1.Effect of Qingfei Shenshi Decoction (清肺渗湿汤) Combined with Western Medicine on Clinical Effectiveness and Immune Function for Patients with Bronchial Asthma of Heat Wheezing Syndrome
Ying SUN ; Haibo HU ; Na LIU ; Fengchan WANG ; Jinbao ZONG ; Ping HAN ; Peng LI ; Guojing ZHAO ; Haoran WANG ; Xuechao LU
Journal of Traditional Chinese Medicine 2026;67(1):38-44
ObjectiveTo observe the clinical effectiveness and safety of Qingfei Shenshi Decoction (清肺渗湿汤) combined with western medicine for patients with bronchial asthma of heat wheezing syndrome, and to explore its potential mechanism of action. MethodsEighty-six participants with bronchial asthma of heat wheezing syndrome were randomly divided into treatment group and control group, each group with 43 participants. The control group received conventional western medicine, and the treatment group was additionally administered Qingfei Shenshi Decoction orally on the basis of the control group, 1 dose per day. Both groups were treated for 14 days. The primary outcome measure was clinical effectiveness; secondary outcome measures included traditional Chinese medicine (TCM) syndrome score, asthma control test (ACT) score, pulmonary function indices such as forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), peak expiratory flow (PEF), serum inflammatory factor levels including interleukin-4 (IL-4), tumour necrosis factor-α (TNF-α), and high-sensitivity C-reactive protein (hs-CRP), and immune function indices including CD3+, CD4+, CD8+, CD4+/CD8+. All outcome measures were evaluated before and after treatment. Vital signs were monitored, and electrocardiography, blood routine, urine routine, liver function, and renal function tests were performed before and after treatment. Adverse events and reactions during the study were recorded. ResultsA total of 80 patients completed the trial with 40 in each group. The total clinical effective rate of the treatment group was 97.5% (39/40), which was significantly higher than that of the control group (85.0%, 34/40, P<0.05). After treatment, both groups showed decreased TCM syndrome scores, IL-4, TNF-α, hs-CRP, and CD8+ levels, as well as increased ACT scores, CD3+, CD4+, CD4+/CD8+, FEV1, FVC, and PEF levels (P<0.05 or P<0.01). Moreover, the improvements in these indices were more significant in the treatment group than in the control group (P<0.05 or P<0.01). No significant abnormalities in safety indicators were observed in either group, and no adverse events or reactions occurred. ConclusionQingfei Shenshi Decoction combined with conventional western medicine for patients with bronchial asthma of heat wheezing syndrome can effectively improve the clinical symptoms, pulmonary function, and clinical effectiveness, with good safety. Its mechanism may be related to reducing inflammatory factor levels and regulating T lymphocyte subsets to improve immune function.
2.Multi-Parameter MRI for Evaluating Glymphatic Impairment and White-Matter Abnormalities and Discriminating Refractory Epilepsy in Children
Lu QIU ; Miaoyan WANG ; Surui LIU ; Bo PENG ; Ying HUA ; Jianbiao WANG ; Xiaoyue HU ; Anqi QIU ; Yakang DAI ; Haoxiang JIANG
Korean Journal of Radiology 2025;26(5):485-497
Objective:
To explore glymphatic impairment in pediatric refractory epilepsy (RE) using multi-parameter magnetic resonance imaging (MRI), assess its relationship with white-matter (WM) abnormalities and clinical indicators, and preliminarily evaluate the performance of multi-parameter MRI in discriminating RE from drug-sensitive epilepsy (DSE).
Materials and Methods:
We retrospectively included 70 patients with DSE (mean age, 9.7 ± 3.5 years; male:female, 37:33) and 26 patients with RE (9.0 ± 2.9 years; male:female, 12:14). The diffusion tensor imaging analysis along the perivascular space (DTI-ALPS) index as well as fractional anisotropy (FA), mean diffusivity (MD), and nodal efficiency values were measured and compared between patients with RE and DSE. With sex and age as covariables, differences in the FA and MD values were analyzed using tract-based spatial statistics, and nodal efficiency was analyzed using a linear model. Pearson’s partial correlation was analyzed. Receiver operating characteristic (ROC) curves were used to evaluate the discrimination performance of the MRI-based machine-learning models through five-fold cross-validation.
