1.Cloning, subcellular localization and expression analysis of SmIAA7 gene from Salvia miltiorrhiza
Yu-ying HUANG ; Ying CHEN ; Bao-wei WANG ; Fan-yuan GUAN ; Yu-yan ZHENG ; Jing FAN ; Jin-ling WANG ; Xiu-hua HU ; Xiao-hui WANG
Acta Pharmaceutica Sinica 2025;60(2):514-525
The auxin/indole-3-acetic acid (Aux/IAA) gene family is an important regulator for plant growth hormone signaling, involved in plant growth, development, as well as response to environmental stresses. In the present study, we identified
2.Network pharmacology-based mechanism of combined leech and bear bile on hepatobiliary diseases
Chen GAO ; Yu-shi GUO ; Xin-yi GUO ; Ling-zhi ZHANG ; Guo-hua YANG ; Yu-sheng YANG ; Tao MA ; Hua SUN
Acta Pharmaceutica Sinica 2025;60(1):105-116
In order to explore the possible role and molecular mechanism of the combined action of leech and bear bile in liver and gallbladder diseases, this study first used network pharmacology methods to screen the components and targets of leech and bear bile, as well as the related target genes of liver and gallbladder diseases. The selected key genes were subjected to interaction network and GO/KEGG enrichment analysis. Then, using sodium oleate induced HepG2 cell lipid deposition model and
3.Status and Progress of Research on Metabolomics of Cervical Cancer
Shaojun CHEN ; Ling GAN ; Xinkang CHEN ; Lingling XIONG ; Die LONG ; Lulu CHEN ; Mengzhuan WEI ; Li HUA ; Haixin HUANG
Cancer Research on Prevention and Treatment 2025;52(7):630-636
Cervical cancer is one of the most common gynecological malignant tumors in China. Given their lack of obviously early symptoms, more than half of patients with cervical cancer are diagnosed in the middle and late stages of this malignancy, resulting in poor prognosis. Finding new therapeutic targets is the current research direction. Metabolomics, as a new omics technology, is expected to provide new targets for tumor precision diagnosis and treatment through the analysis of the changes and potential mechanisms of metabolites in tumor occurrence and development by chromatography, mass spectrometry, and other technologies. Herein, we review the research methods of metabolomics; metabolic characteristics of cervical cancer; and progress of the research on metabolomics in cervical cancer diagnosis, curative effect prediction, and prognosis evaluation to provide new ideas for the precise diagnosis and treatment of cervical cancer.
4.Analysis of T7 RNA Polymerase: From Structure-function Relationship to dsRNA Challenge and Biotechnological Applications
Wei-Chen NING ; Yu HUA ; Hui-Ling YOU ; Qiu-Shi LI ; Yao WU ; Yun-Long LIU ; Zhen-Xin HU
Progress in Biochemistry and Biophysics 2025;52(9):2280-2294
T7 RNA polymerase (T7 RNAP) is one of the simplest known RNA polymerases. Its unique structural features make it a critical model for studying the mechanisms of RNA synthesis. This review systematically examines the static crystal structure of T7 RNAP, beginning with an in-depth examination of its characteristic “thumb”, “palm”, and “finger” domains, which form the classic “right-hand-like” architecture. By detailing these structural elements, this review establishes a foundation for understanding the overall organization of T7 RNAP. This review systematically maps the functional roles of secondary structural elements and their subdomains in transcriptional catalysis, progressively elucidating the fundamental relationships between structure and function. Further, the intrinsic flexibility of T7 RNAP and its applications in research are also discussed. Additionally, the review presents the structural diagrams of the enzyme at different stages of the transcription process, and through these diagrams, it provides a detailed description of the complete transcription process of T7 RNAP. By integrating structural dynamics and kinetics analyses, the review constructs a comprehensive framework that bridges static structure to dynamic processes. Despite its advantages, T7 RNAP has a notable limitation: it generates double-stranded RNA (dsRNA) as a byproduct. The presence of dsRNA not only compromises the purity of mRNA products but also elicits nonspecific immune responses, which pose significant challenges for biotechnological and therapeutic applications. The review provides a detailed exploration of the mechanisms underlying dsRNA formation during T7 RNAP catalysis, reviews current strategies to mitigate this issue, and highlights recent progress in the field. A key focus is the semi-rational design of T7 RNAP mutants engineered to minimize dsRNA generation and enhance catalytic performance. Beyond its role in transcription, T7 RNAP exhibits rapid development and extensive application in fields, including gene