1.Prognosis and influencing factors analysis of patients with initially resectable gastric cancer liver metastasis who were treated by different modalities: a nationwide, multicenter clinical study
Li LI ; Yunhe GAO ; Liang SHANG ; Zhaoqing TANG ; Kan XUE ; Jiang YU ; Yanrui LIANG ; Zirui HE ; Bin KE ; Hualong ZHENG ; Hua HUANG ; Jianping XIONG ; Zhongyuan HE ; Jiyang LI ; Tingting LU ; Qiying SONG ; Shihe LIU ; Hongqing XI ; Yun TANG ; Zhi QIAO ; Han LIANG ; Jiafu JI ; Lin CHEN
Chinese Journal of Digestive Surgery 2024;23(1):114-124
Objective:To investigate the prognosis of patients with initially resectable gastric cancer liver metastasis (GCLM) who were treated by different modalities, and analyze the influencing factors for prognosis of patients.Methods:The retrospective cohort study was conducted. The clinicopathological data of 327 patients with initially resectable GCLM who were included in the database of a nationwide multicenter retrospective cohort study on GCLM based on real-world data from January 2010 to December 2019 were collected. There were 267 males and 60 females, aged 61(54,68)years. According to the specific situations of patients, treatment modalities included radical surgery combined with systemic treatment, palliative surgery combined with systemic treatment, and systemic treatment alone. Observation indicators: (1) clinical characteristics of patients who were treated by different modalities; (2) prognostic outcomes of patients who were treated by different modalities; (3) analysis of influencing factors for prognosis of patients with initially resectable GCLM; (4) screening of potential beneficiaries in patients who were treated by radical surgery plus systemic treatment and patients who were treated by palliative surgery plus systemic treatment. Measurement data with normal distribution were represented as Mean± SD, and comparison between groups was conducted using the independent sample t test. Measurement data with skewed distribution were represented as M( Q1, Q3), and comparison between groups was conducted using the rank sum test. Count data were described as absolute numbers or percentages, and comparison between groups was conducted using the chi-square test. The Kaplan-Meier method was used to calculate survival rate and draw survival curve, and Log-Rank test was used for survival analysis. Univariate and multivariate analyses were conducted using the COX proportional hazard regression model. The propensity score matching was employed by the 1:1 nearest neighbor matching method with a caliper value of 0.1. The forest plots were utilized to evaluate potential benefits of diverse surgical combined with systemic treatments within the population. Results:(1) Clinical characteristics of patients who were treated by different modalities. Of 327 patients, there were 118 cases undergoing radical surgery plus systemic treatment, 164 cases undergoing palliative surgery plus systemic treatment, and 45 cases undergoing systemic treatment alone. There were significant differences in smoking, drinking, site of primary gastric tumor, diameter of primary gastric tumor, site of liver metastasis, and metastatic interval among the three groups of patients ( P<0.05). (2) Prognostic outcomes of patients who were treated by different modalities. The median overall survival time of the 327 pati-ents was 19.9 months (95% confidence interval as 14.9-24.9 months), with 1-, 3-year overall survival rate of 61.3%, 32.7%, respectively. The 1-year overall survival rates of patients undergoing radical surgery plus systemic treatment, palliative surgery plus systemic treatment and systemic treatment alone were 68.3%, 63.1%, 30.6%, and the 3-year overall survival rates were 41.1%, 29.9%, 11.9%, showing a significant difference in overall survival rate among the three groups of patients ( χ2=19.46, P<0.05). Results of further analysis showed that there was a significant difference in overall survival rate between patients undergoing radical surgery plus systemic treatment and patients undergoing systemic treatment alone ( hazard ratio=0.40, 95% confidence interval as 0.26-0.61, P<0.05), between patients undergoing palliative surgery plus systemic treatment and patients under-going systemic treatment alone ( hazard ratio=0.47, 95% confidence interval as 0.32-0.71, P<0.05). (3) Analysis of influencing factors for prognosis of patients with initially resectable GCLM. Results of multivariate analysis showed that the larger primary gastric tumor, poorly differentiated tumor, larger liver metastasis, multiple hepatic metastases were independent risk factors for prognosis of patients with initially resectable GCLM ( hazard ratio=1.20, 1.70, 1.20, 2.06, 95% confidence interval as 1.14-1.27, 1.25-2.31, 1.04-1.42, 1.45-2.92, P<0.05) and immunotherapy or targeted therapy, the treatment modality of radical or palliative surgery plus systemic therapy were independent protective factors for prognosis of patients with initially resectable GCLM ( hazard ratio=0.60, 0.39, 0.46, 95% confidence interval as 0.42-0.87, 0.25-0.60, 0.30-0.70, P<0.05). (4) Screening of potentinal beneficiaries in patients who were treated by radical surgery plus systemic treatment and patients who were treated by palliative surgery plus systemic treatment. Results of forest plots analysis showed that for patients with high-moderate differentiated GCLM and patients with liver metastasis located in the left liver, the overall survival rate of patients undergoing radical surgery plus systemic treatment was better than patients undergoing palliative surgery plus systemic treatment ( hazard ratio=0.21, 0.42, 95% confidence interval as 0.09-0.48, 0.23-0.78, P<0.05). Conclusions:Compared to systemic therapy alone, both radical and palliative surgery plus systemic therapy can improve the pro-gnosis of patients with initially resectable GCLM. The larger primary gastric tumor, poorly differen-tiated tumor, larger liver metastasis, multiple hepatic metastases are independent risk factors for prognosis of patients with initial resectable GCLM and immunotherapy or targeted therapy, the treatment modality of radical or palliative surgery plus systemic therapy are independent protective factors for prognosis of patients with initially resectable GCLM.
