1.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
2.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
3.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
4.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
5.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
6.Development and multicenter validation of machine learning models for predicting postoperative pulmonary complications after neurosurgery.
Ming XU ; Wenhao ZHU ; Siyu HOU ; Hongzhi XU ; Jingwen XIA ; Liyu LIN ; Hao FU ; Mingyu YOU ; Jiafeng WANG ; Zhi XIE ; Xiaohong WEN ; Yingwei WANG
Chinese Medical Journal 2025;138(17):2170-2179
BACKGROUND:
Postoperative pulmonary complications (PPCs) are major adverse events in neurosurgical patients. This study aimed to develop and validate machine learning models predicting PPCs after neurosurgery.
METHODS:
PPCs were defined according to the European Perioperative Clinical Outcome standards as occurring within 7 postoperative days. Data of cases meeting inclusion/exclusion criteria were extracted from the anesthesia information management system to create three datasets: The development (data of Huashan Hospital, Fudan University from 2018 to 2020), temporal validation (data of Huashan Hospital, Fudan University in 2021) and external validation (data of other three hospitals in 2023) datasets. Machine learning models of six algorithms were trained using either 35 retrievable and plausible features or the 11 features selected by Lasso regression. Temporal validation was conducted for all models and the 11-feature models were also externally validated. Independent risk factors were identified and feature importance in top models was analyzed.
RESULTS:
PPCs occurred in 712 of 7533 (9.5%), 258 of 2824 (9.1%), and 207 of 2300 (9.0%) patients in the development, temporal validation and external validation datasets, respectively. During cross-validation training, all models except Bayes demonstrated good discrimination with an area under the receiver operating characteristic curve (AUC) of 0.840. In temporal validation of full-feature models, deep neural network (DNN) performed the best with an AUC of 0.835 (95% confidence interval [CI]: 0.805-0.858) and a Brier score of 0.069, followed by Logistic regression (LR), random forest and XGBoost. The 11-feature models performed comparable to full-feature models with very close but statistically significantly lower AUCs, with the top models of DNN and LR in temporal and external validations. An 11-feature nomogram was drawn based on the LR algorithm and it outperformed the minimally modified Assess respiratory RIsk in Surgical patients in CATalonia (ARISCAT) and Laparoscopic Surgery Video Educational Guidelines (LAS VEGAS) scores with a higher AUC (LR: 0.824, ARISCAT: 0.672, LAS: 0.663). Independent risk factors based on multivariate LR mostly overlapped with Lasso-selected features, but lacked consistency with the important features using the Shapley additive explanation (SHAP) method of the LR model.
CONCLUSIONS:
The developed models, especially the DNN model and the nomogram, had good discrimination and calibration, and could be used for predicting PPCs in neurosurgical patients. The establishment of machine learning models and the ascertainment of risk factors might assist clinical decision support for improving surgical outcomes.
TRIAL REGISTRATION
ChiCTR 2100047474; https://www.chictr.org.cn/showproj.html?proj=128279 .
Adult
;
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Algorithms
;
Lung Diseases/etiology*
;
Machine Learning
;
Neurosurgical Procedures/adverse effects*
;
Postoperative Complications/diagnosis*
;
Risk Factors
;
ROC Curve
7.Analysis of risk factors, pathogenic bacteria characteristics, and drug resistance of postoperative surgical site infection in adults with limb fractures.
Yan-Jun WANG ; Zi-Hou ZHAO ; Shuai-Kun LU ; Guo-Liang WANG ; Shan-Jin MA ; Lin-Hu WANG ; Hao GAO ; Jun REN ; Zhong-Wei AN ; Cong-Xiao FU ; Yong ZHANG ; Wen LUO ; Yun-Fei ZHANG
Chinese Journal of Traumatology 2025;28(4):241-251
PURPOSE:
We carried out the study aiming to explore and analyze the risk factors, the distribution of pathogenic bacteria, and their antibiotic-resistance characteristics influencing the occurrence of surgical site infection (SSI), to provide valuable assistance for reducing the incidence of SSI after traumatic fracture surgery.
METHODS:
A retrospective case-control study enrolling 3978 participants from January 2015 to December 2019 receiving surgical treatment for traumatic fractures was conducted at Tangdu Hospital of Air Force Medical University. Baseline data, demographic characteristics, lifestyles, variables related to surgical treatment, and pathogen culture were harvested and analyzed. Univariate analyses and multivariate logistic regression analyses were used to reveal the independent risk factors of SSI. A bacterial distribution histogram and drug-sensitive heat map were drawn to describe the pathogenic characteristics.
