1.Exploration of the Application of Fengfu (GV 16) Acupoint in BIAN Que Heart Book (《扁鹊心书》)
Yawei ZHAO ; Haoying LI ; Lintong WEN ; Hefei WANG ; Wei WANG ; Hongyu WU ; Shijiang SUN
Journal of Traditional Chinese Medicine 2025;66(1):98-101
By examining the records related to the Fengfu (GV 16) acupoint in BIAN Que Heart Book (《扁鹊心书》) compiled by the Song Dynasty physician DOU Cai, this study analyzed various aspects, including the differentiation of conditions treated with Fengfu (GV 16) acupoint, the theoretical foundation for selection of Fengfu (GV 16) acupoint, the application of needling manipulation, and the sensation of obtaining qi during acupuncture. The findings suggest that DOU Cai's approach to utilizing Fengfu (GV 16) acupoint differs from traditional methods, particularly emphasizing the effectiveness of achieving a sensation of heat and numbness. His unique techniques include transverse insertion at Fengfu (GV 16) acupoint and penetrated insertion to Fengchi (GB 20) and Yifeng (TE 17) acupoints. The records of Fengfu (GV 16) acupoint in BIAN Que Heart Book provide a valuable reference for its modern clinical application and further development.
2.2,3,5,4′-tetrahydroxyldiphenylethylene-2-O-glucoside Attenuates Cerebral Ischemia-reperfusion Injury via PINK1/LETM1 Signaling Pathway
Hongyu ZENG ; Kaimei TAN ; Feng QIU ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Chang LEI ; Hongqing ZHAO ; Yuhong WANG ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):145-154
ObjectiveTo investigate the mechanism by which 2,3,5,4'-tetrahydroxyldiphenylethylene-2-O-glucoside (THSG) mitigates cerebral ischemia/reperfusion (CI/R) injury by regulating mitochondrial calcium overload and promoting mitophagy. MethodsSixty male SD rats were randomized into sham, model, SAS (40 mg·kg-1), and low-, medium- and high-dose (10, 20, 40 mg·kg-1, respectively) THSG groups, with 10 rats in each group. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the modified Longa suture method. An oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed in PC12 cells. Neurological deficits were assessed via Zea Longa scoring, and cerebral infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Structural and functional changes of cortical neurons in MCAO/R rats were assessed by hematoxylin-eosin and Nissl staining. PC12 cell viability was detected by cell counting kit-8 (CCK-8) assay, and mitochondrial calcium levels were quantified by Rhod-2 AM. Immunofluorescence was used to detect co-localization of PTEN-induced kinase 1 (PINK1) and leucine zipper/EF-hand-containing transmembrane protein 1 (LETM1) in neurons. Transmission electron microscopy (TEM) was employed to observe mitochondrial morphology in neurons. Western blot was employed to analyze the expression of translocase of outer mitochondrial membrane 20 (TOMM20), autophagy-associated protein p62, microtubule-associated protein light chain 3 (LC3), cysteinyl aspartate-specific proteinase-9 (Caspase-9), B-cell lymphoma 2-associated protein X (Bax), and cytochrome C (Cyt C). ResultsCompared with the sham group, the model group exhibited increased infarct volume (P<0.01) and neurological deficit scores (P<0.01), neuronal structure was disrupted with reduced Nissl bodies. (P<0.01), mitochondrial swelling/fragmentation, decreased PINK1/LETM1 co-localization (P<0.01), upregulated protein levels of LC3Ⅱ/LC3Ⅰ, TOMM20, Caspase-9, Bax, and Cyt C (P<0.01), downregulated protein level of p62 (P<0.05), weakened PC12 viability (P<0.01), and elevated mitochondrial calcium level (P<0.01). Compared with the model group, THSG and SAS groups showed reduced infarct volumes (P<0.05,P<0.01) and neurological deficit scores (P<0.05,P<0.01), mitigated mitochondrial damage, and increased PINK1/LETM1 co-localization (P<0.01). Medium/high-dose THSG and SAS alleviated the neurological damage, increased Nissl bodies (P<0.05,P<0.01), downregulated the protein levels of p62, TOMM20, Caspase-9, Bax, and Cyt C (P<0.05,P<0.01), and elevated the LC3Ⅱ/LC3Ⅰ level (P<0.05,P<0.01). High-dose THSG enhanced PC12 cell viability (P<0.01), increased PINK1/LETM1 co-localization (P<0.01), and reduced mitochondrial calcium (P<0.01). ConclusionTHSG may exert the neuroprotective effect on CI/R injury by activating the PINK1-LETM1 signaling pathway, reducing the mitochondrial calcium overload, and promoting mitophagy.