2.Zuogui Jiangtang Jieyu Formula regulates the CD300f/GLUT1 signaling pathway to improve the synaptic damage of hippocampal neurons in rats with diabetes-related depression
Jian LIU ; Lin TANG ; Hongqing ZHAO ; Fan JIANG ; Lin LIU ; Chao HU
Journal of Beijing University of Traditional Chinese Medicine 2024;47(11):1573-1584
Objective To explore the protective mechanism of Zuogui Jiangtang Jieyu Formula(ZGF)on synaptic damage of hippocampal neurons based on leukocyte mono-immunoglobulin-like receptor 3(CD300f)/glucose transporter 1(GLUT1)signal-mediated microglial glucose metabolism in rats with diabetes-related depression.Methods Eighty male SD rats were randomly selected using random number table method,with 10 rats serving as the normal group.The remaining 70 rats were fed a high-fat diet for 4 weeks and then injected once with 38 mg/kg of streptozotocin via the tail vein to replicate the diabetes rat model.Sixty rats were screened and successfully modeled,which were randomly divided into the model,CD300f blocker,CD300f agonist,metformin+fluoxetine(metformin 0.18 g/kg+fluoxetine 1.8 mg/kg),and ZGF high-and low-dose(20.52 and 10.26 g/kg,respectively)groups using random number table method.In addition to the normal group,the rats in the other groups underwent chronic unpredictable mild stress combined with isolation feeding for 28 days to replicate the diabetes-related depression rat model.The metformin+fluoxetine and ZGF high-and low-dose groups were subjected to continuous intragastrial administration for 14 days after the second week of modeling.The normal and model groups were administered an equal amount of distilled water by gavage.The CD300f blocker group and agonist group received microinjection into the hippocampus,with injection of myeloid cell trigger receptor inhibitory factor(CLM1,2 μg/kg)and immunoglobulin Fc surface protein(Fcγ,5 μg/kg)once a week,respectively.Depression-like behavior in rats was evaluated using open-field and forced swimming tests after the intervention.Biochemical analysis was used to detect the glucose,lactic acid,and adenosine diphosphate(ADP)/adenosine triphosphate(ATP)ratio contents.The insulin,5-hydroxytryptamine(5-HT),and dopamine(DA)levels in the hippocampus were detected using an enzyme-linked immunosorbent assay.Immunofluorescence was used to detect the average fluorescence intensity of CD300f,GLUT1,regulating synaptic membrane wxocytosis 3(RIMS3),and synapse-associated protein 102(SAP102)in hippocampal tissue.Western blotting was used to detect the CD300f,GLUT1,RIMS3,and SAP102 protein expression levels in the hippocampus.The synaptic damage of hippocampal neurons was observed using Nissl staining and transmission electron microscope.Results Compared with the normal group,the model group showed a decrease in the total active distance in the open-field test and an increase in forced swimming immobility time,with an increase in glucose and lactic acid contents and ADP/ATP ratio,whereas a decrease in insulin,5-HT,and DA levels was observed in the hippocampus.The average fluorescence intensity and relative protein expression levels of CD300f,GLUT1,RIMS3,and SAP102 in hippocampal tissue decreased(P<0.05),and the synaptic ultrastructure of hippocampal neurons was damaged.Compared with the model group,depression-like behavioral changes,glucose metabolism,and monoamine neurotransmitter imbalance were alleviated in the CD300f agonist group and ZGF high-and low-dose group(P<0.05).The average fluorescence intensity and relative protein expression levels of CD300f,GLUT1,RIMS3,and SAP102 in the hippocampus of the CD300f agonist group and the ZGF high-dose group were all increased(P<0.05),and synaptic damage was alleviated.The abnormal levels of glucose,lactate,ADP/ATP,5-HT,and CD300f protein expression were aggravated in the CD300f blocker group(P<0.05),and synaptic damage was aggravated.Conclusion ZGF can alleviate glucose metabolism disorders in hippocampal microglia and synaptic damage in hippocampal neurons in rats with diabetes-related depression.Its mechanism may be related to regulating the CD300f/GLUT1 signaling pathway.
