1.Rutaecarpine Attenuates Monosodium Urate Crystal-Induced Gouty Inflammation via Inhibition of TNFR-MAPK/NF-κB and NLRP3 Inflammasome Signaling Pathways.
Min LI ; Zhu-Jun YIN ; Li LI ; Yun-Yun QUAN ; Ting WANG ; Xin ZHU ; Rui-Rong TAN ; Jin ZENG ; Hua HUA ; Qin-Xuan WU ; Jun-Ning ZHAO
Chinese journal of integrative medicine 2025;31(7):590-599
OBJECTIVE:
To investigate the anti-inflammatory effect of rutaecarpine (RUT) on monosodium urate crystal (MSU)-induced murine peritonitis in mice and further explored the underlying mechanism of RUT in lipopolysaccharide (LPS)/MSU-induced gout model in vitro.
METHODS:
In MSU-induced mice, 36 male C57BL/6 mice were randomly divided into 6 groups of 8 mice each group, including the control group, model group, RUT low-, medium-, and high-doses groups, and prednisone acetate group. The mice in each group were orally administered the corresponding drugs or vehicle once a day for 7 consecutive days. The gout inflammation model was established by intraperitoneal injection of MSU to evaluate the anti-gout inflammatory effects of RUT. Then the proinflammatory cytokines were measured by enzyme-linked immunosorbent assay (ELISA) and the proportions of infiltrating neutrophils cytokines were detected by flow cytometry. In LPS/MSU-treated or untreated THP-1 macrophages, cell viability was observed by cell counting kit 8 and proinflammatory cytokines were measured by ELISA. The percentage of pyroptotic cells were detected by flow cytometry. Respectively, the mRNA and protein levels were measured by real-time quantitative polymerase chain reaction (qRT-PCR) and Western blot, the nuclear translocation of nuclear factor κB (NF-κB) p65 was observed by laser confocal imaging. Additionally, surface plasmon resonance (SPR) and molecular docking were applied to validate the binding ability of RUT components to tumor necrosis factor α (TNF-α) targets.
RESULTS:
RUT reduced the levels of infiltrating neutrophils and monocytes and decreased the levels of the proinflammatory cytokines interleukin 1β (IL-1β) and interleukin 6 (IL-6, all P<0.01). In vitro, RUT reduced the production of IL-1β, IL-6 and TNF-α. In addition, RT-PCR revealed the inhibitory effects of RUT on the mRNA levels of IL-1β, IL-6, cyclooxygenase-2 and TNF-α (P<0.05 or P<0.01). Mechanistically, RUT markedly reduced protein expressions of tumor necrosis factor receptor (TNFR), phospho-mitogen-activated protein kinase (p-MAPK), phospho-extracellular signal-regulated kinase, phospho-c-Jun N-terminal kinase, phospho-NF-κB, phospho-kinase α/β, NOD-like receptor thermal protein domain associated protein 3 (NLRPS), cleaved-cysteinyl aspartate specific proteinase-1 and cleaved-gasdermin D in macrophages (P<0.05 or P<0.01). Molecularly, SPR revealed that RUT bound to TNF-α with a calculated equilibrium dissociation constant of 31.7 µmol/L. Molecular docking further confirmed that RUT could interact directly with the TNF-α protein via hydrogen bonding, van der Waals interactions, and carbon-hydrogen bonding.
CONCLUSION
RUT alleviated MSU-induced peritonitis and inhibited the TNFR1-MAPK/NF-κB and NLRP3 inflammasome signaling pathway to attenuate gouty inflammation induced by LPS/MSU in THP-1 macrophages, suggesting that RUT could be a potential therapeutic candidate for gout.
Animals
;
NF-kappa B/metabolism*
;
Male
;
Indole Alkaloids/therapeutic use*
;
Signal Transduction/drug effects*
;
Mice, Inbred C57BL
;
Inflammation/complications*
;
Uric Acid
;
Quinazolines/therapeutic use*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Humans
;
Gout/chemically induced*
;
Inflammasomes/metabolism*
;
Cytokines/metabolism*
;
THP-1 Cells
;
Mitogen-Activated Protein Kinases/metabolism*
;
Mice
;
Molecular Docking Simulation
;
Lipopolysaccharides
;
Quinazolinones
2.New functions of oxylipins released by pyroptotic cells.
