1.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
2.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
3.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
4.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
5.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
6.Research status of AQP5 regulation of programmed cell death in chronic obstructive pulmonary disease
Cheng-Cai YUN ; Li-Ying ZHANG ; Hong-Dou HOU ; Huan-Huan ZHANG ; Zhang-Bo SONG ; Wen-Xing YONG
The Chinese Journal of Clinical Pharmacology 2024;40(14):2134-2138
Aquaporin 5(AQP5),as the main water transport protein in the body,can regulate lung diseases by regulating airway mucus secretion,pulmonary inflammation,and lung function.Programmed cell death(PCD)plays a crucial role in chronic obstructive pulmonary disease(COPD).AQP5 may affect the development of COPD by regulating PCDs.This article reviews the molecular regulatory mechanism of AQP5 on apoptosis,autophagy,iron death and pyroptosis in PCDs in recent years,and further discusses its effect on COPD in order to provide theoretical support for clinical prevention and treatment of COPD.
7.Overview of epigenetic degraders based on PROTAC, molecular glue, and hydrophobic tagging technologies.
Xiaopeng PENG ; Zhihao HU ; Limei ZENG ; Meizhu ZHANG ; Congcong XU ; Benyan LU ; Chengpeng TAO ; Weiming CHEN ; Wen HOU ; Kui CHENG ; Huichang BI ; Wanyi PAN ; Jianjun CHEN
Acta Pharmaceutica Sinica B 2024;14(2):533-578
Epigenetic pathways play a critical role in the initiation, progression, and metastasis of cancer. Over the past few decades, significant progress has been made in the development of targeted epigenetic modulators (e.g., inhibitors). However, epigenetic inhibitors have faced multiple challenges, including limited clinical efficacy, toxicities, lack of subtype selectivity, and drug resistance. As a result, the design of new epigenetic modulators (e.g., degraders) such as PROTACs, molecular glue, and hydrophobic tagging (HyT) degraders has garnered significant attention from both academia and pharmaceutical industry, and numerous epigenetic degraders have been discovered in the past decade. In this review, we aim to provide an in-depth illustration of new degrading strategies (2017-2023) targeting epigenetic proteins for cancer therapy, focusing on the rational design, pharmacodynamics, pharmacokinetics, clinical status, and crystal structure information of these degraders. Importantly, we also provide deep insights into the potential challenges and corresponding remedies of this approach to drug design and development. Overall, we hope this review will offer a better mechanistic understanding and serve as a useful guide for the development of emerging epigenetic-targeting degraders.
8.Protective loop ileostomy or colostomy? A risk evaluation of all common complications
Yi-Wen YANG ; Sheng-Chieh HUANG ; Hou-Hsuan CHENG ; Shih-Ching CHANG ; Jeng-Kai JIANG ; Huann-Sheng WANG ; Chun-Chi LIN ; Hung-Hsin LIN ; Yuan-Tzu LAN
Annals of Coloproctology 2024;40(6):580-587
Purpose:
Protective ileostomy and colostomy are performed in patients undergoing low anterior resection with a high leakage risk. We aimed to compare surgical, medical, and daily care complications between these 2 ostomies in order to make individual choice.
Methods:
Patients who underwent low anterior resection for rectal tumors with protective stomas between January 2011 and September 2018 were enrolled. Stoma-related complications were prospectively recorded by wound, ostomy, and continence nurses. The cancer stage and treatment data were obtained from the Taiwan Cancer Database of our Big Data Center. Other demographic data were collected retrospectively from medical notes. The complications after stoma creation and after the stoma reversal were compared.
Results:
There were 176 patients with protective colostomy and 234 with protective ileostomy. Protective ileostomy had higher proportions of high output from the stoma for 2 consecutive days than protective colostomy (11.1% vs. 0%, P<0.001). Protective colostomy resulted in more stoma retraction than protective ileostomy (21.6% vs. 9.4%, P=0.001). Female, open operation, ileostomy, and carrying stoma more than 4 months were also significantly associated with a higher risk of stoma-related complications during diversion. For stoma retraction, the multivariate analysis revealed that female (odds ratio [OR], 4.00; 95% confidence interval [CI], 2.13–7.69; P<0.001) and long diversion duration (≥4 months; OR, 2.33; 95% CI, 1.22–4.43; P=0.010) were independent risk factors, but ileostomy was an independent favorable factor (OR, 0.40; 95% CI, 0.22–0.72; P=0.003). The incidence of complication after stoma reversal did not differ between colostomy group and ileostomy group (24.3% vs. 20.9%, P=0.542).
Conclusion
We suggest avoiding colostomy in patients who are female and potential prolonged diversion when stoma retraction is a concern. Otherwise, ileostomy should be avoided for patients with impaired renal function. Wise selection and flexibility are more important than using one type of stoma routinely.