3.Zuogui Jiangtang Jieyu Formula regulates the CD300f/GLUT1 signaling pathway to improve the synaptic damage of hippocampal neurons in rats with diabetes-related depression
Jian LIU ; Lin TANG ; Hongqing ZHAO ; Fan JIANG ; Lin LIU ; Chao HU
Journal of Beijing University of Traditional Chinese Medicine 2024;47(11):1573-1584
Objective To explore the protective mechanism of Zuogui Jiangtang Jieyu Formula(ZGF)on synaptic damage of hippocampal neurons based on leukocyte mono-immunoglobulin-like receptor 3(CD300f)/glucose transporter 1(GLUT1)signal-mediated microglial glucose metabolism in rats with diabetes-related depression.Methods Eighty male SD rats were randomly selected using random number table method,with 10 rats serving as the normal group.The remaining 70 rats were fed a high-fat diet for 4 weeks and then injected once with 38 mg/kg of streptozotocin via the tail vein to replicate the diabetes rat model.Sixty rats were screened and successfully modeled,which were randomly divided into the model,CD300f blocker,CD300f agonist,metformin+fluoxetine(metformin 0.18 g/kg+fluoxetine 1.8 mg/kg),and ZGF high-and low-dose(20.52 and 10.26 g/kg,respectively)groups using random number table method.In addition to the normal group,the rats in the other groups underwent chronic unpredictable mild stress combined with isolation feeding for 28 days to replicate the diabetes-related depression rat model.The metformin+fluoxetine and ZGF high-and low-dose groups were subjected to continuous intragastrial administration for 14 days after the second week of modeling.The normal and model groups were administered an equal amount of distilled water by gavage.The CD300f blocker group and agonist group received microinjection into the hippocampus,with injection of myeloid cell trigger receptor inhibitory factor(CLM1,2 μg/kg)and immunoglobulin Fc surface protein(Fcγ,5 μg/kg)once a week,respectively.Depression-like behavior in rats was evaluated using open-field and forced swimming tests after the intervention.Biochemical analysis was used to detect the glucose,lactic acid,and adenosine diphosphate(ADP)/adenosine triphosphate(ATP)ratio contents.The insulin,5-hydroxytryptamine(5-HT),and dopamine(DA)levels in the hippocampus were detected using an enzyme-linked immunosorbent assay.Immunofluorescence was used to detect the average fluorescence intensity of CD300f,GLUT1,regulating synaptic membrane wxocytosis 3(RIMS3),and synapse-associated protein 102(SAP102)in hippocampal tissue.Western blotting was used to detect the CD300f,GLUT1,RIMS3,and SAP102 protein expression levels in the hippocampus.The synaptic damage of hippocampal neurons was observed using Nissl staining and transmission electron microscope.Results Compared with the normal group,the model group showed a decrease in the total active distance in the open-field test and an increase in forced swimming immobility time,with an increase in glucose and lactic acid contents and ADP/ATP ratio,whereas a decrease in insulin,5-HT,and DA levels was observed in the hippocampus.The average fluorescence intensity and relative protein expression levels of CD300f,GLUT1,RIMS3,and SAP102 in hippocampal tissue decreased(P<0.05),and the synaptic ultrastructure of hippocampal neurons was damaged.Compared with the model group,depression-like behavioral changes,glucose metabolism,and monoamine neurotransmitter imbalance were alleviated in the CD300f agonist group and ZGF high-and low-dose group(P<0.05).The average fluorescence intensity and relative protein expression levels of CD300f,GLUT1,RIMS3,and SAP102 in the hippocampus of the CD300f agonist group and the ZGF high-dose group were all increased(P<0.05),and synaptic damage was alleviated.The abnormal levels of glucose,lactate,ADP/ATP,5-HT,and CD300f protein expression were aggravated in the CD300f blocker group(P<0.05),and synaptic damage was aggravated.Conclusion ZGF can alleviate glucose metabolism disorders in hippocampal microglia and synaptic damage in hippocampal neurons in rats with diabetes-related depression.Its mechanism may be related to regulating the CD300f/GLUT1 signaling pathway.