Hui XU ; Hong-Li TAN ; Hua-Jun WANG ; Xiao-Fei ZHENG ; Yan-Ping WU ; Rong-Rong HE
Acta Pharmaceutica Sinica B 2024;14(12):5509-5511
3.Improving Blood Monocyte Energy Metabolism Enhances Its Ability to Phagocytose Amyloid-β and Prevents Alzheimer's Disease-Type Pathology and Cognitive Deficits.
Zhi-Hao LIU ; Yu-Di BAI ; Zhong-Yuan YU ; Hui-Yun LI ; Jie LIU ; Cheng-Rong TAN ; Gui-Hua ZENG ; Yun-Feng TU ; Pu-Yang SUN ; Yu-Juan JIA ; Jin-Cai HE ; Yan-Jiang WANG ; Xian-Le BU
Neuroscience Bulletin 2023;39(12):1775-1788
Deficiencies in the clearance of peripheral amyloid β (Aβ) play a crucial role in the progression of Alzheimer's disease (AD). Previous studies have shown that the ability of blood monocytes to phagocytose Aβ is decreased in AD. However, the exact mechanism of Aβ clearance dysfunction in AD monocytes remains unclear. In the present study, we found that blood monocytes in AD mice exhibited decreases in energy metabolism, which was accompanied by cellular senescence, a senescence-associated secretory phenotype, and dysfunctional phagocytosis of Aβ. Improving energy metabolism rejuvenated monocytes and enhanced their ability to phagocytose Aβ in vivo and in vitro. Moreover, enhancing blood monocyte Aβ phagocytosis by improving energy metabolism alleviated brain Aβ deposition and neuroinflammation and eventually improved cognitive function in AD mice. This study reveals a new mechanism of impaired Aβ phagocytosis in monocytes and provides evidence that restoring their energy metabolism may be a novel therapeutic strategy for AD.
Animals
;
Mice
;
Alzheimer Disease
;
Amyloid beta-Peptides
;
Monocytes
;
Cognition
;
Energy Metabolism
;
Phagocytosis
4.A consensus on the management of allergy in kindergartens and primary schools
Chinese Journal of School Health 2023;44(2):167-172
Abstract
Allergic diseases can occur in all systems of the body, covering the whole life cycle, from children to adults and to old age, can be lifelong onset and even fatal in severe cases. Children account for the largest proportion of the victims of allergic disease, Children s allergies start from scratch, ranging from mild to severe, from less to more, from single to multiple systems and systemic performance, so the prevention and treatment of allergic diseases in children is of great importance, which can not only prevent high risk allergic conditions from developing into allergic diseases, but also further block the process of allergy. At present, there is no consensus on the management system of allergic children in kindergartens and primary schools. The "Consensus on Allergy Management and Prevention in Kindergartens and Primary Schools", which includes the organizational structure, system construction and management of allergic children, provides evidence informed recommendations for the long term comprehensive management of allergic children in kindergartens and primary schools, and provides a basis for the establishment of the prevention system for allergic children.
5.Elevated Levels of Naturally-Occurring Autoantibodies Against the Extracellular Domain of p75NTR Aggravate the Pathology of Alzheimer's Disease.
Chen-Yang HE ; Ding-Yuan TIAN ; Si-Han CHEN ; Wang-Sheng JIN ; Yuan CHENG ; Jia-Yan XIN ; Wei-Wei LI ; Gui-Hua ZENG ; Cheng-Rong TAN ; Jie-Ming JIAN ; Dong-Yu FAN ; Jun-Rong REN ; Yu-Hui LIU ; Yan-Jiang WANG ; Fan ZENG
Neuroscience Bulletin 2023;39(2):261-272
The extracellular domain (p75ECD) of p75 neurotrophin receptor (p75NTR) antagonizes Aβ neurotoxicity and promotes Aβ clearance in Alzheimer's disease (AD). The impaired shedding of p75ECD is a key pathological process in AD, but its regulatory mechanism is largely unknown. This study was designed to investigate the presence and alterations of naturally-occurring autoantibodies against p75ECD (p75ECD-NAbs) in AD patients and their effects on AD pathology. We found that the cerebrospinal fluid (CSF) level of p75ECD-NAbs was increased in AD, and negatively associated with the CSF levels of p75ECD. Transgenic AD mice actively immunized with p75ECD showed a lower level of p75ECD and more severe AD pathology in the brain, as well as worse cognitive functions than the control groups, which were immunized with Re-p75ECD (the reverse sequence of p75ECD) and phosphate-buffered saline, respectively. These findings demonstrate the impact of p75ECD-NAbs on p75NTR/p75ECD imbalance, providing a novel insight into the role of autoimmunity and p75NTR in AD.
