1.Reducing Healing Period with DDM/rhBMP-2 Grafting for Early Loading in Dental Implant Surgery
Jeong-Kui KU ; Jung-Hoon LIM ; Jung-Ah LIM ; In-Woong UM ; Yu-Mi KIM ; Pil-Young YUN
Tissue Engineering and Regenerative Medicine 2025;22(2):261-271
Background:
Traditionally, dental implants require a healing period of 4 to 9 months for osseointegration, with longer recovery times considered when bone grafting is needed. This retrospective study evaluates the clinical efficacy of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) during dental implant placement to expedite the osseointegration period for early loading.
Methods:
Thirty patients (17 male, 13 female; mean age 55.0 ± 8.8 years) requiring bone grafts due to implant fixture exposure (more than four threads; ≥ 3.2 mm) were included, with a total of 96 implants placed. Implants were inserted using a two-stage protocol with DDM/rhBMP-2 grafts. Early loading was initiated at two months postoperatively in the mandible and three months in the maxilla. Clinical outcomes evaluated included primary and secondary stability (implant stability quotient values), healing period, bone width, and marginal bone level assessed via cone-beam computed tomography.
Results:
All implants successfully supported final prosthetics with a torque of 50Ncm, without any osseointegration failures. The average healing period was 69.6 days in the mandible and 90.5 days in the maxilla, with significantly higher secondary stability in the mandible (80.7 ± 6.7) compared to the maxilla (73.0 ± 9.2, p < 0.001). Histological analysis confirmed new bone formation and vascularization.
Conclusion
DDM/rhBMP-2 grafting appears to significantly reduce the healing period, enabling early loading with stable and favorable clinical outcomes.
2.Regenerative Capacity of Alveolar Type 2 Cells Is Proportionally Reduced Following Disease Progression in Idiopathic Pulmonary Fibrosis-Derived Organoid Cultures
Hyeon Kyu CHOI ; Gaeul BANG ; Ju Hye SHIN ; Mi Hwa SHIN ; Ala WOO ; Song Yee KIM ; Sang Hoon LEE ; Eun Young KIM ; Hyo Sup SHIM ; Young Joo SUH ; Ha Eun KIM ; Jin Gu LEE ; Jinwook CHOI ; Ju Hyeon LEE ; Chul Hoon KIM ; Moo Suk PARK
Tuberculosis and Respiratory Diseases 2025;88(1):130-137
Background:
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that culminates in respiratory failure and death due to irreversible scarring of the distal lung. While initially considered a chronic inflammatory disorder, the aberrant function of the alveolar epithelium is now acknowledged as playing a central role in the pathophysiology of IPF. This study aimed to investigate the regenerative capacity of alveolar type 2 (AT2) cells using IPF-derived alveolar organoids and to examine the effects of disease progression on this capacity.
Methods:
Lung tissues from three pneumothorax patients and six IPF patients (early and advanced stages) were obtained through video-assisted thoracoscopic surgery and lung transplantation. HTII-280+ cells were isolated from CD31-CD45-epithelial cell adhesion molecule (EpCAM)+ cells in the distal lungs of IPF and pneumothorax patients using fluorescence-activated cell sorting (FACS) and resuspended in 48-well plates to establish IPF-derived alveolar organoids. Immunostaining was used to verify the presence of AT2 cells.
Results:
FACS sorting yielded approximately 1% of AT2 cells in early IPF tissue, and the number decreased as the disease progressed, in contrast to 2.7% in pneumothorax. Additionally, the cultured organoids in the IPF groups were smaller and less numerous compared to those from pneumothorax patients. The colony forming efficiency decreased as the disease advanced. Immunostaining results showed that the IPF organoids expressed less surfactant protein C (SFTPC) compared to the pneumothorax group and contained keratin 5+ (KRT5+) cells.
Conclusion
This study confirmed that the regenerative capacity of AT2 cells in IPF decreases as the disease progresses, with IPF-derived AT2 cells inherently exhibiting functional abnormalities and altered differentiation plasticity.
3.Feasibility of a Machine Learning Classifier for Predicting Post-Induction Hypotension in Non-Cardiac Surgery
Insun PARK ; Jae Hyon PARK ; Young Hyun KOO ; Chang-Hoon KOO ; Bon-Wook KOO ; Jin-Hee KIM ; Ah-Young OH
Yonsei Medical Journal 2025;66(3):160-171
Purpose:
To develop a machine learning (ML) classifier for predicting post-induction hypotension (PIH) in non-cardiac surgeries.
