1.Systematic review of association between 24 h movement behavior and cognitive function in children and adolescents
YANG Jie, ZHENG Shuqi, WU Hua, ZHOU Wenlong, RUAN Hui
Chinese Journal of School Health 2025;46(2):244-248
Objective:
To analyze the relationship between 24 h movement behaviors and cognitive function in children and adolescents, as well as the isotemporal substitution benefits, in order to provide a basis for developing cognitive development intervention strategies among children and adolescents.
Methods:
Relevant studies were searched in the Web of Science, PubMed, Embase, EBSCO, and China National Knowledge Infrastructure databases from their inception to November 30, 2024. Systematic evaluation was performed after document screening, data extraction and quality assessment.
Results:
A total of 24 highquality studies were included, comprising 35 295 children and adolescents aged 3-18 years. Adhering to the 24 h activity guidelines was associated with better cognitive performance (19 studies). Additionally, substituting 5-30 minutes per day of moderate to vigorous physical activity (MVPA) or sleep (SLP) for sedentary behavior (SB) or light physical activity (LPA) were associated with improvements in cognitive function (7 studies). There were inconsistencies in the effects of different types of SB (learning or entertainment) on cognitive function.
Conclusions
Adherence to the 24 h activity guidelines supports cognitive development in children and adolescents, with MVPA and SLP as key intervention targets. Increasing the proportion of MVPA, ensuring adequate SLP, and limiting recreational SB and screen time might be helpful to enhance the combined benefits of these three behaviors.
2.Oxidative Stress of Qidan Tangshen Granules (芪丹糖肾颗粒) in Treatment of 95 Patients with Early Diabetic Kidney Disease with Qi Deficiency,Blood Stasis,and Kidney Deficiency Syndrome:A Double-Blind,Double-Simulated,Randomized Controlled Trial
Jie ZHANG ; Yilei CONG ; Tengfei WU ; Qin LIU ; Yue YUAN ; Shilei CUI ; Hua YANG
Journal of Traditional Chinese Medicine 2025;66(7):695-703
ObjectiveTo evaluate the clinical efficacy and safety of Qidan Tangshen Granules (芪丹糖肾颗粒, QTG) in the treatment of early diabetic kidney disease (DKD) with qi deficiency, blood stasis, and kidney deficiency syndrome, and to explore its mechanism. MethodsA double-blind, double-simulated method was used to enroll 200 patients with early DKD and qi deficiency, blood stasis, and kidney deficiency syndrome. Patients were randomly assigned in a 1∶1 ratio to the treatment group (100 cases) and the control group (100 cases). The treatment group received QTG plus a valsartan capsule simulant, while the control group received valsartan capsules plus a QTG simulant, both for 12 weeks. The primary outcome was the urinary albumin-to-creatinine ratio (UACR). Secondary outcomes included estimated glomerular filtration rate (eGFR), fasting blood glucose (FBG), 2-hour postprandial blood glucose (PBG), glycated hemoglobin (HbA1c), and traditional Chinese medicine (TCM) syndrome scores (including individual symptom scores for fatigue, dull complexion, soreness and weakness of the waist and knees, headache and chest pain, irritability, spontaneous sweating, thirst and polydipsia, polyphagia, polyuria, numbness of the limbs, and the total TCM syndrome score). Oxidative stress markers including serum 8-hydroxy-2'-deoxyguanosine (8-OHDG), 3-nitrotyrosine (3-NT), and superoxide dismutase (SOD) were also assessed. Clinical efficacy and TCM syndrome efficacy were evaluated after treatment, and routine blood tests, urinalysis, and liver function tests were conducted and adverse reaction during the tria was recorded to assess safety. ResultsA total of 191 patients completed the study (95 in the treatment group and 96 in the control group). The treatment group showed significant reductions in UACR, FBG, PBG, and HbA1c levels after treatment (P<0.05 or P<0.01). The single TCM symptom scores except for polyphagia and total TCM syndrome scores significantly decreased (P<0.05 or P<0.01). Compared to the control group, the treatment group had signi-ficantly lower UACR, FBG, PBG levels, and total TCM syndrome scores, sinlge symptoms scores except for polyphagia and limb numbness (P<0.05 or P<0.01). Among 40 randomly selected patients (21 cases in the treatment group and 19 cases in the control group) for oxidative stress analysis, there were no significant differences in SOD, 3-NT, and 8-OHDG levels before and after treatment within or between groups (P>0.05). The overall effective rate in the treatment group was 64.2% (61/95) and 39.6% (38/96) in the control group, while the TCM syndrome efficacy rates were 80.0% (76/95) and 24.0% (23/96), respectively, with the treatment group showing superior efficacy (P<0.01). No significant differences were observed in routine blood tests, urinalysis, or liver function indices before and after treatment in either group (P>0.05). The incidence of adverse reactions was 8.4% (8/95) in the treatment group and 9.4% (9/96) in the control group, with no statistically significant difference (P>0.05). ConclusionQTG can effectively reduce UACR and blood glucose levels, alleviate clinical symptoms, and improve clinical efficacy in patients with early DKD with qi deficiency, blood stasis, and kidney deficiency syndrome. The treatment is well-tolerated and safe, with no significant impact on oxidative stress markers.