4.Zuogui Jiangtang Jieyu Formula regulates the CD300f/GLUT1 signaling pathway to improve the synaptic damage of hippocampal neurons in rats with diabetes-related depression
Jian LIU ; Lin TANG ; Hongqing ZHAO ; Fan JIANG ; Lin LIU ; Chao HU
Journal of Beijing University of Traditional Chinese Medicine 2024;47(11):1573-1584
Objective To explore the protective mechanism of Zuogui Jiangtang Jieyu Formula(ZGF)on synaptic damage of hippocampal neurons based on leukocyte mono-immunoglobulin-like receptor 3(CD300f)/glucose transporter 1(GLUT1)signal-mediated microglial glucose metabolism in rats with diabetes-related depression.Methods Eighty male SD rats were randomly selected using random number table method,with 10 rats serving as the normal group.The remaining 70 rats were fed a high-fat diet for 4 weeks and then injected once with 38 mg/kg of streptozotocin via the tail vein to replicate the diabetes rat model.Sixty rats were screened and successfully modeled,which were randomly divided into the model,CD300f blocker,CD300f agonist,metformin+fluoxetine(metformin 0.18 g/kg+fluoxetine 1.8 mg/kg),and ZGF high-and low-dose(20.52 and 10.26 g/kg,respectively)groups using random number table method.In addition to the normal group,the rats in the other groups underwent chronic unpredictable mild stress combined with isolation feeding for 28 days to replicate the diabetes-related depression rat model.The metformin+fluoxetine and ZGF high-and low-dose groups were subjected to continuous intragastrial administration for 14 days after the second week of modeling.The normal and model groups were administered an equal amount of distilled water by gavage.The CD300f blocker group and agonist group received microinjection into the hippocampus,with injection of myeloid cell trigger receptor inhibitory factor(CLM1,2 μg/kg)and immunoglobulin Fc surface protein(Fcγ,5 μg/kg)once a week,respectively.Depression-like behavior in rats was evaluated using open-field and forced swimming tests after the intervention.Biochemical analysis was used to detect the glucose,lactic acid,and adenosine diphosphate(ADP)/adenosine triphosphate(ATP)ratio contents.The insulin,5-hydroxytryptamine(5-HT),and dopamine(DA)levels in the hippocampus were detected using an enzyme-linked immunosorbent assay.Immunofluorescence was used to detect the average fluorescence intensity of CD300f,GLUT1,regulating synaptic membrane wxocytosis 3(RIMS3),and synapse-associated protein 102(SAP102)in hippocampal tissue.Western blotting was used to detect the CD300f,GLUT1,RIMS3,and SAP102 protein expression levels in the hippocampus.The synaptic damage of hippocampal neurons was observed using Nissl staining and transmission electron microscope.Results Compared with the normal group,the model group showed a decrease in the total active distance in the open-field test and an increase in forced swimming immobility time,with an increase in glucose and lactic acid contents and ADP/ATP ratio,whereas a decrease in insulin,5-HT,and DA levels was observed in the hippocampus.The average fluorescence intensity and relative protein expression levels of CD300f,GLUT1,RIMS3,and SAP102 in hippocampal tissue decreased(P<0.05),and the synaptic ultrastructure of hippocampal neurons was damaged.Compared with the model group,depression-like behavioral changes,glucose metabolism,and monoamine neurotransmitter imbalance were alleviated in the CD300f agonist group and ZGF high-and low-dose group(P<0.05).The average fluorescence intensity and relative protein expression levels of CD300f,GLUT1,RIMS3,and SAP102 in the hippocampus of the CD300f agonist group and the ZGF high-dose group were all increased(P<0.05),and synaptic damage was alleviated.The abnormal levels of glucose,lactate,ADP/ATP,5-HT,and CD300f protein expression were aggravated in the CD300f blocker group(P<0.05),and synaptic damage was aggravated.Conclusion ZGF can alleviate glucose metabolism disorders in hippocampal microglia and synaptic damage in hippocampal neurons in rats with diabetes-related depression.Its mechanism may be related to regulating the CD300f/GLUT1 signaling pathway.