Materials and Methods:
Preoperative data and early vital signs were obtained from 3669 cases in the VitalDB database, an opensource registry. PIH was defined as sustained mean arterial pressure (MAP) <65 mm Hg within 20 minutes since induction or from induction to incision. Six different ML algorithms were used to create binary classifiers to predict PIH. The primary outcome was the area under the receiver operating characteristic curve (AUROC) of ML classifiers.
Results:
A total of 2321 (63.3%) cases exhibited PIH. Among ML classifiers, the random forest regressor and extremely gradient boosting regressor showed the highest AUROC, both recording a value of 0.772. Excluding these models, the light gradient boosting machine regressor showed the second highest AUROC [0.769; 95% confidence interval (CI), 0.767–0.771], followed by the gradient boosting regressor (0.768; 95% CI, 0.763–0.772), AdaBoost regressor (0.752; 95% CI, 0.743–0.761), and automatic relevance determination regression (0.685; 95% CI, 0.669–0.701). The top three important features were mean diastolic blood pressure (DBP), minimum MAP, and minimum DBP from anesthetic induction to tracheal intubation, and these features were lower in cases with PIH (all p<0.001).
Conclusion
ML classifiers exhibited moderate performance in predicting PIH, and have the potential for real-time prediction.
4.Identification of new biomarkers of hepatic cancer stem cells through proteomic profiling
Sung Hoon CHOI ; Ha Young LEE ; Sung Ho YUN ; Sung Jae JANG ; Seung Up KIM ; Jun Yong PARK ; Sang Hoon AHN ; Do Young KIM
Journal of Liver Cancer 2025;25(1):123-133
Background:
s/Aims: In hepatocellular carcinoma (HCC), which exhibits high mortality and recurrence rates globally, the traits of cancer stem cells (CSCs) that significantly influence recurrence and metastasis are not well understood. CSCs are self-renewing cell types identified in most liquid and solid cancers, contributing to tumor initiation, growth, resistance, recurrence, and metastasis following chemo-radiotherapy or trans-arterial chemoembolization therapy.
Methods:
CSCs are classified based on the expression of cell surface markers such as CD133, which varies depending on the tumor type. Proteomic analysis of liver cancer cell lines with cancer stem cell potential and HCC cancer cell lines lacking stem cell propensity was conducted to compare and analyze specific expression patterns.
Results:
Proteomic profiling and enrichment analysis revealed higher expression of the calcium-binding protein S100 family in CD133+ Huh7 cells than in CD133- or wild-type cells. Furthermore, elevated expression of S100 family members was confirmed in an actual CD133+ liver cancer cell line via protein-protein network analysis and quantitative polymerase chain reaction (qPCR).
Conclusion
The S100 family members are not only new markers of cancer stem cells but will also assist in identifying new treatment strategies for CSC metastasis and tumor advancement.
5.2025 Seoul Consensus on Clinical Practice Guidelines for Irritable Bowel Syndrome
Yonghoon CHOI ; Young Hoon YOUN ; Seung Joo KANG ; Jeong Eun SHIN ; Young Sin CHO ; Yoon Suk JUNG ; Seung Yong SHIN ; Cheal Wung HUH ; Yoo Jin LEE ; Hoon Sup KOO ; Kwangwoo NAM ; Hong Sub LEE ; Dong Hyun KIM ; Ye Hyun PARK ; Min Cheol KIM ; Hyo Yeop SONG ; Sung-Hoon YOON ; Sang Yeol LEE ; Miyoung CHOI ; Moo-In PARK ; In-Kyung SUNG ;
Journal of Neurogastroenterology and Motility 2025;31(2):133-169
Irritable bowel syndrome (IBS) is a chronic, disabling, and functional bowel disorder that significantly affects social functioning and reduces quality of life and increases social costs. The Korean Society of Neurogastroenterology and Motility published clinical practice guidelines on the management of IBS based on a systematic review of the literature in 2017, and planned to revise these guidelines in light of new evidence on the pathophysiology, diagnosis, and management of IBS. The current revised version of the guidelines is consistent with the previous version and targets adults diagnosed with or suspected of having IBS. These guidelines were developed using a combination of de novo and adaptation methods, with analyses of existing guidelines and discussions within the committee, leading to the identification of key clinical questions. Finally, the guidelines consisted of 22 recommendations, including 3 concerning the definition and risk factors of IBS, 4 regarding diagnostic modalities and strategies, 2 regarding general management, and 13 regarding medical treatment. For each statement, the advantages, disadvantages, and precautions were thoroughly detailed. The modified Delphi method was used to achieve expert consensus to adopt the core recommendations of the guidelines. These guidelines serve as a reference for clinicians (including primary care physicians, general healthcare providers, medical students, residents, and other healthcare professionals) and patients, helping them to make informed decisions regarding IBS management.