3.2,3,5,4′-tetrahydroxyldiphenylethylene-2-O-glucoside Attenuates Cerebral Ischemia-reperfusion Injury via PINK1/LETM1 Signaling Pathway
Hongyu ZENG ; Kaimei TAN ; Feng QIU ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Chang LEI ; Hongqing ZHAO ; Yuhong WANG ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):145-154
ObjectiveTo investigate the mechanism by which 2,3,5,4'-tetrahydroxyldiphenylethylene-2-O-glucoside (THSG) mitigates cerebral ischemia/reperfusion (CI/R) injury by regulating mitochondrial calcium overload and promoting mitophagy. MethodsSixty male SD rats were randomized into sham, model, SAS (40 mg·kg-1), and low-, medium- and high-dose (10, 20, 40 mg·kg-1, respectively) THSG groups, with 10 rats in each group. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the modified Longa suture method. An oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed in PC12 cells. Neurological deficits were assessed via Zea Longa scoring, and cerebral infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Structural and functional changes of cortical neurons in MCAO/R rats were assessed by hematoxylin-eosin and Nissl staining. PC12 cell viability was detected by cell counting kit-8 (CCK-8) assay, and mitochondrial calcium levels were quantified by Rhod-2 AM. Immunofluorescence was used to detect co-localization of PTEN-induced kinase 1 (PINK1) and leucine zipper/EF-hand-containing transmembrane protein 1 (LETM1) in neurons. Transmission electron microscopy (TEM) was employed to observe mitochondrial morphology in neurons. Western blot was employed to analyze the expression of translocase of outer mitochondrial membrane 20 (TOMM20), autophagy-associated protein p62, microtubule-associated protein light chain 3 (LC3), cysteinyl aspartate-specific proteinase-9 (Caspase-9), B-cell lymphoma 2-associated protein X (Bax), and cytochrome C (Cyt C). ResultsCompared with the sham group, the model group exhibited increased infarct volume (P<0.01) and neurological deficit scores (P<0.01), neuronal structure was disrupted with reduced Nissl bodies. (P<0.01), mitochondrial swelling/fragmentation, decreased PINK1/LETM1 co-localization (P<0.01), upregulated protein levels of LC3Ⅱ/LC3Ⅰ, TOMM20, Caspase-9, Bax, and Cyt C (P<0.01), downregulated protein level of p62 (P<0.05), weakened PC12 viability (P<0.01), and elevated mitochondrial calcium level (P<0.01). Compared with the model group, THSG and SAS groups showed reduced infarct volumes (P<0.05,P<0.01) and neurological deficit scores (P<0.05,P<0.01), mitigated mitochondrial damage, and increased PINK1/LETM1 co-localization (P<0.01). Medium/high-dose THSG and SAS alleviated the neurological damage, increased Nissl bodies (P<0.05,P<0.01), downregulated the protein levels of p62, TOMM20, Caspase-9, Bax, and Cyt C (P<0.05,P<0.01), and elevated the LC3Ⅱ/LC3Ⅰ level (P<0.05,P<0.01). High-dose THSG enhanced PC12 cell viability (P<0.01), increased PINK1/LETM1 co-localization (P<0.01), and reduced mitochondrial calcium (P<0.01). ConclusionTHSG may exert the neuroprotective effect on CI/R injury by activating the PINK1-LETM1 signaling pathway, reducing the mitochondrial calcium overload, and promoting mitophagy.