3.Expression of peroxiredoxin 4 in oral squamous cell carcinoma and its effects on cancer cell proliferation, migration, and invasion
GENG Hua ; LI Lei ; YANG Jie ; LIU Yunxia ; CHEN Xiaodong
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(4):278-288
Objective:
To investigate the expression of peroxiredoxin 4 (PRDX4) in oral squamous cell carcinoma (OSCC) and its effect on the proliferation, migration, and invasion of OSCC cells.
Methods:
The Cancer Genome Atlas(TCGA) database was used to analyze the expression of PRDX4 in OSCC. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western Blot (WB) were used to detect the mRNA and protein expression of PRDX4 in OSCC cell lines and normal oral mucosal epithelial cells. PRDX4 was knocked down in CAL-27 cells and divided into two groups: the si-PRDX4 group and si-NC group. SCC-9 cells overexpressing PRDX4 were divided into two groups: the PRDX4 overexpression group (transfected with pcDNA3.1-PRDX4 plasmid) and the vector group (the control group; transfected with pcDNA3.1-NC plasmid). A cell counting kit-8 (CCK-8) and plate colony formation assay were used to detect cell proliferation. Transwell assay and cell scratch test were used to detect cell invasion and migration ability. WB was used to detect the effects of knockdown or overexpression of PRDX4, p38MAPK agonist or inhibitor on the expression of p38MAPK-related signaling pathway proteins, and epithelial mesenchymal transition proteins in OSCC cells.
Results:
PRDX4 was highly expressed in OSCC tissues and cell lines. The results of qRT-PCR and WB showed that PRDX4 was highly expressed in OSCC cell lines compared with normal oral mucosal epithelial cells. The CCK-8 assay showed that the si-PRDX4 group had significantly lower OD values than the si-NC group at 24, 48, and 72 h (P<0.05). The PRDX4 overexpression group had a significantly higher OD value than the vector group at 24, 48, and 72 h (P<0.05). The plate colony formation assay showed that the si-PRDX4 group had a significantly lower number of colonies than the si-NC group (P<0.05). The number of colonies formed in the PRDX4 overexpression group was significantly higher than that in the vector group (P<0.05). The cell scratch test showed that the wound healing area of the si-PRDX4 group was less than that of the si-NC group (P<0.05). The scratch healing area of the PRDX4 overexpression group was significantly higher than that of the vector group (P<0.05). The Transwell invasion assay showed that the number of transmembrane cells in the si-PRDX4 group was lower than that in the si-NC group (P<0.05). The number of transmembrane cells in the PRDX4 overexpression group was significantly higher than that in the vector group (P<0.05). The WB results showed that knockdown and overexpression of PRDX4 could downregulate and upregulate the expression of the p38MAPK signaling pathway and epithelial-mesenchymal transition related proteins, respectively, and the addition of p38MAPK agonist and inhibitor could significantly reverse the expression of related proteins.
Conclusion
PRDX4 is highly expressed in OSCC. Knocking down the expression of PRDX4 in OSCC cells can downregulate the expression of p38 MAPK signal axis and EMT-related signal proteins, thereby inhibiting the proliferation, migration, invasion, and epithelial-mesenchymal transition of cells.