RESULTS:
Included 3978 patients 138 of them developed SSI with an incidence rate of 3.47% postoperatively. By logistic regression analysis, we found that variables such as gender (males) (odds ratio (OR) = 2.012, 95% confidence interval (CI): 1.235 - 3.278, p = 0.005), diabetes mellitus (OR = 5.848, 95% CI: 3.513 - 9.736, p < 0.001), hypoproteinemia (OR = 3.400, 95% CI: 1.280 - 9.031, p = 0.014), underlying disease (OR = 5.398, 95% CI: 2.343 - 12.438, p < 0.001), hormonotherapy (OR = 11.718, 95% CI: 6.269 - 21.903, p < 0.001), open fracture (OR = 29.377, 95% CI: 9.944 - 86.784, p < 0.001), and intraoperative transfusion (OR = 2.664, 95% CI: 1.572 - 4.515, p < 0.001) were independent risk factors for SSI, while, aged over 59 years (OR = 0.132, 95% CI: 0.059 - 0.296, p < 0.001), prophylactic antibiotics use (OR = 0.082, 95% CI: 0.042 - 0.164, p < 0.001) and vacuum sealing drainage use (OR = 0.036, 95% CI: 0.010 - 0.129, p < 0.001) were protective factors. Pathogens results showed that 301 strains of 38 species of bacteria were harvested, among which 178 (59.1%) strains were Gram-positive bacteria, and 123 (40.9%) strains were Gram-negative bacteria. Staphylococcus aureus (108, 60.7%) and Enterobacter cloacae (38, 30.9%) accounted for the largest proportion. The susceptibility of Gram-positive bacteria to Vancomycin and Linezolid was almost 100%. The susceptibility of Gram-negative bacteria to Imipenem, Amikacin, and Meropenem exceeded 73%.
CONCLUSION
Orthopedic surgeons need to develop appropriate surgical plans based on the risk factors and protective factors associated with postoperative SSI to reduce its occurrence. Meanwhile, it is recommended to strengthen blood glucose control in the early stage of admission and for surgeons to be cautious and scientific when choosing antibiotic therapy in clinical practice.
Humans
;
Surgical Wound Infection/epidemiology*
;
Male
;
Female
;
Risk Factors
;
Retrospective Studies
;
Middle Aged
;
Adult
;
Case-Control Studies
;
Fractures, Bone/surgery*
;
Aged
;
Drug Resistance, Bacterial
;
Logistic Models
;
Anti-Bacterial Agents/therapeutic use*
;
Incidence
;
Bacteria/drug effects*
8.The Effect of Mitochondrial Damage in Chondrocytes on Osteoarthritis
Zhen-Wei LI ; Jing-Yu HOU ; Yu-Ze LIN ; Zhi-Qi ZHANG ; Shang-Yi LIU ; Xiao-Wen LIU ; Kang-Quan SHOU
Progress in Biochemistry and Biophysics 2024;51(7):1576-1588
The pathogenesis of osteoarthritis (OA) is related to a variety of factors such as mechanical overload, metabolic dysfunction, aging, etc., and is a group of total joint diseases characterized by intra-articular chondrocyte apoptosis, cartilage fibrillations, synovial inflammation, and osteophyte formation. At present, the treatment methods for osteoarthritis include glucosamine, non-steroidal anti-inflammatory drugs, intra-articular injection of sodium hyaluronate, etc., which are difficult to take effect in a short period of time and require long-term treatment, so the patients struggle to adhere to doctor’s advice. Some methods can only provide temporary relief without chondrocyte protection, and some even increase the risk of cardiovascular disease and gastrointestinal disease. In the advanced stages of OA, patients often have to undergo joint replacement surgery due to pain and joint dysfunction. Mitochondrial dysfunction plays an important role in the development of OA. It is possible to improve mitochondrial biogenesis, quality control, autophagy balance, and oxidative stress levels, thereby exerting a protective effect on chondrocytes in OA. Therefore, compared to traditional treatments, improving mitochondrial function may be a potential treatment for OA. Here, we collected relevant literature on mitochondrial research in OA in recent years, summarized the potential pathogenic factors that affect the development of OA through mitochondrial pathways, and elaborated on relevant treatment methods, in order to provide new diagnostic and therapeutic ideas for the research field of osteoarthritis.