4.A self-cascade nanoCRISPR prompts transcellular penetration to potentiate gene editing and tumor killing.
Chao LIU ; Yangsong XU ; Ning WANG ; Hongyu LIU ; Xi YANG ; Shiyao ZHOU ; Dongxue HUANG ; Yingjie LI ; Yanjie YOU ; Qinjie WU ; Changyang GONG
Acta Pharmaceutica Sinica B 2025;15(11):5933-5944
CRISPR/Cas9-based therapeutics face significant challenges in penetrating the dense microenvironment of solid tumors, resulting in insufficient gene editing and compromised treatment efficacy. Current nanostrategies, which mainly focus on the paracellular pathway attempted to improve gene editing performance, whereas their efficiency remains uneven in the heterogenous extracellular matrix. Here, the nanoCRISPR system is prepared with self-cascading mechanisms for gene editing-mediated robust apoptosis and transcellular penetration. NanoCRISPR unlocks its self-cascade capability within the matrix metallopeptidase 2-enriched tumor microenvironment, initiating the transcellular penetration. By facilitating cellular uptake, nanoCRISPR triggers robust apoptosis in edited malignancies, promoting further transcellular penetration and amplifying gene editing in neighboring tumor cells. Benefiting from self-cascade between robust apoptosis and transcellular penetration, nanoCRISPR demonstrates continuous gene transfection/tumor killing performance (transfection/apoptosis efficiency: 1st round: 85%/84.2%; 2nd round: 48%/27%) and homogeneous penetration. In xenograft tumor-bearing mice, nanoCRISPR treatment achieves remarkable anti-tumor efficacy (∼83%) and significant survival benefits with minimal toxicity. This strategy presents a promising paradigm emphasizing transcellular penetration to enhance the effectiveness of CRISPR-based antitumor therapeutics.
5.Transient Formation of Stress Granules Disturbs Neural Stem Cell Differentiation.
Mengmeng WANG ; Yarong WANG ; Hongyu MA ; Hanze LIU ; Yating LU ; Yaozhong ZHANG ; Zhihui HUANG ; Songqi DONG ; Kun ZHANG ; Shengxi WU ; Yazhou WANG
Neuroscience Bulletin 2025;41(11):2078-2082
6.Expert consensus on the diagnosis and treatment of cemental tear.
Ye LIANG ; Hongrui LIU ; Chengjia XIE ; Yang YU ; Jinlong SHAO ; Chunxu LV ; Wenyan KANG ; Fuhua YAN ; Yaping PAN ; Faming CHEN ; Yan XU ; Zuomin WANG ; Yao SUN ; Ang LI ; Lili CHEN ; Qingxian LUAN ; Chuanjiang ZHAO ; Zhengguo CAO ; Yi LIU ; Jiang SUN ; Zhongchen SONG ; Lei ZHAO ; Li LIN ; Peihui DING ; Weilian SUN ; Jun WANG ; Jiang LIN ; Guangxun ZHU ; Qi ZHANG ; Lijun LUO ; Jiayin DENG ; Yihuai PAN ; Jin ZHAO ; Aimei SONG ; Hongmei GUO ; Jin ZHANG ; Pingping CUI ; Song GE ; Rui ZHANG ; Xiuyun REN ; Shengbin HUANG ; Xi WEI ; Lihong QIU ; Jing DENG ; Keqing PAN ; Dandan MA ; Hongyu ZHAO ; Dong CHEN ; Liangjun ZHONG ; Gang DING ; Wu CHEN ; Quanchen XU ; Xiaoyu SUN ; Lingqian DU ; Ling LI ; Yijia WANG ; Xiaoyuan LI ; Qiang CHEN ; Hui WANG ; Zheng ZHANG ; Mengmeng LIU ; Chengfei ZHANG ; Xuedong ZHOU ; Shaohua GE
International Journal of Oral Science 2025;17(1):61-61
Cemental tear is a rare and indetectable condition unless obvious clinical signs present with the involvement of surrounding periodontal and periapical tissues. Due to its clinical manifestations similar to common dental issues, such as vertical root fracture, primary endodontic diseases, and periodontal diseases, as well as the low awareness of cemental tear for clinicians, misdiagnosis often occurs. The critical principle for cemental tear treatment is to remove torn fragments, and overlooking fragments leads to futile therapy, which could deteriorate the conditions of the affected teeth. Therefore, accurate diagnosis and subsequent appropriate interventions are vital for managing cemental tear. Novel diagnostic tools, including cone-beam computed tomography (CBCT), microscopes, and enamel matrix derivatives, have improved