Results:
In the RE group, FA decreased and MD increased in comparison with the corresponding values in the DSE group, and these differences mainly involved the callosum, right and left corona radiata, inferior and superior longitudinal fasciculus, and posterior thalamic radiation (threshold-free cluster enhancement, P < 0.05). The RE group also showed reduced nodal efficiency, which mainly involved the limbic system, default mode network, and visual network (false discovery rate, P < 0.05), and significantly lower DTI-ALPS index (F = 2.0, P = 0.049). The DTI-ALPS index was positively correlated with FA (0.25 ≤ r ≤ 0.32) and nodal efficiency (0.22 ≤ r ≤ 0.37), and was negatively correlated with the MD (-0.24 ≤ r≤ -0.34) and seizure frequency (r = -0.47). A machine-learning model combining DTI-ALPS, FA, MD, and nodal efficiency achieved a cross-validated ROC curve area of 0.83 (sensitivity, 78.2%; specificity, 84.8%).
Conclusion
Pediatric patients with RE showed impaired glymphatic function in comparison with patients with DSE, which was correlated with WM abnormalities and seizure frequency. Multi-parameter MRI may be feasible for distinguishing RE from DSE.
3.Prevalence of menopausal syndrome among postmenopausal women in Pan'an County
YING Huizhen ; JI Li ; KONG Wenjuan ; WANG Yuan ; CHEN Xiaoxia ; HU Caihong ; FU Haiying ; LU Yuanyuan ; CHE Xiuli
Journal of Preventive Medicine 2025;37(3):312-315
Objective:
To investigate the prevalence and influencing factors of menopausal syndrome among postmenopausal women in Pan'an County, Zhejiang Province, so as to provide the basis for guiding the health management of postmenopausal women.
Methods:
From May 2023 to April 2024, the postmenopausal women aged 40 to 69 years in Pan'an County were selected using the random cluster sampling method. Demographic information, lifestyle and prevalence of gynecological diseases were collected through questionnaire surveys. The prevalence of menopausal syndrome was assessed by modified Kupperman Score Scale. Factors affecting menopausal syndrome were analyzed by a multivariable logistic regression model.
Results:
A total of 816 postmenopausal women were surveyed, with an mean age of (57.63±2.92) years and a mean natural menopause age of (49.85±2.13) years. There were 574 cases with menopausal syndrome, with a prevalence of 70.34%. Flashes and sweating, insomnia and irritability were common symptoms, accounting for 62.87%, 47.43% and 41.18%, respectively. Multivariable logistic regression analysis showed that monthly personal income of ≤5 000 yuan (<3 000 yuan, OR=3.124, 95%CI: 1.829-5.335; 3 000-5 000 yuan, OR=2.399, 95%CI: 1.370-4.201) and having gynecological diseases (OR=1.970, 95%CI: 1.292-3.004) were associated with a higher risk of menopausal syndrome, while average (OR=0.141, 95%CI: 0.072-0.276) or sufficient sleep quality (OR=0.095, 95%CI: 0.049-0.185) were associated with a lower risk of menopausal syndrome.
Conclusion
The prevalence of menopausal syndrome among postmenopausal women in Pan'an County is relatively high, and is mainly influenced by personal economic status, sleep quality and the presence of gynecological diseases.
4.Multi-Parameter MRI for Evaluating Glymphatic Impairment and White-Matter Abnormalities and Discriminating Refractory Epilepsy in Children
Lu QIU ; Miaoyan WANG ; Surui LIU ; Bo PENG ; Ying HUA ; Jianbiao WANG ; Xiaoyue HU ; Anqi QIU ; Yakang DAI ; Haoxiang JIANG
Korean Journal of Radiology 2025;26(5):485-497
Objective:
To explore glymphatic impairment in pediatric refractory epilepsy (RE) using multi-parameter magnetic resonance imaging (MRI), assess its relationship with white-matter (WM) abnormalities and clinical indicators, and preliminarily evaluate the performance of multi-parameter MRI in discriminating RE from drug-sensitive epilepsy (DSE).