Mice
;
Animals
;
Alzheimer Disease/pathology*
;
Receptor, Nerve Growth Factor
;
Amyloid beta-Peptides
;
Autoantibodies
;
Mice, Transgenic
6.Mystery of Yiyin decoction theory: rule discovery and evaluation strategy of atypical pharmacological effects of Chinese medicinal prescription.
Ying DAI ; Yi-Guan ZHANG ; Jin ZENG ; Hua HUA ; Jun-Ning ZHAO ; Li LI ; Liang-Chun YAN ; Zhu-Jun YIN ; Jian-Bo WANG ; Peng TAN ; Rui-Rong TAN ; An-Qi ZENG ; Yun-Yun QUAN ; Ping WEI
China Journal of Chinese Materia Medica 2022;47(16):4261-4268
Yi Yin, a famous medical scientist and culinary master in the late Xia Dynasty and early Shang Dynasty, developed the Chinese medicinal liquids and Chinese medicinal prescriptions emerged after that. Chinese medicinal prescriptions have attracted much attention because of their unique advantages in the treatment of chronic multifactorial diseases, representing an important direction of drug discovery in the future. Yiyin decoction theory is the superior form of personalized combined medication with advanced consciousness. It is different from not only the magic bullet theory of single component action but also the connotation of modern multi-target drugs. The core of Yiyin decoction theory can be summarized as compound compatibility, multiple effects, and moderate regulation. Compound compatibility refers to that the formulation of Chinese medicinal prescriptions involves the complex synergy and interactions between sovereign, minister, assistant, and guide medicinal materials. Multiple effects mean that the prescriptions employ a variety of mechanisms to exert comprehensive pharmacological effects of nonlinear feedback. Moderate regulation reflects that the prescriptions can accurately regulate the multiple points of the disease biological network as a whole. To solve the mystery of Yiyin decoction theory, we should not only simply study the known active substances(components) and their independent target effects in the mixture, but also mine the "dark matter" and "dark effect" of Chinese medicinal prescriptions. That is, we should learn the neglected atypical pharmacological effects of Chinese medicinal prescriptions and the multi-point nesting mechanism that plays a precise regulatory function in the body. Yiyin decoction theory focuses on the overall pharmacological effect to reflect the comprehensive clinical value of Chinese medicinal prescriptions, which is of great significance for the development of a new model for the evaluation and application of new Chinese medicinal prescriptions in line with the theory of traditional Chinese medicine.
China
;
Drugs, Chinese Herbal/pharmacology*
;
Medicine, Chinese Traditional
;
Prescriptions
7.Naturally-Occurring Antibodies Against Bim are Decreased in Alzheimer's Disease and Attenuate AD-type Pathology in a Mouse Model.
Jie-Ming JIAN ; Dong-Yu FAN ; Ding-Yuan TIAN ; Yuan CHENG ; Pu-Yang SUN ; Cheng-Rong TAN ; Gui-Hua ZENG ; Chen-Yang HE ; Ye-Ran WANG ; Jie ZHU ; Xiu-Qing YAO ; Yan-Jiang WANG ; Yu-Hui LIU
Neuroscience Bulletin 2022;38(9):1025-1040
Increased neuronal apoptosis is an important pathological feature of Alzheimer's disease (AD). The Bcl-2-interacting mediator of cell death (Bim) mediates amyloid-beta (Aβ)-induced neuronal apoptosis. Naturally-occurring antibodies against Bim (NAbs-Bim) exist in human blood, with their levels and functions unknown in AD. In this study, we found that circulating NAbs-Bim were decreased in AD patients. Plasma levels of NAbs-Bim were negatively associated with brain amyloid burden and positively associated with cognitive functions. Furthermore, NAbs-Bim purified from intravenous immunoglobulin rescued the behavioral deficits and ameliorated Aβ deposition, tau hyperphosphorylation, microgliosis, and neuronal apoptosis in APP/PS1 mice. In vitro investigations demonstrated that NAbs-Bim were neuroprotective against AD through neutralizing Bim-directed neuronal apoptosis and the amyloidogenic processing of amyloid precursor protein. These findings indicate that the decrease of NAbs-Bim might contribute to the pathogenesis of AD and immunotherapies targeting Bim hold promise for the treatment of AD.