4.Dexamethasone synergizes with high-fat diet to increase lipid deposition in adipocytes
Mingli SU ; Ying WANG ; Zheng YAN ; Jia LUO ; Jie YANG ; Hua YE ; Aiming LIU ; Julin YANG
The Korean Journal of Internal Medicine 2025;40(1):92-102
Background/Aims:
Dexamethasone (DEX) is a widely used exogenous therapeutic glucocorticoid in clinical settings. Its long-term use leads to many side effects. However, its effect on metabolic disorders in individuals on a high-fat diet (HFD) remains poorly understood.
Methods:
In this study, HFD-fed mice were intraperitoneally injected with DEX 2.5 mg/kg/day for 30 days. Lipid metabolism, adipocyte proliferation, and inflammation were assayed using typical approaches.
Results:
DEX increased the epididymal fat index and epididymal adipocyte size in HFD-fed mice. The number of epididymal adipocytes with diameters > 70 μm accounted for 0.5% of the cells in the control group, 30% of the cells in the DEX group, 19% of the cells in the HFD group, and 38% of all the cells in the D+H group. Adipocyte proliferation in the D+H group was inhibited by DEX treatment. Adipocyte enlargement in the D+H group was associated with increased the lipid accumulation but not the adipocyte proliferation. In contrast, the liver triglyceride and total cholesterol levels and their metabolism were downregulated by the same treatment, indicating the therapeutic potential of DEX for nonalcoholic fatty liver disease.
Conclusions
DEX synergizes with HFD to promote lipid deposition in adipose tissues. A high risk of obesity development in patients receiving HFD and DEX treatment is suggested.
5.Dexamethasone synergizes with high-fat diet to increase lipid deposition in adipocytes
Mingli SU ; Ying WANG ; Zheng YAN ; Jia LUO ; Jie YANG ; Hua YE ; Aiming LIU ; Julin YANG
The Korean Journal of Internal Medicine 2025;40(1):92-102
Background/Aims:
Dexamethasone (DEX) is a widely used exogenous therapeutic glucocorticoid in clinical settings. Its long-term use leads to many side effects. However, its effect on metabolic disorders in individuals on a high-fat diet (HFD) remains poorly understood.
Methods:
In this study, HFD-fed mice were intraperitoneally injected with DEX 2.5 mg/kg/day for 30 days. Lipid metabolism, adipocyte proliferation, and inflammation were assayed using typical approaches.
Results:
DEX increased the epididymal fat index and epididymal adipocyte size in HFD-fed mice. The number of epididymal adipocytes with diameters > 70 μm accounted for 0.5% of the cells in the control group, 30% of the cells in the DEX group, 19% of the cells in the HFD group, and 38% of all the cells in the D+H group. Adipocyte proliferation in the D+H group was inhibited by DEX treatment. Adipocyte enlargement in the D+H group was associated with increased the lipid accumulation but not the adipocyte proliferation. In contrast, the liver triglyceride and total cholesterol levels and their metabolism were downregulated by the same treatment, indicating the therapeutic potential of DEX for nonalcoholic fatty liver disease.
Conclusions
DEX synergizes with HFD to promote lipid deposition in adipose tissues. A high risk of obesity development in patients receiving HFD and DEX treatment is suggested.
6.Dexamethasone synergizes with high-fat diet to increase lipid deposition in adipocytes
Mingli SU ; Ying WANG ; Zheng YAN ; Jia LUO ; Jie YANG ; Hua YE ; Aiming LIU ; Julin YANG
The Korean Journal of Internal Medicine 2025;40(1):92-102
Background/Aims:
Dexamethasone (DEX) is a widely used exogenous therapeutic glucocorticoid in clinical settings. Its long-term use leads to many side effects. However, its effect on metabolic disorders in individuals on a high-fat diet (HFD) remains poorly understood.
Methods:
In this study, HFD-fed mice were intraperitoneally injected with DEX 2.5 mg/kg/day for 30 days. Lipid metabolism, adipocyte proliferation, and inflammation were assayed using typical approaches.