Materials and Methods:
We retrospectively included 70 patients with DSE (mean age, 9.7 ± 3.5 years; male:female, 37:33) and 26 patients with RE (9.0 ± 2.9 years; male:female, 12:14). The diffusion tensor imaging analysis along the perivascular space (DTI-ALPS) index as well as fractional anisotropy (FA), mean diffusivity (MD), and nodal efficiency values were measured and compared between patients with RE and DSE. With sex and age as covariables, differences in the FA and MD values were analyzed using tract-based spatial statistics, and nodal efficiency was analyzed using a linear model. Pearson’s partial correlation was analyzed. Receiver operating characteristic (ROC) curves were used to evaluate the discrimination performance of the MRI-based machine-learning models through five-fold cross-validation.
Results:
In the RE group, FA decreased and MD increased in comparison with the corresponding values in the DSE group, and these differences mainly involved the callosum, right and left corona radiata, inferior and superior longitudinal fasciculus, and posterior thalamic radiation (threshold-free cluster enhancement, P < 0.05). The RE group also showed reduced nodal efficiency, which mainly involved the limbic system, default mode network, and visual network (false discovery rate, P < 0.05), and significantly lower DTI-ALPS index (F = 2.0, P = 0.049). The DTI-ALPS index was positively correlated with FA (0.25 ≤ r ≤ 0.32) and nodal efficiency (0.22 ≤ r ≤ 0.37), and was negatively correlated with the MD (-0.24 ≤ r≤ -0.34) and seizure frequency (r = -0.47). A machine-learning model combining DTI-ALPS, FA, MD, and nodal efficiency achieved a cross-validated ROC curve area of 0.83 (sensitivity, 78.2%; specificity, 84.8%).
Conclusion
Pediatric patients with RE showed impaired glymphatic function in comparison with patients with DSE, which was correlated with WM abnormalities and seizure frequency. Multi-parameter MRI may be feasible for distinguishing RE from DSE.
5.Multi-Parameter MRI for Evaluating Glymphatic Impairment and White-Matter Abnormalities and Discriminating Refractory Epilepsy in Children
Lu QIU ; Miaoyan WANG ; Surui LIU ; Bo PENG ; Ying HUA ; Jianbiao WANG ; Xiaoyue HU ; Anqi QIU ; Yakang DAI ; Haoxiang JIANG
Korean Journal of Radiology 2025;26(5):485-497
Objective:
To explore glymphatic impairment in pediatric refractory epilepsy (RE) using multi-parameter magnetic resonance imaging (MRI), assess its relationship with white-matter (WM) abnormalities and clinical indicators, and preliminarily evaluate the performance of multi-parameter MRI in discriminating RE from drug-sensitive epilepsy (DSE).
Materials and Methods:
We retrospectively included 70 patients with DSE (mean age, 9.7 ± 3.5 years; male:female, 37:33) and 26 patients with RE (9.0 ± 2.9 years; male:female, 12:14). The diffusion tensor imaging analysis along the perivascular space (DTI-ALPS) index as well as fractional anisotropy (FA), mean diffusivity (MD), and nodal efficiency values were measured and compared between patients with RE and DSE. With sex and age as covariables, differences in the FA and MD values were analyzed using tract-based spatial statistics, and nodal efficiency was analyzed using a linear model. Pearson’s partial correlation was analyzed. Receiver operating characteristic (ROC) curves were used to evaluate the discrimination performance of the MRI-based machine-learning models through five-fold cross-validation.
Results:
In the RE group, FA decreased and MD increased in comparison with the corresponding values in the DSE group, and these differences mainly involved the callosum, right and left corona radiata, inferior and superior longitudinal fasciculus, and posterior thalamic radiation (threshold-free cluster enhancement, P < 0.05). The RE group also showed reduced nodal efficiency, which mainly involved the limbic system, default mode network, and visual network (false discovery rate, P < 0.05), and significantly lower DTI-ALPS index (F = 2.0, P = 0.049). The DTI-ALPS index was positively correlated with FA (0.25 ≤ r ≤ 0.32) and nodal efficiency (0.22 ≤ r ≤ 0.37), and was negatively correlated with the MD (-0.24 ≤ r≤ -0.34) and seizure frequency (r = -0.47). A machine-learning model combining DTI-ALPS, FA, MD, and nodal efficiency achieved a cross-validated ROC curve area of 0.83 (sensitivity, 78.2%; specificity, 84.8%).