Alzheimer Disease/pathology*
;
Amyloid beta-Peptides/metabolism*
;
Amyloid beta-Protein Precursor/metabolism*
;
Animals
;
Disease Models, Animal
;
Humans
;
Mice
;
Mice, Transgenic
8.Polysaccharide Krestin Prevents Alzheimer's Disease-type Pathology and Cognitive Deficits by Enhancing Monocyte Amyloid-β Processing.
Si-Han CHEN ; Chen-Yang HE ; Ying-Ying SHEN ; Gui-Hua ZENG ; Ding-Yuan TIAN ; Yuan CHENG ; Man-Yu XU ; Dong-Yu FAN ; Cheng-Rong TAN ; An-Yu SHI ; Xian-Le BU ; Yan-Jiang WANG
Neuroscience Bulletin 2022;38(3):290-302
Deficits in the clearance of amyloid β protein (Aβ) by the peripheral system play a critical role in the pathogenesis of sporadic Alzheimer's disease (AD). Impaired uptake of Aβ by dysfunctional monocytes is deemed to be one of the major mechanisms underlying deficient peripheral Aβ clearance in AD. In the current study, flow cytometry and biochemical and behavioral techniques were applied to investigate the effects of polysaccharide krestin (PSK) on AD-related pathology in vitro and in vivo. We found that PSK, widely used in therapy for various cancers, has the potential to enhance Aβ uptake and intracellular processing by human monocytes in vitro. After administration of PSK by intraperitoneal injection, APP/PS1 mice performed better in behavioral tests, along with reduced Aβ deposition, neuroinflammation, neuronal loss, and tau hyperphosphorylation. These results suggest that PSK holds promise as a preventive agent for AD by strengthening the Aβ clearance by blood monocytes and alleviating AD-like pathology.
Alzheimer Disease/pathology*
;
Amyloid beta-Peptides/metabolism*
;
Amyloid beta-Protein Precursor/metabolism*
;
Animals
;
Cognition
;
Disease Models, Animal
;
Mice
;
Mice, Transgenic
;
Monocytes/pathology*
;
Polysaccharides/therapeutic use*
;
Proteoglycans
9. MicroRNA144 ̄3p targeting histone deacetylase 2 promoting cardiomyocyte hypertrophy and cardiac function damage
Han-Xuan TAN ; Shao-Rong PENG ; Cai-Hua HUANG ; Hong-Feng JIANG ; Juan LIU ; Fang GONG
Acta Anatomica Sinica 2021;52(1):130-134
Objective To investigate the role and possible mechanism of microRNA(miR)144-3p in promoting cardiomyocyte hypertrophy. Methods Forty-five C57BL/ 6 mice were divided into control group, myocardial hypertrophy model group (model group), and miR144-3p transfection group (transfection group) according to their transfection method. The cardiac function related indexes of three groups of mice were detected. HE staining was performed on mouse myocardial tissue.The expression of miR144-3p in mouse cardiomyocytes was detected by Real-time PCR. Antinuclear factor (ANF), β-myosin heavy chain (β-MHC), actin α1 (Acta1) and histone deacetylase 2 (HDAC2) were detected by Western blotting in three groups. Results Compared with the control group, the interventricular septal thickness- diastolic(IVSd), interventricular septal thickness-systolic(IVSs), diastolic left ventricular posterior wall thickness(IVPWd), systolic left ventricular posterior wall thickness(IVPWs), ejection fraction(EF), cardiac weight index and left cardiac index of the model group and the transfection group were significantly higher, while systolic left ventricular diameter (LVDs) and diastolic left ventricular diameter(LVDd)were lower (P<0. 05), but there was no significant difference between the model group and the transfection group(P>0. 05). Compared with the control group, the relative expression of miR144-3p in the model group and the transfection group was significantly higher than that in the model group (P<0. 05). Compared with the control group, the expression levels of antinuclear factor, β-myosin heavy chain, Actinα1 and histone deacetylase 2 in the model group and the transfected group were significantly higher (P<0. 05). Conclusion miR144-3p can aggravate cardiac hypertrophy by up-regulating HDAC2 and is expected to become a new therapeutic target.


Result Analysis
Print
Save
E-mail