editing, biosensing, and mRNA vaccines. This review systematically examines the structure-function relationships of T7 RNAP, elucidates the mechanisms of dsRNA formation, and discusses engineering strategies to optimize its performance. It further explores the engineering optimization and functional expansion of T7 RNAP. Furthermore, this review also addresses the pressing issues that currently need resolution, discusses the major challenges in the practical application of T7 RNAP, and provides an outlook on potential future research directions. In summary, this review provides a comprehensive analysis of T7 RNAP, ranging from its structural architecture to cutting-edge applications. We systematically examine: (1) the characteristic right-hand domains (thumb, palm, fingers) that define its minimalistic structure; (2) the structure-function relationships underlying transcriptional catalysis; and (3) the dynamic transitions during the complete transcription cycle. While highlighting T7 RNAP’s versatility in gene editing, biosensing, and mRNA vaccine production, we critically address its major limitation—dsRNA byproduct formation—and evaluate engineering solutions including semi-rationally designed mutants. By synthesizing current knowledge and identifying key challenges, this work aims to provide novel insights for the development and application of T7 RNAP and to foster further thought and progress in related fields.
5.Mechanism and research progress of S100A8/A9 in the microenvironment before high-risk tumor metastasis
Hai-Xia MING ; Zhao-Hua LIU ; Yan-Jun WANG ; Ming SHEN ; Yan-Wen CHEN ; Yang LI ; Ling-Ling YANG ; Qian-Kun LIANG
The Chinese Journal of Clinical Pharmacology 2024;40(13):1991-1995
S100 calc-binding protein A8/A9(S100A8/A9)can induce the migration of primary tumor cells to distant target organs by binding multiple channel proteins,promote the formation of tumor metastasis microenvironment,and play an important role in the immune and inflammatory response of the body.It provides a new target and idea for the prevention and treatment of tumor metastasis and invasion.This paper mainly reviewed the expression and mechanism of S100A8/A9 on related channel proteins in a variety of high incidence tumors,in order to provide a new strategy for tumor prevention,diagnosis and treatment.
6.Mechanism of salvianolic acid B protecting H9C2 from OGD/R injury based on mitochondrial fission and fusion
Zi-xin LIU ; Gao-jie XIN ; Yue YOU ; Yuan-yuan CHEN ; Jia-ming GAO ; Ling-mei LI ; Hong-xu MENG ; Xiao HAN ; Lei LI ; Ye-hao ZHANG ; Jian-hua FU ; Jian-xun LIU
Acta Pharmaceutica Sinica 2024;59(2):374-381
This study aims to investigate the effect of salvianolic acid B (Sal B), the active ingredient of Salvia miltiorrhiza, on H9C2 cardiomyocytes injured by oxygen and glucose deprivation/reperfusion (OGD/R) through regulating mitochondrial fission and fusion. The process of myocardial ischemia-reperfusion injury was simulated by establishing OGD/R model. The cell proliferation and cytotoxicity detection kit (cell counting kit-8, CCK-8) was used to detect cell viability; the kit method was used to detect intracellular reactive oxygen species (ROS), total glutathione (t-GSH), nitric oxide (NO) content, protein expression levels of mitochondrial fission and fusion, apoptosis-related detection by Western blot. Mitochondrial permeability transition pore (MPTP) detection kit and Hoechst 33342 fluorescence was used to observe the opening level of MPTP, and molecular docking technology was used to determine the molecular target of Sal B. The results showed that relative to control group, OGD/R injury reduced cell viability, increased the content of ROS, decreased the content of t-GSH and NO. Furthermore, OGD/R injury increased the protein expression levels of dynamin-related protein 1 (Drp1), mitofusions 2 (Mfn2), Bcl-2 associated X protein (Bax) and cysteinyl aspartate specific proteinase 3 (caspase 3), and decreased the protein expression levels of Mfn1, increased MPTP opening level. Compared with the OGD/R group, it was observed that Sal B had a protective effect at concentrations ranging from 6.25 to 100 μmol·L-1. Sal B decreased the content of ROS, increased the content of t-GSH and NO, and Western blot showed that Sal B decreased the protein expression levels of Drp1, Mfn2, Bax and caspase 3, increased the protein expression level of Mfn1, and decreased the opening level of MPTP. In summary, Sal B may inhibit the opening of MPTP, reduce cell apoptosis and reduce OGD/R damage in H9C2 cells by regulating the balance of oxidation and anti-oxidation, mitochondrial fission and fusion, thereby providing a scientific basis for the use of Sal B in the treatment of myocardial ischemia reperfusion injury.