Conclusion
Pediatric patients with RE showed impaired glymphatic function in comparison with patients with DSE, which was correlated with WM abnormalities and seizure frequency. Multi-parameter MRI may be feasible for distinguishing RE from DSE.
6.Multi-Parameter MRI for Evaluating Glymphatic Impairment and White-Matter Abnormalities and Discriminating Refractory Epilepsy in Children
Lu QIU ; Miaoyan WANG ; Surui LIU ; Bo PENG ; Ying HUA ; Jianbiao WANG ; Xiaoyue HU ; Anqi QIU ; Yakang DAI ; Haoxiang JIANG
Korean Journal of Radiology 2025;26(5):485-497
Objective:
To explore glymphatic impairment in pediatric refractory epilepsy (RE) using multi-parameter magnetic resonance imaging (MRI), assess its relationship with white-matter (WM) abnormalities and clinical indicators, and preliminarily evaluate the performance of multi-parameter MRI in discriminating RE from drug-sensitive epilepsy (DSE).
Materials and Methods:
We retrospectively included 70 patients with DSE (mean age, 9.7 ± 3.5 years; male:female, 37:33) and 26 patients with RE (9.0 ± 2.9 years; male:female, 12:14). The diffusion tensor imaging analysis along the perivascular space (DTI-ALPS) index as well as fractional anisotropy (FA), mean diffusivity (MD), and nodal efficiency values were measured and compared between patients with RE and DSE. With sex and age as covariables, differences in the FA and MD values were analyzed using tract-based spatial statistics, and nodal efficiency was analyzed using a linear model. Pearson’s partial correlation was analyzed. Receiver operating characteristic (ROC) curves were used to evaluate the discrimination performance of the MRI-based machine-learning models through five-fold cross-validation.
Results:
In the RE group, FA decreased and MD increased in comparison with the corresponding values in the DSE group, and these differences mainly involved the callosum, right and left corona radiata, inferior and superior longitudinal fasciculus, and posterior thalamic radiation (threshold-free cluster enhancement, P < 0.05). The RE group also showed reduced nodal efficiency, which mainly involved the limbic system, default mode network, and visual network (false discovery rate, P < 0.05), and significantly lower DTI-ALPS index (F = 2.0, P = 0.049). The DTI-ALPS index was positively correlated with FA (0.25 ≤ r ≤ 0.32) and nodal efficiency (0.22 ≤ r ≤ 0.37), and was negatively correlated with the MD (-0.24 ≤ r≤ -0.34) and seizure frequency (r = -0.47). A machine-learning model combining DTI-ALPS, FA, MD, and nodal efficiency achieved a cross-validated ROC curve area of 0.83 (sensitivity, 78.2%; specificity, 84.8%).
Conclusion
Pediatric patients with RE showed impaired glymphatic function in comparison with patients with DSE, which was correlated with WM abnormalities and seizure frequency. Multi-parameter MRI may be feasible for distinguishing RE from DSE.
7.Multi-Parameter MRI for Evaluating Glymphatic Impairment and White-Matter Abnormalities and Discriminating Refractory Epilepsy in Children
Lu QIU ; Miaoyan WANG ; Surui LIU ; Bo PENG ; Ying HUA ; Jianbiao WANG ; Xiaoyue HU ; Anqi QIU ; Yakang DAI ; Haoxiang JIANG
Korean Journal of Radiology 2025;26(5):485-497
Objective:
To explore glymphatic impairment in pediatric refractory epilepsy (RE) using multi-parameter magnetic resonance imaging (MRI), assess its relationship with white-matter (WM) abnormalities and clinical indicators, and preliminarily evaluate the performance of multi-parameter MRI in discriminating RE from drug-sensitive epilepsy (DSE).