early detection and management, enhancing tooth retention. The implementation of standardized diagnostic criteria and treatment protocols, combined with improved clinical awareness among dental professionals, serves to mitigate risks of diagnostic errors and suboptimal therapeutic interventions. This expert consensus reviewed the epidemiology, pathogenesis, potential predisposing factors, clinical manifestations, diagnosis, differential diagnosis, treatment, and prognosis of cemental tear, aiming to provide a clinical guideline and facilitate clinicians to have a better understanding of cemental tear.
Humans
;
Dental Cementum/injuries*
;
Consensus
;
Diagnosis, Differential
;
Cone-Beam Computed Tomography
;
Tooth Fractures/therapy*
7.Sphingosine-1-phosphate Promotes Abnormal Ossification in Patients with Ankylosing Spondylitis through Angiogenesis-osteogenesis Coupling
Rujia MI ; Yixuan LU ; Yinliang LIU ; Wangchang WU ; Haoye YU ; Hongyu LI
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(6):1058-1070
ObjectiveTo investigate the role of sphingosine-1-phosphate (S1P) in abnormal ossification in ankylosing spondylitis (AS), clarify the relationship between S1P and “angiogenesis-osteogenesis” coupling, and provide new strategies for AS treatment. MethodsFemoral heads from AS patients and patients undergoing routine hip replacement were collected for immunohistochemical (IHC) staining to evaluate osteogenesis and H-type vessel formation. In vitro, ELISA was used to quantify the synthesis of S1P and analyze the expression changes of S1P signaling pathway-related molecules during the osteogenic differentiation of mesenchymal stem cells derived from patients with ankylosing spondylitis (ASMSCs) and those from healthy donors (HDMSCs), to evaluate the activation status of S1P pathway during osteogenesis. Sphingosine kinase 1 (SK1) expression was knocked down in MSCs, and the S1P receptor inhibitor FTY720 was applied to block S1P signaling. Alkaline phosphatase (ALP) activity and Alizarin Red S (ARS) quantification were used to assess the effect of S1P on ASMSCs osteogenesis. Conditioned medium from osteogenically induced MSCs was used to treat human umbilical vein endothelial cells (HUVECs) to evaluate the effect of S1P on angiogenesis. An AS mouse model (SKG mice) was treated with FTY720 or the SK1 inhibitor PF-543 citrate. IHC staining and micro-CT scanning were used to assess abnormal ossification and spinal fusion, and immunofluorescence was used to evaluate H-type vessel formation. ResultsCompared with Osteonecrosis of the Femoral Head(ONFH) patients, AS patients exhibited excessive osteogenesis and H-type vessel formation (OCN P<0.001, CD31 P<0.001, EMCN P<0.001). During osteogenic differentiation, S1P expression and secretion were significantly higher in ASMSCs than in HDMSCs (P=0.0179). Inhibition of S1P signaling with FTY720 or SK1 knockdown significantly suppressed osteogenic differentiation (compared with ASMSC, ARS: HDMSC P=0.001 8, FTY720 P<0.001, si-SK1 P<0.001; ALP: HDMSC P=0.032 8, FTY720 P=0.001 6, si-SK1 P<0.001) of ASMSCs and the angiogenesis of HUVEC(compared with ASMSC, cell-covered area, total loops, total tube length and total branch points P<0.001). Treatment with FTY720 or PF-543 markedly inhibited abnormal ossification and spinal fusion(compared with Curdlan, arthritis index score, P<0.001; OCN:control P=0.002, PF-543 P=0.010 7, FTY720 P=0.015 9 ) in AS mice and reduced H-type vessel formation (CD31+EMCN+: compared with curdlan, control P<0.001, PF-543 P=0.001 7, FTY720 P=0.002 1). ConclusionIncreased S1P synthesis in ASMSCs promotes osteogenic differentiation via autocrine mechanisms and further enhances ossification by facilitating H-type angiogenesis. Inhibiting S1P secretion in ASMSCs significantly suppresses abnormal ossification in AS.