7.Exploration of Correlation Between Psoraleae Fructus and Precocious Puberty in Children Based on Network Pharmacology
Ling-Ling XIA ; Yao CHEN ; Shun-Li TANG ; Ying ZHANG ; Hua LIU
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(4):981-987
Objective The network pharmacological methods and molecular docking technology were used for investigating the possibility of Psoraleae Fructus in promoting precocious puberty in children and its potential mechanism.Methods The main active ingredients of Psoraleae Fructus and their therapeutic targets were obtained from BATMAN-TCM online platform.The disease targets related with precocious puberty were obtained from GeneCards database.A visualized network of active ingredients-disease targets was constructed by Cytoscape 3.7.1 software.Protein-protein interaction(PPI)network diagrams were constructed based on the STRING online database.Gene ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis were conducted using Metascape online tool.The structures of the main active ingredients were obtained from PubChem database,the structures of core targets were obtained from RCSB PDB database,and then the structures were imported into Autodock for molecular docking.Finally,the mimic diagrams of the molecular docking were drawn using PYMOL software.Results A total of 12 active ingredients of Psoraleae Fructus were obtained,involving 274 targets.And there were 11 active ingredients and 98 targets associated with precocious puberty.The main active compounds were stigmasterol,bakuchiol,angelicin,bavachalcone,isobavachalcone,and xanthotoxin.The main targets were estrogen receptor 1(ESR1),estrogen receptor 2(ESR2),insulin-like growth factor 1(IGF1),and progesterone receptor(PGR),which were mainly involved in the ovarian steroidogenic pathway and Hippo signaling pathway.The molecular docking results showed that the active compounds were well binded to the targets.Conclusion It is possible that Psoraleae Fructus can promote the sexual development in children and has its potential pharmacological mechanism.The results will provide theoretical references for the clinical prevention and treatment of precocious puberty and early pubertal development in children.
8.Study on OS-induced DNA damage from X-ray activation and cellular premature aging of HaCaT cells
Jie CHEN ; Tianjing CAI ; Hua ZHAO ; Ling GAO ; Qingjie LIU
China Medical Equipment 2024;21(2):174-178
Objective:To explore the changes of oxidative stress(OS),DNA damage and the occurrence of cellular premature aging of human immortalized keratinocytes(HaCaT)after that was radiated by X-ray with different doses.Methods:HaCaT cells were radiated by X-ray,and they were divided into 0 Gy group,5 Gy group and 10 Gy group according to the irradiation dose.The levels of intracellular reactive oxygen species(ROS)were detected by 2,7-Dichlorofluorescein diacetate(DCFH-DA)fluorescent probe,and the intracellular content of malondialdehyde(MDA)of lipid peroxidation products and the activity of superoxide dismutase(SOD)were measured by colorimetry.Immunofluorescence staining was used to detect the phosphorylated histone 2A variant(γ-H2AX)in HaCaT cells that were radiated by X-ray with different doses.Cell count kit-8(CCK-8)was used to detect the effect of X-ray with different doses on the proliferation of HaCaT cells after X-ray with different doses radiated them.β-Galactosidase staining was used to detect the proportion of premature aging cells.The changes of p21 and p53 protein expressions after X-ray irradiation were detected by Western blot.Results:After HaCaT cells were radiated by X-ray for 24h,the fluorescence intensity of 2',7'-Dichlorofluorescein(DCF)in 5 Gy and 10 Gy groups were significantly higher than that in the 0 Gy group,and the MDA contents of them were significantly higher than that in the control group,and the SOD activities of them were significantly lower than that in the control group(F=38.35,92.22,5.22,P<0.05),respectively.The change of γ-H2AX focus showed a dose-dependent significant increase at 1 h after irradiation,and the difference between them and control group was statistically significant(F=129.3,P<0.05).At 6h,24h and 48h after X-ray radiated HaCaT cells,the cell proliferation abilities of 5 Gy group and 10 Gy group were significantly decreased than that of 0 Gy group(F=116.41,62.20,34.29,P<0.01),and the β-Galactosidase activity of the two groups were significantly increased than that of 0 Gy group,and the difference was significant(F=1629.22,P<0.01).At 72h after X-ray with different doses radiated HaCaT cells,the expression levels of p21 and p53 proteins of 5 Gy group and 10 Gy group increased,and the differences of them among three groups were significant(F=104.4,66.69,P<0.01),respectively.Conclusion:Ionizing radiation can induce the occurrences of oxidative stress and DNA damage in HaCaT cells,and cause the occurrence of cellular premature aging.