5.Zuogui Jiangtang Jieyu Formula regulates the CD300f/GLUT1 signaling pathway to improve the synaptic damage of hippocampal neurons in rats with diabetes-related depression
Jian LIU ; Lin TANG ; Hongqing ZHAO ; Fan JIANG ; Lin LIU ; Chao HU
Journal of Beijing University of Traditional Chinese Medicine 2024;47(11):1573-1584
Objective To explore the protective mechanism of Zuogui Jiangtang Jieyu Formula(ZGF)on synaptic damage of hippocampal neurons based on leukocyte mono-immunoglobulin-like receptor 3(CD300f)/glucose transporter 1(GLUT1)signal-mediated microglial glucose metabolism in rats with diabetes-related depression.Methods Eighty male SD rats were randomly selected using random number table method,with 10 rats serving as the normal group.The remaining 70 rats were fed a high-fat diet for 4 weeks and then injected once with 38 mg/kg of streptozotocin via the tail vein to replicate the diabetes rat model.Sixty rats were screened and successfully modeled,which were randomly divided into the model,CD300f blocker,CD300f agonist,metformin+fluoxetine(metformin 0.18 g/kg+fluoxetine 1.8 mg/kg),and ZGF high-and low-dose(20.52 and 10.26 g/kg,respectively)groups using random number table method.In addition to the normal group,the rats in the other groups underwent chronic unpredictable mild stress combined with isolation feeding for 28 days to replicate the diabetes-related depression rat model.The metformin+fluoxetine and ZGF high-and low-dose groups were subjected to continuous intragastrial administration for 14 days after the second week of modeling.The normal and model groups were administered an equal amount of distilled water by gavage.The CD300f blocker group and agonist group received microinjection into the hippocampus,with injection of myeloid cell trigger receptor inhibitory factor(CLM1,2 μg/kg)and immunoglobulin Fc surface protein(Fcγ,5 μg/kg)once a week,respectively.Depression-like behavior in rats was evaluated using open-field and forced swimming tests after the intervention.Biochemical analysis was used to detect the glucose,lactic acid,and adenosine diphosphate(ADP)/adenosine triphosphate(ATP)ratio contents.The insulin,5-hydroxytryptamine(5-HT),and dopamine(DA)levels in the hippocampus were detected using an enzyme-linked immunosorbent assay.Immunofluorescence was used to detect the average fluorescence intensity of CD300f,GLUT1,regulating synaptic membrane wxocytosis 3(RIMS3),and synapse-associated protein 102(SAP102)in hippocampal tissue.Western blotting was used to detect the CD300f,GLUT1,RIMS3,and SAP102 protein expression levels in the hippocampus.The synaptic damage of hippocampal neurons was observed using Nissl staining and transmission electron microscope.Results Compared with the normal group,the model group showed a decrease in the total active distance in the open-field test and an increase in forced swimming immobility time,with an increase in glucose and lactic acid contents and ADP/ATP ratio,whereas a decrease in insulin,5-HT,and DA levels was observed in the hippocampus.The average fluorescence intensity and relative protein expression levels of CD300f,GLUT1,RIMS3,and SAP102 in hippocampal tissue decreased(P<0.05),and the synaptic ultrastructure of hippocampal neurons was damaged.Compared with the model group,depression-like behavioral changes,glucose metabolism,and monoamine neurotransmitter imbalance were alleviated in the CD300f agonist group and ZGF high-and low-dose group(P<0.05).The average fluorescence intensity and relative protein expression levels of CD300f,GLUT1,RIMS3,and SAP102 in the hippocampus of the CD300f agonist group and the ZGF high-dose group were all increased(P<0.05),and synaptic damage was alleviated.The abnormal levels of glucose,lactate,ADP/ATP,5-HT,and CD300f protein expression were aggravated in the CD300f blocker group(P<0.05),and synaptic damage was aggravated.Conclusion ZGF can alleviate glucose metabolism disorders in hippocampal microglia and synaptic damage in hippocampal neurons in rats with diabetes-related depression.Its mechanism may be related to regulating the CD300f/GLUT1 signaling pathway.
6.Zuogui Jiangtang Jieyu Formula regulates the CD300f/GLUT1 signaling pathway to improve the synaptic damage of hippocampal neurons in rats with diabetes-related depression
Jian LIU ; Lin TANG ; Hongqing ZHAO ; Fan JIANG ; Lin LIU ; Chao HU
Journal of Beijing University of Traditional Chinese Medicine 2024;47(11):1573-1584
Objective To explore the protective mechanism of Zuogui Jiangtang Jieyu Formula(ZGF)on synaptic damage of hippocampal neurons based on leukocyte mono-immunoglobulin-like receptor 3(CD300f)/glucose transporter 1(GLUT1)signal-mediated microglial glucose metabolism in rats with diabetes-related depression.Methods Eighty male SD rats were randomly selected using random number table method,with 10 rats serving as the normal group.The remaining 70 rats were fed a high-fat diet for 4 weeks and then injected once with 38 mg/kg of streptozotocin via the tail vein to replicate the diabetes rat model.Sixty rats were screened and successfully modeled,which were randomly divided into the model,CD300f blocker,CD300f agonist,metformin+fluoxetine(metformin 0.18 g/kg+fluoxetine 1.8 mg/kg),and ZGF high-and low-dose(20.52 and 10.26 g/kg,respectively)groups using random number table method.In addition to the normal group,the rats in the other groups underwent chronic unpredictable mild stress combined with isolation feeding for 28 days to replicate the