8.Effect of s-ketamine on perioperative myocardial injury in patients undergoing liver transplantation
Hongyu HUO ; Lu CHE ; Yuli WU ; Yiqi WENG ; Wenli YU ; Jiangang XU
Chinese Journal of Anesthesiology 2024;44(6):657-661
Objective:To evaluate the effect of s-ketamine on perioperative myocardial injury in patients undergoing liver transplantation.Methods:This was a prospective randomized controlled study. Sixty American Society of Anesthesiologists Physical Status classification Ⅲ or Ⅳ patients, aged 18-64 yr, with New York Heart Association classⅠ-Ⅲ, undergoing elective liver transplantation with general anesthesia in our hospital from May to October 2023, were divided into 2 groups ( n=30 each) using a random number table method: s-ketamine group (group S) and control group (group C). In group S, s-ketamine was intravenously injected at a dose of 0.5 mg/kg after induction of anesthesia, followed by an infusion of 0.5 mg·kg -1·h -1 until the end of surgery. The equal volume of normal saline was given instead in group C. Central venous blood samples were collected after induction of anesthesia (T 0), at 30 min of anhepatic phase (T 1), 30 min of neopepatic phase (T 2), abdominal closure (T 3), 24 h after operation (T 4) and 72 h after operation (T 5) for determination of the concentrations of serum high-sensitivity cardiac troponin I, creatine kinase-MB isoenzyme, N-terminal pro-B-type natriuretic peptide, tumor necrosis factor-α, interleukin-6 (IL-6), IL-10 and high-mobility group protein B1 by enzyme-linked immunosorbent assay. The occurrence of adverse cardiac events during surgery and within 24 h after surgery, postoperative mechanical ventilation time, time of intensive care unit stay, and postoperative length of hospital stay were recorded. Results:Compared with group C, the concentrations of serum high-sensitivity cardiac troponin I, creatine kinase-MB isoenzyme, N-terminal pro-B-type natriuretic peptide, tumor necrosis factor-α and IL-6 at T 2-5 and high-mobility group protein B1 at T 2-4 were significantly decreased, the concentrations of serum IL-10 were increased at T 2-5, the incidence of myocardial ischemia was decreased, the mechanical ventilation time was shortened ( P<0.05), and no significant change was found in the time of intensive care unit stay and postoperative length of hospital stay in S group ( P>0.05). Conclusions:Intraoperative usage of s-ketamine can inhibit the inflammatory responses and reduce perioperative myocardial injury in the patients undergoing liver transplantation.