9. Establishment and genotype identification of hepatic stellate cell-specific Grk2 gene knockout mouse model
Yu-Han WANG ; Ya-Ping XU ; Nan LI ; Ting-Ting CHEN ; Ling LI ; Ping-Ping GAO ; Wei WEI ; Wu-Yi SUN ; Hua WANG
Chinese Pharmacological Bulletin 2024;40(1):189-194
Aim To establish a stable hepatic stellate cell ( HSC ) -specific G protein-coupled receptor kinase 2 ( GRK2 ) knockout mice and provide the important animal model for further studying the biological function of GRK2 in HSC. Methods The loxP-labeled Grk2 gene mouse (Grk2
10.Construction of hepatocyte-specific Sirt3 gene knockout mouse model
Yaping XU ; Yuhan WANG ; Tingting CHEN ; Nan LI ; Pingping GAO ; Ling LI ; Hua WANG ; Wuyi SUN
Acta Universitatis Medicinalis Anhui 2024;59(3):384-390
Objective To construct hepatocyte-specific silence information regulator 3(Sirt3)gene knockout(Sirt3 Δhep)mice by Cre-loxP technique,and to provide an important animal model for further studying the biological function of the hepatocyte Sirt3 gene in diseases.Methods LoxP-labeled Sirt3flox/flox mice were mated with Alb-Cre homozygous(Alb-Cre+/+)mice,and the F1 generation Sirt3flox/-/Alb-Cre+/-mice were then mated with Sirt3flox/flox mice,and the F2 genotype of Sirt3flox/flox/Alb-Cre+/-mice were the Sirt3 Δhep mice constructed in this ex-periment.Sirt3flox/flox/Alb-Cre-/-(Sirt3flox/flox)mice were the control mice.Mouse tail genome DNA was extracted and PCR was used to identify the genotypes of the offspring mice.Immunofluorescence was used to detect Sirt3 ex-pression in mouse hepatocytes.Primary hepatocytes and tissue proteins of Sirt3 Δhep mice were extracted,and the ex-pression of Sirt3 in mouse hepatocytes and other tissues was verified by Western blot.HE staining was used to ob-serve mice's liver,heart,spleen,and lung tissue structure.Results Sirt3 Δhep mice were successfully identified.Immunofluorescence and Western blot results demonstrated a significant decrease in the expression of Sirt3 in the hepatocytes of these mice compared to the control group(P<0.01).At the same time,there was no significant difference in the expression of Sirt3 in the heart,spleen,kidney,and lung tissues of Sirt3 Δhep mice compared with the control group(P>0.05).The results of HE staining showed that the histological characteristics of the liver,heart,spleen,lungs,kidneys,and other major organs of Sirt3 Δhep mice were not significantly different from those of the control group mice.Conclusion Hepatocyte-specific Sirt3 gene knockout mice are successfully constructed,which provides an animal model to explore further the role and molecular mechanism of the hepatocyte Sirt3 gene in diseases.


Result Analysis
Print
Save
E-mail