Materials and Methods:
We retrospectively included 70 patients with DSE (mean age, 9.7 ± 3.5 years; male:female, 37:33) and 26 patients with RE (9.0 ± 2.9 years; male:female, 12:14). The diffusion tensor imaging analysis along the perivascular space (DTI-ALPS) index as well as fractional anisotropy (FA), mean diffusivity (MD), and nodal efficiency values were measured and compared between patients with RE and DSE. With sex and age as covariables, differences in the FA and MD values were analyzed using tract-based spatial statistics, and nodal efficiency was analyzed using a linear model. Pearson’s partial correlation was analyzed. Receiver operating characteristic (ROC) curves were used to evaluate the discrimination performance of the MRI-based machine-learning models through five-fold cross-validation.
Results:
In the RE group, FA decreased and MD increased in comparison with the corresponding values in the DSE group, and these differences mainly involved the callosum, right and left corona radiata, inferior and superior longitudinal fasciculus, and posterior thalamic radiation (threshold-free cluster enhancement, P < 0.05). The RE group also showed reduced nodal efficiency, which mainly involved the limbic system, default mode network, and visual network (false discovery rate, P < 0.05), and significantly lower DTI-ALPS index (F = 2.0, P = 0.049). The DTI-ALPS index was positively correlated with FA (0.25 ≤ r ≤ 0.32) and nodal efficiency (0.22 ≤ r ≤ 0.37), and was negatively correlated with the MD (-0.24 ≤ r≤ -0.34) and seizure frequency (r = -0.47). A machine-learning model combining DTI-ALPS, FA, MD, and nodal efficiency achieved a cross-validated ROC curve area of 0.83 (sensitivity, 78.2%; specificity, 84.8%).
Conclusion
Pediatric patients with RE showed impaired glymphatic function in comparison with patients with DSE, which was correlated with WM abnormalities and seizure frequency. Multi-parameter MRI may be feasible for distinguishing RE from DSE.
8.Exploration and Practice of Artificial Intelligence Empowering Case-based Teaching in Biochemistry and Molecular Biology
Ying-Lu HU ; Yi-Chen LIN ; Jun-Ming GUO ; Xiao-Dan MENG
Progress in Biochemistry and Biophysics 2025;52(8):2173-2184
In recent years, the deep integration of artificial intelligence (AI) into medical education has created new opportunities for teaching Biochemistry and Molecular Biology, while also offering innovative solutions to the pedagogical challenges associated with protein structure and function. Focusing on the case of anaplastic lymphoma kinase (ALK) gene mutations in non-small-cell lung cancer (NSCLC), this study integrates AI into case-based learning (CBL) to develop an AI-CBL hybrid teaching model. This model features an intelligent case-generation system that dynamically constructs ALK mutation scenarios using real-world clinical data, closely linking molecular biology concepts with clinical applications. It incorporates AI-powered protein structure prediction tools to accurately visualize the three-dimensional structures of both wild-type and mutant ALK proteins, dynamically simulating functional abnormalities resulting from conformational changes. Additionally, a virtual simulation platform replicates the ALK gene detection workflow, bridging theoretical knowledge with practical skills. As a result, a multidimensional teaching system is established—driven by clinical cases and integrating molecular structural analysis with experimental validation. Teaching outcomes indicate that the three-dimensional visualization, dynamic interactivity, and intelligent analytical capabilities provided by AI significantly enhance students’ understanding of molecular mechanisms, classroom engagement, and capacity for innovative research. This model establishes a coherent training pathway linking “fundamental theory-scientific research thinking-clinical practice”, offering an effective approach to addressing teaching challenges and advancing the intelligent transformation of medical education.
9.Construction of Saccharomyces cerevisiae cell factory for efficient biosynthesis of ferruginol.