9.Expert consensus on digital intraoral scanning technology
Jie YOU ; Wenjuan YAN ; Liting LIN ; Wen-Zhen GU ; Yarong HOU ; Wei XIAO ; Hui YAO ; Yaner LI ; Lihui MA ; Ruini ZHAO ; Junqi QIU ; Jianzhang LIU ; Yi ZHOU
Journal of Prevention and Treatment for Stomatological Diseases 2024;32(8):569-577
Digital intraoral scanning is a hot topic in the field of oral digital technology.In recent years,digital intra-oral scanning has gradually become the mainstream technology in orthodontics,prosthodontics,and implant dentistry.The precision of digital intraoral scanning and the accuracy and stitching of data collection are the keys to the success of the impression.However,the operators are less familiar with the intraoral scanning characteristics,imaging process-ing,operator scanning method,oral tissue specificity of the scanned object,and restoration design.Thus far,no unified standard and consensus on digital intraoral scanning technology has been achieved at home or abroad.To deal with the problems encountered in oral scanning and improve the quality of digital scanning,we collected common expert opin-ions and sought to expound the causes of scanning errors and countermeasures by summarizing the existing evidence.We also describe the scanning strategies under different oral impression requirements.The expert consensus is that due to various factors affecting the accuracy of digital intraoral scanning and the reproducibility of scanned images,adopting the correct scanning trajectory can shorten clinical operation time and improve scanning accuracy.The scanning trajec-tories mainly include the E-shaped,segmented,and S-shaped methods.When performing fixed denture restoration,it is recommended to first scan the abutment and adjacent teeth.When performing fixed denture restoration,it is recommend-ed to scan the abutment and adjacent teeth first.Then the cavity in the abutment area is excavated.Lastly,the cavity gap was scanned after completing the abutment preparation.This method not only meets clinical needs but also achieves the most reliable accuracy.When performing full denture restoration in edentulous jaws,setting markers on the mucosal tissue at the bottom of the alveolar ridge,simultaneously capturing images of the vestibular area,using different types of scanning paths such as Z-shaped,S-shaped,buccal-palatal and palatal-buccal pathways,segmented scanning of dental arches,and other strategies can reduce scanning errors and improve image stitching and overlap.For implant restora-tion,when a single crown restoration is supported by implants and a small span upper structure restoration,it is recom-mended to first pre-scan the required dental arch.Then the cavity in the abutment area is excavated.Lastly,scanning the cavity gap after installing the implant scanning rod.When repairing a bone level implant crown,an improved indi-rect scanning method can be used.The scanning process includes three steps:First,the temporary restoration,adjacent teeth,and gingival tissue in the mouth are scanned;second,the entire dental arch is scanned after installing a standard scanning rod on the implant;and third,the temporary restoration outside the mouth is scanned to obtain the three-di-mensional shape of the gingival contour of the implant neck,thereby increasing the stability of soft tissue scanning around the implant and improving scanning restoration.For dental implant fixed bridge repair with missing teeth,the mobility of the mucosa increases the difficulty of scanning,making it difficult for scanners to distinguish scanning rods of the same shape and size,which can easily cause image stacking errors.Higher accuracy of digital implant impres-sions can be achieved by changing the geometric shape of the scanning rods to change the optical curvature radius.The consensus confirms that as the range of scanned dental arches and the number of data concatenations increases,the scanning accuracy decreases accordingly,especially when performing full mouth implant restoration impressions.The difficulty of image stitching processing can easily be increased by the presence of unstable and uneven mucosal mor-phology inside the mouth and the lack of relatively obvious and fixed reference objects,which results in insufficient ac-curacy.When designing restorations of this type,it is advisable to carefully choose digital intraoral scanning methods to obtain model data.It is not recommended to use digital impressions when there are more than five missing teeth.
10.The Cell Division Cycle 73(Cdc73)Deletion Mutant Inhibits Sexual Reproduction and Mitosis of Fission Yeast Cells
Meng-Nan LIU ; Xin BAI ; Wen YU ; Xin-Lin LI ; Xiang DING ; Yi-Ling HOU
Chinese Journal of Biochemistry and Molecular Biology 2024;40(6):807-818
The cdc73(cell division cycle 73)gene encodes the RNA polymerase Ⅱ cofactor Cdc73 in fis-sion yeast(Schizosaccharomyces Pombe),and is involved in G2 checkpoint activation and regulates the cell cycle.However,whether Cdc73 regulates cell mitotic dynamics is unknown.In this study,fluores-cent protein labeling and live cell imaging techniques were used to investigate the effects of cdc73 deletion on sexual reproduction and the dynamics of microtubules,actin,mitochondria,and histones during mito-sis.The results showed that in sexual reproduction,cdc73 deletion resulted in a 14.23%increase in the length of ascospores and a 64.08%decrease in the number of cells producing four spores.Analysis of the live cell imaging results revealed that,in mitosis,the elongation length of microtubules in anaphase was shortened by 11.21%,and the elongation time was reduced by 17.39%;the formation and contraction rates of actin rings decreased by 33.33%and 26.09%,respectively,and the formation and contraction times were prolonged by 58.00%and 40.38%,respectively.Meanwhile,the expression levels of actin ring,mitochondrion,and histones also increased.This study revealed the cdc73 deletion inhibits spindle elongation and delays actin ring formation and contraction in mitosis,which provides some scientific basis for further exploring the involvement of Cdc73 in regulating microtubule and actin dynamics in cell divi-sion.


Result Analysis
Print
Save
E-mail