASH mice.
5.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
6.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
7.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
8.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
9.Surveillance of antifungal resistance in clinical isolates of Candida spp.in East China Invasive Fungal Infection Group from 2018 to 2022
Dongjiang WANG ; Wenjuan WU ; Jian GUO ; Min ZHANG ; Huiping LIN ; Feifei WAN ; Xiaobo MA ; Yueting LI ; Jia LI ; Huiqiong JIA ; Lingbing ZENG ; Xiuhai LU ; Yan JIN ; Jinfeng CAI ; Wei LI ; Zhimin BAI ; Yongqin WU ; Hui DING ; Zhongxian LIAO ; Gen LI ; Hui ZHANG ; Hongwei MENG ; Changzi DENG ; Feng CHEN ; Na JIANG ; Jie QIN ; Guoping DONG ; Jinghua ZHANG ; Wei XI ; Haomin ZHANG ; Rong TANG ; Li LI ; Suzhen WANG ; Fen PAN ; Jing GAO ; Lu JIANG ; Hua FANG ; Zhilan LI ; Yiqun YUAN ; Guoqing WANG ; Yuanxia WANG ; Liping WANG
Chinese Journal of Infection and Chemotherapy 2024;24(4):402-409
Objective To monitor the antifungal resistance of clinical isolates of Candida spp.in the East China region.Methods MALDI-TOF MS or molecular methods were used to re-identify the strains collected from January 2018 to December 2022.Antifungal susceptibility testing was performed using the broth microdilution method.The susceptibility test results were interpreted according to the breakpoints of 2022 Clinical and Laboratory Standards Institute(CLSI)documents M27 M44s-Ed3 and M57s-Ed4.Results A total of 3 026 strains of Candida were collected,65.33%of which were isolated from sterile body sites,mainly from blood(38.86%)and pleural effusion/ascites(10.21%).The predominant species of Candida were Candida albicans(44.51%),followed by Candida parapsilosis complex(19.46%),Candida tropicalis(13.98%),Candida glabrata(10.34%),and other Candida species(0.79%).Candida albicans showed overall high susceptibility rates to the 10 antifungal drugs tested(the lowest rate being 93.62%).Only 2.97%of the strains showed dose-dependent susceptibility(SDD)to fluconazole.Candida parapsilosis complex had a SDD rate of 2.61%and a resistance rate of 9.42%to fluconazole,and susceptibility rates above 90%to other drugs.Candida glabrata had a SDD rate of 92.01%and a resistance rate of 7.99%to fluconazole,resistance rates of 32.27%and 48.24%to posaconazole and voriconazole non-wild-type strains(NWT),respectively,and susceptibility rates above 90%to other drugs.Candida tropicalis had resistance rates of 29.55%and 26.24%to fluconazole and voriconazole,respectively,resistance rates of 76.60%and 21.99%to posaconazole and echinocandins non-wild-type strains(NWT),and a resistance rate of 2.36%to echinocandins.Conclusions The prevalence and species distribution of Candida spp.in the East China region are consistent with previous domestic and international reports.Candida glabrata exhibits certain degree of resistance to fluconazole,while Candida tropicalis demonstrates higher resistance to triazole drugs.Additionally,echinocandins resistance has emerged in Candida albicans,Candida glabrata,Candida tropicalis,and Candida parapsilosis.
10.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.

Result Analysis
Print
Save
E-mail