Results:
DEX increased the epididymal fat index and epididymal adipocyte size in HFD-fed mice. The number of epididymal adipocytes with diameters > 70 μm accounted for 0.5% of the cells in the control group, 30% of the cells in the DEX group, 19% of the cells in the HFD group, and 38% of all the cells in the D+H group. Adipocyte proliferation in the D+H group was inhibited by DEX treatment. Adipocyte enlargement in the D+H group was associated with increased the lipid accumulation but not the adipocyte proliferation. In contrast, the liver triglyceride and total cholesterol levels and their metabolism were downregulated by the same treatment, indicating the therapeutic potential of DEX for nonalcoholic fatty liver disease.
Conclusions
DEX synergizes with HFD to promote lipid deposition in adipose tissues. A high risk of obesity development in patients receiving HFD and DEX treatment is suggested.
7.Dexamethasone synergizes with high-fat diet to increase lipid deposition in adipocytes
Mingli SU ; Ying WANG ; Zheng YAN ; Jia LUO ; Jie YANG ; Hua YE ; Aiming LIU ; Julin YANG
The Korean Journal of Internal Medicine 2025;40(1):92-102
Background/Aims:
Dexamethasone (DEX) is a widely used exogenous therapeutic glucocorticoid in clinical settings. Its long-term use leads to many side effects. However, its effect on metabolic disorders in individuals on a high-fat diet (HFD) remains poorly understood.
Methods:
In this study, HFD-fed mice were intraperitoneally injected with DEX 2.5 mg/kg/day for 30 days. Lipid metabolism, adipocyte proliferation, and inflammation were assayed using typical approaches.
Results:
DEX increased the epididymal fat index and epididymal adipocyte size in HFD-fed mice. The number of epididymal adipocytes with diameters > 70 μm accounted for 0.5% of the cells in the control group, 30% of the cells in the DEX group, 19% of the cells in the HFD group, and 38% of all the cells in the D+H group. Adipocyte proliferation in the D+H group was inhibited by DEX treatment. Adipocyte enlargement in the D+H group was associated with increased the lipid accumulation but not the adipocyte proliferation. In contrast, the liver triglyceride and total cholesterol levels and their metabolism were downregulated by the same treatment, indicating the therapeutic potential of DEX for nonalcoholic fatty liver disease.
Conclusions
DEX synergizes with HFD to promote lipid deposition in adipose tissues. A high risk of obesity development in patients receiving HFD and DEX treatment is suggested.
8.Dexamethasone synergizes with high-fat diet to increase lipid deposition in adipocytes
Mingli SU ; Ying WANG ; Zheng YAN ; Jia LUO ; Jie YANG ; Hua YE ; Aiming LIU ; Julin YANG
The Korean Journal of Internal Medicine 2025;40(1):92-102
Background/Aims:
Dexamethasone (DEX) is a widely used exogenous therapeutic glucocorticoid in clinical settings. Its long-term use leads to many side effects. However, its effect on metabolic disorders in individuals on a high-fat diet (HFD) remains poorly understood.
Methods:
In this study, HFD-fed mice were intraperitoneally injected with DEX 2.5 mg/kg/day for 30 days. Lipid metabolism, adipocyte proliferation, and inflammation were assayed using typical approaches.
Results:
DEX increased the epididymal fat index and epididymal adipocyte size in HFD-fed mice. The number of epididymal adipocytes with diameters > 70 μm accounted for 0.5% of the cells in the control group, 30% of the cells in the DEX group, 19% of the cells in the HFD group, and 38% of all the cells in the D+H group. Adipocyte proliferation in the D+H group was inhibited by DEX treatment. Adipocyte enlargement in the D+H group was associated with increased the lipid accumulation but not the adipocyte proliferation. In contrast, the liver triglyceride and total cholesterol levels and their metabolism were downregulated by the same treatment, indicating the therapeutic potential of DEX for nonalcoholic fatty liver disease.
Conclusions
DEX synergizes with HFD to promote lipid deposition in adipose tissues. A high risk of obesity development in patients receiving HFD and DEX treatment is suggested.
9.Identification of novel pathogenic variants in genes related to pancreatic β cell function: A multi-center study in Chinese with young-onset diabetes.