9.Modified Xiaoyaosan Alleviates Depression-like Behaviors by Regulating Activation of Hippocampal Microglia Cells in Rat Model of Juvenile Depression
Jiayi SHI ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Feng QIU ; Chang LEI ; Hongyu ZENG ; Kaimei TAN ; Hongqing ZHAO ; Dong YANG ; Yuhong WANG ; Pengxiao GUO ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(5):46-56
ObjectiveTo investigate the mechanism of Baihuan Xiaoyao Decoction (Xiaoyaosan added with Lilii Bulbus and Albiziae Cortex) in alleviating depression-like behaviors of juvenile rats by regulating the polarization of microglia. MethodSixty juvenile SD rats were randomized into normal control, model, fluoxetine, and low-, medium-, and high-dose (5.36, 10.71, 21.42 g·kg-1, respectively) Baihuan Xiaoyao decoction groups. The rat model of juvenile depression was established by chronic unpredictable mild stress (CUMS). The sucrose preference test (SPT) was carried out to examine the sucrose preference of rats. Forced swimming test (FST) was carried out to measure the immobility time of rats. The open field test (OFT) was conducted to measure the total distance, the central distance, the number of horizontal crossings, and the frequency of rearing. Morris water maze (MWM) was used to measure the escape latency and the number of crossing the platform. The immunofluorescence assay was employed to detect the expression of inducible nitric oxide synthase (iNOS, the polarization marker of M1 microglia) and CD206 (the polarization marker of M2 microglia). Real-time polymerase chain reaction was employed to determine the mRNA levels of iNOS, CD206, pro-inflammatory cytokines [tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6] and anti-inflammatory cytokines (IL-4 and IL-10) in the hippocampus. Western blotting was employed to determine the protein levels of iNOS and CD206 in the hippocampus. The levels of IL-4 and IL-6 in the hippocampus were detected by enzyme-linked immunosorbent assay. ResultCompared with the normal control group, the model rats showed a reduction in sucrose preference (P<0.05), an increase in immobility time (P<0.05), decreased motor and exploratory behaviors (P<0.05), and weakened learning and spatial memory (P<0.05). In addition, the model rats showed up-regulated mRNA and protein levels of iNOS and mRNA levels of IL-1β, IL-6, and TNF-α (P<0.05). Compared with the model group, Baihuan Xiaoyao decoction increased the sucrose preference value (P<0.05), shortened the immobility time (P<0.01), increased the motor and exploratory behaviors (P<0.05), and improved the learning and spatial memory (P<0.01). Furthermore, the decoction down-regulated the positive expression and protein level of iNOS, lowered the levels of TNF-α, IL-1β, and IL-6 (P<0.01), promoted the positive expression of CD206, and elevated the levels of IL-4 and IL-10 (P<0.01) in the hippocampus of the high dose group. Moreover, the high-dose Baihuan Xiaoyao decoction group had higher sucrose preference value (P<0.01), shorter immobility time (P<0.01), longer central distance (P<0.01), stronger learning and spatial memory (P<0.01), higher positive expression and protein level of iNOS (P<0.01), lower levels of TNF-α, IL-1β, and IL-6 (P<0.05, P<0.01), lower positive expression and mRNA level of iNOS (P<0.05), and higher levels of IL-4 and IL-10 (P<0.05, P<0.01) than the fluoxetine group. ConclusionBaihuan Xiaoyao decoction can improve the depression-like behavior of juvenile rats by inhibiting the M1 polarization and promoting the M2 polarization of microglia in the hippocampus.
10.Fungal luminescence pathways: research and applications.
Yujie WU ; Jiarui XU ; Hongyu CHEN ; Hao DU
Chinese Journal of Biotechnology 2024;40(1):1-14
The fungal bioluminescence pathway (FBP) is a metabolic pathway responsible for the generation of bioluminescence derived from fungi. This pathway utilizes caffeic acid as the substrate, generating a high-energy intermediate, and the decomposition of which yields green fluorescence with a wavelength of approximately 520 nm. The FBP is evolutionally conserved in luminescent fungal groups. Unlike other bioluminescent systems, the FBP is particularly suitable for engineering applications in eukaryotic organisms, especially in plants. Currently, metabolically engineered luminescent plants are able to emit visible light to illuminate its surroundings, which can be visualized clearly in the dark. The fungal bioluminescent system could be explored in various applications in molecular biology, biosensors and glowing ornamental plants, and even green lighting along city streets.
Luminescence
;
Light
;
Fluorescence
;
Eukaryota
;
Green Light

Result Analysis
Print
Save
E-mail