diabetes-related depression rat model.The metformin+fluoxetine and ZGF high-and low-dose groups were subjected to continuous intragastrial administration for 14 days after the second week of modeling.The normal and model groups were administered an equal amount of distilled water by gavage.The CD300f blocker group and agonist group received microinjection into the hippocampus,with injection of myeloid cell trigger receptor inhibitory factor(CLM1,2 μg/kg)and immunoglobulin Fc surface protein(Fcγ,5 μg/kg)once a week,respectively.Depression-like behavior in rats was evaluated using open-field and forced swimming tests after the intervention.Biochemical analysis was used to detect the glucose,lactic acid,and adenosine diphosphate(ADP)/adenosine triphosphate(ATP)ratio contents.The insulin,5-hydroxytryptamine(5-HT),and dopamine(DA)levels in the hippocampus were detected using an enzyme-linked immunosorbent assay.Immunofluorescence was used to detect the average fluorescence intensity of CD300f,GLUT1,regulating synaptic membrane wxocytosis 3(RIMS3),and synapse-associated protein 102(SAP102)in hippocampal tissue.Western blotting was used to detect the CD300f,GLUT1,RIMS3,and SAP102 protein expression levels in the hippocampus.The synaptic damage of hippocampal neurons was observed using Nissl staining and transmission electron microscope.Results Compared with the normal group,the model group showed a decrease in the total active distance in the open-field test and an increase in forced swimming immobility time,with an increase in glucose and lactic acid contents and ADP/ATP ratio,whereas a decrease in insulin,5-HT,and DA levels was observed in the hippocampus.The average fluorescence intensity and relative protein expression levels of CD300f,GLUT1,RIMS3,and SAP102 in hippocampal tissue decreased(P<0.05),and the synaptic ultrastructure of hippocampal neurons was damaged.Compared with the model group,depression-like behavioral changes,glucose metabolism,and monoamine neurotransmitter imbalance were alleviated in the CD300f agonist group and ZGF high-and low-dose group(P<0.05).The average fluorescence intensity and relative protein expression levels of CD300f,GLUT1,RIMS3,and SAP102 in the hippocampus of the CD300f agonist group and the ZGF high-dose group were all increased(P<0.05),and synaptic damage was alleviated.The abnormal levels of glucose,lactate,ADP/ATP,5-HT,and CD300f protein expression were aggravated in the CD300f blocker group(P<0.05),and synaptic damage was aggravated.Conclusion ZGF can alleviate glucose metabolism disorders in hippocampal microglia and synaptic damage in hippocampal neurons in rats with diabetes-related depression.Its mechanism may be related to regulating the CD300f/GLUT1 signaling pathway.
7.Zuogui Jiangtang Jieyu Formula regulates the CD300f/GLUT1 signaling pathway to improve the synaptic damage of hippocampal neurons in rats with diabetes-related depression
Jian LIU ; Lin TANG ; Hongqing ZHAO ; Fan JIANG ; Lin LIU ; Chao HU
Journal of Beijing University of Traditional Chinese Medicine 2024;47(11):1573-1584
Objective To explore the protective mechanism of Zuogui Jiangtang Jieyu Formula(ZGF)on synaptic damage of hippocampal neurons based on leukocyte mono-immunoglobulin-like receptor 3(CD300f)/glucose transporter 1(GLUT1)signal-mediated microglial glucose metabolism in rats with diabetes-related depression.Methods Eighty male SD rats were randomly selected using random number table method,with 10 rats serving as the normal group.The remaining 70 rats were fed a high-fat diet for 4 weeks and then injected once with 38 mg/kg of streptozotocin via the tail vein to replicate the diabetes rat model.Sixty rats were screened and successfully modeled,which were randomly divided into the model,CD300f blocker,CD300f agonist,metformin+fluoxetine(metformin 0.18 g/kg+fluoxetine 1.8 mg/kg),and ZGF high-and low-dose(20.52 and 10.26 g/kg,respectively)groups using random number table method.In addition to the normal group,the rats in the other groups underwent chronic unpredictable mild stress combined with isolation feeding for 28 days to replicate the diabetes-related depression rat model.The metformin+fluoxetine and ZGF high-and low-dose groups were subjected to continuous intragastrial administration for 14 days after the second week of modeling.The normal and model groups were administered an equal amount of distilled water by gavage.The CD300f blocker group and agonist group received microinjection into the hippocampus,with injection of myeloid cell trigger receptor inhibitory factor(CLM1,2 μg/kg)and immunoglobulin Fc surface protein(Fcγ,5 μg/kg)once a week,respectively.Depression-like behavior in rats was evaluated using open-field and forced swimming tests after the intervention.Biochemical analysis was used to detect the glucose,lactic acid,and adenosine diphosphate(ADP)/adenosine triphosphate(ATP)ratio contents.The insulin,5-hydroxytryptamine(5-HT),and dopamine(DA)levels in the hippocampus were detected using an enzyme-linked immunosorbent assay.Immunofluorescence was used to detect the average fluorescence intensity of CD300f,GLUT1,regulating synaptic membrane wxocytosis 3(RIMS3),and synapse-associated protein 102(SAP102)in hippocampal tissue.Western blotting was used to detect the CD300f,GLUT1,RIMS3,and SAP102 protein expression levels in the hippocampus.The synaptic damage of hippocampal neurons was observed using Nissl staining and transmission electron microscope.Results Compared with the normal