9.Protective loop ileostomy or colostomy? A risk evaluation of all common complications
Yi-Wen YANG ; Sheng-Chieh HUANG ; Hou-Hsuan CHENG ; Shih-Ching CHANG ; Jeng-Kai JIANG ; Huann-Sheng WANG ; Chun-Chi LIN ; Hung-Hsin LIN ; Yuan-Tzu LAN
Annals of Coloproctology 2024;40(6):580-587
Purpose:
Protective ileostomy and colostomy are performed in patients undergoing low anterior resection with a high leakage risk. We aimed to compare surgical, medical, and daily care complications between these 2 ostomies in order to make individual choice.
Methods:
Patients who underwent low anterior resection for rectal tumors with protective stomas between January 2011 and September 2018 were enrolled. Stoma-related complications were prospectively recorded by wound, ostomy, and continence nurses. The cancer stage and treatment data were obtained from the Taiwan Cancer Database of our Big Data Center. Other demographic data were collected retrospectively from medical notes. The complications after stoma creation and after the stoma reversal were compared.
Results:
There were 176 patients with protective colostomy and 234 with protective ileostomy. Protective ileostomy had higher proportions of high output from the stoma for 2 consecutive days than protective colostomy (11.1% vs. 0%, P<0.001). Protective colostomy resulted in more stoma retraction than protective ileostomy (21.6% vs. 9.4%, P=0.001). Female, open operation, ileostomy, and carrying stoma more than 4 months were also significantly associated with a higher risk of stoma-related complications during diversion. For stoma retraction, the multivariate analysis revealed that female (odds ratio [OR], 4.00; 95% confidence interval [CI], 2.13–7.69; P<0.001) and long diversion duration (≥4 months; OR, 2.33; 95% CI, 1.22–4.43; P=0.010) were independent risk factors, but ileostomy was an independent favorable factor (OR, 0.40; 95% CI, 0.22–0.72; P=0.003). The incidence of complication after stoma reversal did not differ between colostomy group and ileostomy group (24.3% vs. 20.9%, P=0.542).
Conclusion
We suggest avoiding colostomy in patients who are female and potential prolonged diversion when stoma retraction is a concern. Otherwise, ileostomy should be avoided for patients with impaired renal function. Wise selection and flexibility are more important than using one type of stoma routinely.
10.Protective loop ileostomy or colostomy? A risk evaluation of all common complications
Yi-Wen YANG ; Sheng-Chieh HUANG ; Hou-Hsuan CHENG ; Shih-Ching CHANG ; Jeng-Kai JIANG ; Huann-Sheng WANG ; Chun-Chi LIN ; Hung-Hsin LIN ; Yuan-Tzu LAN
Annals of Coloproctology 2024;40(6):580-587
Purpose:
Protective ileostomy and colostomy are performed in patients undergoing low anterior resection with a high leakage risk. We aimed to compare surgical, medical, and daily care complications between these 2 ostomies in order to make individual choice.
Methods:
Patients who underwent low anterior resection for rectal tumors with protective stomas between January 2011 and September 2018 were enrolled. Stoma-related complications were prospectively recorded by wound, ostomy, and continence nurses. The cancer stage and treatment data were obtained from the Taiwan Cancer Database of our Big Data Center. Other demographic data were collected retrospectively from medical notes. The complications after stoma creation and after the stoma reversal were compared.
Results:
There were 176 patients with protective colostomy and 234 with protective ileostomy. Protective ileostomy had higher proportions of high output from the stoma for 2 consecutive days than protective colostomy (11.1% vs. 0%, P<0.001). Protective colostomy resulted in more stoma retraction than protective ileostomy (21.6% vs. 9.4%, P=0.001). Female, open operation, ileostomy, and carrying stoma more than 4 months were also significantly associated with a higher risk of stoma-related complications during diversion. For stoma retraction, the multivariate analysis revealed that female (odds ratio [OR], 4.00; 95% confidence interval [CI], 2.13–7.69; P<0.001) and long diversion duration (≥4 months; OR, 2.33; 95% CI, 1.22–4.43; P=0.010) were independent risk factors, but ileostomy was an independent favorable factor (OR, 0.40; 95% CI, 0.22–0.72; P=0.003). The incidence of complication after stoma reversal did not differ between colostomy group and ileostomy group (24.3% vs. 20.9%, P=0.542).
Conclusion
We suggest avoiding colostomy in patients who are female and potential prolonged diversion when stoma retraction is a concern. Otherwise, ileostomy should be avoided for patients with impaired renal function. Wise selection and flexibility are more important than using one type of stoma routinely.

Result Analysis
Print
Save
E-mail