6.Randomized Multicenter Study to Evaluate the Efficacy and Safety of Fexuprazan According to the Timing of Dosing in Patients With Erosive Esophagitis
Sang Pyo LEE ; In-Kyung SUNG ; Oh Young LEE ; Myung-Gyu CHOI ; Kyu Chan HUH ; Jae-Young JANG ; Hoon Jai CHUN ; Joong-Goo KWON ; Gwang Ha KIM ; Nayoung KIM ; Poong-Lyul RHEE ; Sang Gyun KIM ; Hwoon-Yong JUNG ; Joon Seong LEE ; Yong Chan LEE ; Hye-Kyung JUNG ; Jae Gyu KIM ; Sung Kook KIM ; Chong-il SOHN
Journal of Neurogastroenterology and Motility 2025;31(1):86-94
Background/Aims:
Fexuprazan, a novel potassium-competitive acid blocker, was developed for treating acid-related disorders. Pharmacokinetic and pharmacodynamic properties of fexuprazan, unlike those of proton pump inhibitors, are independent of food effect. This study aims to evaluate differences in efficacy and safety of fexuprazan in patients with erosive esophagitis (EE) according to the timing of dosing.
Methods:
In this multicenter, open-label noninferiority study, patients who had typical reflux symptoms with endoscopically confirmed EE were randomized 1:1 to receive fexuprazan 40 mg daily 30 minutes before or after meal. Treatment was completed after 2 weeks or 4 weeks when healing was endoscopically confirmed. The primary endpoint was the proportion of patients with healed EE confirmed by endoscopy up to week 4. Safety endpoints included treatment-emergent adverse events (TEAEs).
Results:
In the prior-to-meal group (n = 89) and after-meal group (n = 86), 4-week EE healing rates were 98.77% and 100.00% (difference, 0.01%; 95% CI, –0.01% to 0.04%) and 2-week EE healing rates were 95.77% and 97.14% (difference, 0.01%; 95% CI, –0.05% to 0.07%), respectively. TEAEs were 9.78% and 8.70% in the prior-to-meal group and the after-meal group, respectively.
Conclusions
Non-inferiority analysis revealed that taking fexuprazan after meal was non-inferior to taking fexuprazan before meals in patients with EE. The frequency of adverse events was similar between the 2 study groups. The drug is safe and effective for healing EE regardless of the timing of dosing.
7.A Novel Histone Deacetylase 6 Inhibitor, 4-FHA, Improves Scopolamine-Induced Cognitive and Memory Impairment in Mice
Jee-Yeon SEO ; Jisoo KIM ; Yong-Hyun KO ; Bo-Ram LEE ; Kwang-Hyun HUR ; Young Hoon JUNG ; Hyun-Ju PARK ; Seok-Yong LEE ; Choon-Gon JANG
Biomolecules & Therapeutics 2025;33(2):268-277
Although histone deacetylase 6 (HDAC6) is considered a therapeutic target for Alzheimer’s disease (AD), its role in cholinergic dysfunction in AD patients remains unclear. This study investigated the effects of (E)-3-(2-(4-fluorostyryl)thiazol-4-yl)-N-hydroxypropanamide (4-FHA), a new synthetic HDAC6 inhibitor, on cognitive and memory impairments in a scopolamine-induced-AD mouse model. Behaviorally, 4-FHA improved scopolamine-induced memory impairments in the Y-maze, passive avoidance, and Morris water maze tests. In addition, 4-FHA ameliorated scopolamine-induced cognitive impairments in the novel object recognition and place recognition tests. Furthermore, 4-FHA increased acetylation of α-tubulin (a major HDAC6 substrate); the expression of BDNF; and the phosphorylation of ERK 1/2, CREB, and ChAT in the hippocampus of scopolamine-treated mice. In summary, according to our data 4-FHA, an HDAC6 inhibitor, improved the cognitive and memory deficits of the AD mouse model by normalizing BDNF signaling and synaptic transmission, suggesting that 4-FHA might be a potential therapeutic candidate for AD.