Fan YU ; Yinfang TU ; Yanfang ZHANG ; Tianwei GU ; Haoyong YU ; Xiangyu MENG ; Si CHEN ; Fengjing LIU ; Ke HUANG ; Tianhao BA ; Siqian GONG ; Danfeng PENG ; Dandan YAN ; Xiangnan FANG ; Tongyu WANG ; Yang HUA ; Xianghui CHEN ; Hongli CHEN ; Jie XU ; Rong ZHANG ; Linong JI ; Yan BI ; Xueyao HAN ; Hong ZHANG ; Cheng HU
Chinese Medical Journal 2025;138(9):1129-1131
10.The regulation and mechanism of apolipoprotein A5 on myocardial lipid deposition.
Xiao-Jie YANG ; Jiang LI ; Jing-Yuan CHEN ; Teng-Teng ZHU ; Yu-Si CHEN ; Hai-Hua QIU ; Wen-Jie CHEN ; Xiao-Qin LUO ; Jun LUO
Acta Physiologica Sinica 2025;77(1):35-46
The current study aimed to clarify the roles of apolipoprotein A5 (ApoA5) and milk fat globule-epidermal growth factor 8 (Mfge8) in regulating myocardial lipid deposition and the regulatory relationship between them. The serum levels of ApoA5 and Mfge8 in obese and healthy people were compared, and the obesity mouse model induced by the high-fat diet (HFD) was established. In addition, primary cardiomyocytes were purified and identified from the hearts of suckling mice. The 0.8 mmol/L sodium palmitate treatment was used to establish the lipid deposition cardiomyocyte model in vitro. ApoA5-overexpressing adenovirus was used to observe its effects on cardiac function and lipids. The expressions of the fatty acid uptake-related molecules and Mfge8 on transcription or translation levels were detected. Co-immunoprecipitation was used to verify the interaction between ApoA5 and Mfge8 proteins. Immunofluorescence was used to observe the co-localization of Mfge8 protein with ApoA5 or lysosome-associated membrane protein 2 (LAMP2). Recombinant rMfge8 was added to cardiomyocytes to investigate the regulatory mechanism of ApoA5 on Mfge8. The results showed that participants in the simple obesity group had a significant decrease in serum ApoA5 levels (P < 0.05) and a significant increase in Mfge8 levels (P < 0.05) in comparison with the healthy control group. The adenovirus treatment successfully overexpressed ApoA5 in HFD-fed obese mice and palmitic acid-induced lipid deposition cardiomyocytes, respectively. ApoA5 reduced the weight of HFD-fed obese mice (P < 0.05), shortened left ventricular isovolumic relaxation time (IVRT), increased left ventricular ejection fraction (LVEF), and significantly reduced plasma levels of triglycerides (TG) and cholesterol (CHOL) (P < 0.05). In myocardial tissue and cardiomyocytes, the overexpression of ApoA5 significantly reduced the deposition of TG (P < 0.05), transcription of fatty acid translocase (FAT/CD36) (P < 0.05), fatty acid-binding protein (FABP) (P < 0.05), and fatty acid transport protein (FATP) (P < 0.05), and protein expression of Mfge8 (P < 0.05), while the transcription levels of Mfge8 were not significantly altered (P > 0.05). In vitro, the Mfge8 protein was captured using ApoA5 as bait protein, indicating a direct interaction between them. Overexpression of ApoA5 led to an increase in co-localization of Mfge8 with ApoA5 or LAMP2 in cardiomyocytes under lipid deposition status. On this basis, exogenous added recombinant rMfge8 counteracted the improvement of lipid deposition in cardiomyocytes by ApoA5. The above results indicate that the overexpression of ApoA5 can reduce fatty acid uptake in myocardial cells under lipid deposition status by regulating the content and cellular localization of Mfge8 protein, thereby significantly reducing myocardial lipid deposition and improving cardiac diastolic and systolic function.
Animals
;
Humans
;
Mice
;
Myocytes, Cardiac/metabolism*
;
Obesity/physiopathology*
;
Male
;
Apolipoprotein A-V/blood*
;
Lipid Metabolism/physiology*
;
Milk Proteins/blood*
;
Myocardium/metabolism*
;
Diet, High-Fat
;
Antigens, Surface/physiology*
;
Mice, Inbred C57BL
;
Cells, Cultured
;
Female


Result Analysis
Print
Save
E-mail