group,the model group showed a decrease in the total active distance in the open-field test and an increase in forced swimming immobility time,with an increase in glucose and lactic acid contents and ADP/ATP ratio,whereas a decrease in insulin,5-HT,and DA levels was observed in the hippocampus.The average fluorescence intensity and relative protein expression levels of CD300f,GLUT1,RIMS3,and SAP102 in hippocampal tissue decreased(P<0.05),and the synaptic ultrastructure of hippocampal neurons was damaged.Compared with the model group,depression-like behavioral changes,glucose metabolism,and monoamine neurotransmitter imbalance were alleviated in the CD300f agonist group and ZGF high-and low-dose group(P<0.05).The average fluorescence intensity and relative protein expression levels of CD300f,GLUT1,RIMS3,and SAP102 in the hippocampus of the CD300f agonist group and the ZGF high-dose group were all increased(P<0.05),and synaptic damage was alleviated.The abnormal levels of glucose,lactate,ADP/ATP,5-HT,and CD300f protein expression were aggravated in the CD300f blocker group(P<0.05),and synaptic damage was aggravated.Conclusion ZGF can alleviate glucose metabolism disorders in hippocampal microglia and synaptic damage in hippocampal neurons in rats with diabetes-related depression.Its mechanism may be related to regulating the CD300f/GLUT1 signaling pathway.
8.Zuogui Jiangtang Jieyu Formula regulates the CD300f/GLUT1 signaling pathway to improve the synaptic damage of hippocampal neurons in rats with diabetes-related depression
Jian LIU ; Lin TANG ; Hongqing ZHAO ; Fan JIANG ; Lin LIU ; Chao HU
Journal of Beijing University of Traditional Chinese Medicine 2024;47(11):1573-1584
Objective To explore the protective mechanism of Zuogui Jiangtang Jieyu Formula(ZGF)on synaptic damage of hippocampal neurons based on leukocyte mono-immunoglobulin-like receptor 3(CD300f)/glucose transporter 1(GLUT1)signal-mediated microglial glucose metabolism in rats with diabetes-related depression.Methods Eighty male SD rats were randomly selected using random number table method,with 10 rats serving as the normal group.The remaining 70 rats were fed a high-fat diet for 4 weeks and then injected once with 38 mg/kg of streptozotocin via the tail vein to replicate the diabetes rat model.Sixty rats were screened and successfully modeled,which were randomly divided into the model,CD300f blocker,CD300f agonist,metformin+fluoxetine(metformin 0.18 g/kg+fluoxetine 1.8 mg/kg),and ZGF high-and low-dose(20.52 and 10.26 g/kg,respectively)groups using random number table method.In addition to the normal group,the rats in the other groups underwent chronic unpredictable mild stress combined with isolation feeding for 28 days to replicate the diabetes-related depression rat model.The metformin+fluoxetine and ZGF high-and low-dose groups were subjected to continuous intragastrial administration for 14 days after the second week of modeling.The normal and model groups were administered an equal amount of distilled water by gavage.The CD300f blocker group and agonist group received microinjection into the hippocampus,with injection of myeloid cell trigger receptor inhibitory factor(CLM1,2 μg/kg)and immunoglobulin Fc surface protein(Fcγ,5 μg/kg)once a week,respectively.Depression-like behavior in rats was evaluated using open-field and forced swimming tests after the intervention.Biochemical analysis was used to detect the glucose,lactic acid,and adenosine diphosphate(ADP)/adenosine triphosphate(ATP)ratio contents.The insulin,5-hydroxytryptamine(5-HT),and dopamine(DA)levels in the hippocampus were detected using an enzyme-linked immunosorbent assay.Immunofluorescence was used to detect the average fluorescence intensity of CD300f,GLUT1,regulating synaptic membrane wxocytosis 3(RIMS3),and synapse-associated protein 102(SAP102)in hippocampal tissue.Western blotting was used to detect the CD300f,GLUT1,RIMS3,and SAP102 protein expression levels in the hippocampus.The synaptic damage of hippocampal neurons was observed using Nissl staining and transmission electron microscope.Results Compared with the normal group,the model group showed a decrease in the total active distance in the open-field test and an increase in forced swimming immobility time,with an increase in glucose and lactic acid contents and ADP/ATP ratio,whereas a decrease in insulin,5-HT,and DA levels was observed in the hippocampus.The average fluorescence intensity and relative protein expression levels of CD300f,GLUT1,RIMS3,and SAP102 in hippocampal tissue decreased(P<0.05),and the synaptic ultrastructure of hippocampal neurons was damaged.Compared with the model group,depression-like behavioral changes,glucose metabolism,and monoamine neurotransmitter imbalance were alleviated in the CD300f agonist group and ZGF high-and low-dose group(P<0.05).The average fluorescence intensity and relative protein expression levels of CD300f,GLUT1,RIMS3,and SAP102 in the hippocampus of the CD300f agonist group and the ZGF high-dose group were all increased(P<0.05),and synaptic damage was alleviated.The abnormal levels of glucose,lactate,ADP/ATP,5-HT,and CD300f protein expression were aggravated in the CD300f blocker group(P<0.05),and synaptic damage was aggravated.Conclusion ZGF can alleviate glucose metabolism disorders in hippocampal microglia and synaptic damage in hippocampal neurons in rats with diabetes-related depression.Its mechanism may be related to regulating the CD300f/GLUT1 signaling pathway.