Mei-Ling JIANG ; Zhen-Jiang TIAN ; Hao TANG ; Xin-Qi SONG ; Jian WANG ; Ying MA ; Ping SU ; Guo-Wei JIA ; Ya-Ting HU ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2025;50(4):1031-1042
Diterpenoid ferruginol is a key intermediate in biosynthesis of active ingredients such as tanshinone and carnosic acid.However, the traditional process of obtaining ferruginol from plants is often cumbersome and inefficient. In recent years, the increasingly developing gene editing technology has been gradually applied to the heterologous production of natural products, but the production of ferruginol in microbe is still very low, which has become an obstacle to the efficient biosynthesis of downstream chemicals, such as tanshinone. In this study, miltiradiene was produced by integrating the shortened diterpene synthase fusion protein,and the key genes in the MVA pathway were overexpressed to improve the yield of miltiradiene. Under the shake flask fermentation condition, the yield of miltiradiene reached about(113. 12±17. 4)mg·L~(-1). Subsequently, this study integrated the ferruginol synthase Sm CYP76AH1 and Sm CPR1 to reconstruct the ferruginol pathway and thereby realized the heterologous synthesis of ferruginol in Saccharomyces cerevisiae. The study selected the best ferruginol synthase(Il CYP76AH46) from different plants and optimized the expression of pathway genes through redox partner engineering to increase the yield of ferruginol. By increasing the copy number of diterpene synthase, CYP450, and CPR, the yield of ferruginol reached(370. 39± 21. 65) mg·L~(-1) in the shake flask, which was increased by 21. 57-fold compared with that when the initial ferruginol strain JMLT05 was used. Finally, 1 083. 51 mg·L~(-1) ferruginol was obtained by fed-batch fermentation, which is the highest yield of ferruginol from biosynthesis so far. This study provides not only research ideas for other metabolic engineering but also a platform for the construction of cell factories for downstream products.
Saccharomyces cerevisiae/genetics*
;
Diterpenes/metabolism*
;
Metabolic Engineering
;
Fermentation
;
Abietanes
10.Prediction of testicular histology in azoospermia patients through deep learning-enabled two-dimensional grayscale ultrasound.
Jia-Ying HU ; Zhen-Zhe LIN ; Li DING ; Zhi-Xing ZHANG ; Wan-Ling HUANG ; Sha-Sha HUANG ; Bin LI ; Xiao-Yan XIE ; Ming-De LU ; Chun-Hua DENG ; Hao-Tian LIN ; Yong GAO ; Zhu WANG
Asian Journal of Andrology 2025;27(2):254-260
Testicular histology based on testicular biopsy is an important factor for determining appropriate testicular sperm extraction surgery and predicting sperm retrieval outcomes in patients with azoospermia. Therefore, we developed a deep learning (DL) model to establish the associations between testicular grayscale ultrasound images and testicular histology. We retrospectively included two-dimensional testicular grayscale ultrasound from patients with azoospermia (353 men with 4357 images between July 2017 and December 2021 in The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China) to develop a DL model. We obtained testicular histology during conventional testicular sperm extraction. Our DL model was trained based on ultrasound images or fusion data (ultrasound images fused with the corresponding testicular volume) to distinguish spermatozoa presence in pathology (SPP) and spermatozoa absence in pathology (SAP) and to classify maturation arrest (MA) and Sertoli cell-only syndrome (SCOS) in patients with SAP. Areas under the receiver operating characteristic curve (AUCs), accuracy, sensitivity, and specificity were used to analyze model performance. DL based on images achieved an AUC of 0.922 (95% confidence interval [CI]: 0.908-0.935), a sensitivity of 80.9%, a specificity of 84.6%, and an accuracy of 83.5% in predicting SPP (including normal spermatogenesis and hypospermatogenesis) and SAP (including MA and SCOS). In the identification of SCOS and MA, DL on fusion data yielded better diagnostic performance with an AUC of 0.979 (95% CI: 0.969-0.989), a sensitivity of 89.7%, a specificity of 97.1%, and an accuracy of 92.1%. Our study provides a noninvasive method to predict testicular histology for patients with azoospermia, which would avoid unnecessary testicular biopsy.
Humans
;
Male
;
Azoospermia/diagnostic imaging*
;
Deep Learning
;
Testis/pathology*
;
Retrospective Studies
;
Adult
;
Ultrasonography/methods*
;
Sperm Retrieval
;
Sertoli Cell-Only Syndrome/diagnostic imaging*


Result Analysis
Print
Save
E-mail