8.Paeoniflorin Protects Retinal Pigment Epithelial Cells from High Glucose-Induced Oxidative Damage by Activating Nrf2-Mediated HO-1 Signaling
Cheol PARK ; Hee-Jae CHA ; Su Hyun HONG ; Jeong Sook NOH ; Sang Hoon HONG ; Gi Young KIM ; Jung-Hyun SHIM ; Jin Won HYUN ; Yung Hyun CHOI
Biomolecules & Therapeutics 2025;33(3):518-528
Oxidative stress due to hyperglycemia damages the functions of retinal pigment epithelial (RPE) cells and is a major risk factor for diabetic retinopathy (DR). Paeoniflorin is a monoterpenoid glycoside found in the roots of Paeonia lactiflora Pall and has been reported to have a variety of health benefits. However, the mechanisms underlying its therapeutic effects on high glucose (HG)-induced oxidative damage in RPE cells are not fully understood. In this study, we investigated the protective effect of paeoniflorin against HG-induced oxidative damage in cultured human RPE ARPE-19 cells, an in vitro model of hyperglycemia. Pretreatment with paeoniflorin markedly reduced HG-induced cytotoxicity and DNA damage. Paeoniflorin inhibited HG-induced apoptosis by suppressing activation of the caspase cascade, and this suppression was associated with the blockade of cytochrome c release to cytoplasm by maintaining mitochondrial membrane stability. In addition, paeoniflorin suppressed the HG-induced production of reactive oxygen species (ROS), increased the phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2), a key redox regulator, and the expression of its downstream factor heme oxygenase-1 (HO-1). On the other hand, zinc protoporphyrin (ZnPP), an inhibitor of HO-1, abolished the protective effect of paeoniflorin against ROS production in HG-treated cells. Furthermore, ZnPP reversed the protective effects of paeoniflorin against HG-induced cellular damage and induced mitochondrial damage, DNA injury, and apoptosis in paeoniflorin-treated cells. These results suggest that paeoniflorin protects RPE cells from HG-mediated oxidative stress-induced cytotoxicity by activating Nrf2/HO-1 signaling and highlight the potential therapeutic use of paeoniflorin to improve the symptoms of DR.
9.Microplastics Accumulation Induces Kynurenine-Derived Neurotoxicity in Cerebral Organoids and Mouse Brain
Sung Bum PARK ; Jeong Hyeon JO ; Seong Soon KIM ; Won Hoon JUNG ; Myung-Ae BAE ; Byumseok KOH ; Ki Young KIM
Biomolecules & Therapeutics 2025;33(3):447-457
Microplastics (MP) are pervasive environmental pollutants with potential adverse effects on human health, particularly concerning neurotoxicity. This study investigates the accumulation and neurotoxic effects of MP in cerebral organoids and mouse brains. Utilizing in vitro cerebral organoids and in vivo mouse models, we examined the penetration of MP, revealing that smaller MP (50 nm) infiltrated deeper into the organoids compared to larger ones (100 nm). Exposure to 50 nm MP resulted in a significant reduction in organoid viability. Furthermore, total RNA sequencing indicated substantial alterations in neurotoxicity-related gene expression.In vivo, MP-treated mice exhibited notable DNA fragmentation in the hippocampus and cortex, alongside elevated levels of inflammatory markers and neurotoxic metabolites, such as kynurenine (KYN) and 3-hydroxykynurenine (3-HK). Our findings suggest that MP may promote neurotoxicity through the kynurenine pathway, leading to heightened levels of neurotoxic compounds like quinolinic acid. This research highlights the potential for MP to induce neuroinflammatory responses and disrupt normal brain function, underscoring the need for further investigation into the long-term effects of MP exposure on neurological health.

Result Analysis
Print
Save
E-mail