9.Zuogui Jiangtang Jieyu Formula regulates the CD300f/GLUT1 signaling pathway to improve the synaptic damage of hippocampal neurons in rats with diabetes-related depression
Jian LIU ; Lin TANG ; Hongqing ZHAO ; Fan JIANG ; Lin LIU ; Chao HU
Journal of Beijing University of Traditional Chinese Medicine 2024;47(11):1573-1584
Objective To explore the protective mechanism of Zuogui Jiangtang Jieyu Formula(ZGF)on synaptic damage of hippocampal neurons based on leukocyte mono-immunoglobulin-like receptor 3(CD300f)/glucose transporter 1(GLUT1)signal-mediated microglial glucose metabolism in rats with diabetes-related depression.Methods Eighty male SD rats were randomly selected using random number table method,with 10 rats serving as the normal group.The remaining 70 rats were fed a high-fat diet for 4 weeks and then injected once with 38 mg/kg of streptozotocin via the tail vein to replicate the diabetes rat model.Sixty rats were screened and successfully modeled,which were randomly divided into the model,CD300f blocker,CD300f agonist,metformin+fluoxetine(metformin 0.18 g/kg+fluoxetine 1.8 mg/kg),and ZGF high-and low-dose(20.52 and 10.26 g/kg,respectively)groups using random number table method.In addition to the normal group,the rats in the other groups underwent chronic unpredictable mild stress combined with isolation feeding for 28 days to replicate the diabetes-related depression rat model.The metformin+fluoxetine and ZGF high-and low-dose groups were subjected to continuous intragastrial administration for 14 days after the second week of modeling.The normal and model groups were administered an equal amount of distilled water by gavage.The CD300f blocker group and agonist group received microinjection into the hippocampus,with injection of myeloid cell trigger receptor inhibitory factor(CLM1,2 μg/kg)and immunoglobulin Fc surface protein(Fcγ,5 μg/kg)once a week,respectively.Depression-like behavior in rats was evaluated using open-field and forced swimming tests after the intervention.Biochemical analysis was used to detect the glucose,lactic acid,and adenosine diphosphate(ADP)/adenosine triphosphate(ATP)ratio contents.The insulin,5-hydroxytryptamine(5-HT),and dopamine(DA)levels in the hippocampus were detected using an enzyme-linked immunosorbent assay.Immunofluorescence was used to detect the average fluorescence intensity of CD300f,GLUT1,regulating synaptic membrane wxocytosis 3(RIMS3),and synapse-associated protein 102(SAP102)in hippocampal tissue.Western blotting was used to detect the CD300f,GLUT1,RIMS3,and SAP102 protein expression levels in the hippocampus.The synaptic damage of hippocampal neurons was observed using Nissl staining and transmission electron microscope.Results Compared with the normal group,the model group showed a decrease in the total active distance in the open-field test and an increase in forced swimming immobility time,with an increase in glucose and lactic acid contents and ADP/ATP ratio,whereas a decrease in insulin,5-HT,and DA levels was observed in the hippocampus.The average fluorescence intensity and relative protein expression levels of CD300f,GLUT1,RIMS3,and SAP102 in hippocampal tissue decreased(P<0.05),and the synaptic ultrastructure of hippocampal neurons was damaged.Compared with the model group,depression-like behavioral changes,glucose metabolism,and monoamine neurotransmitter imbalance were alleviated in the CD300f agonist group and ZGF high-and low-dose group(P<0.05).The average fluorescence intensity and relative protein expression levels of CD300f,GLUT1,RIMS3,and SAP102 in the hippocampus of the CD300f agonist group and the ZGF high-dose group were all increased(P<0.05),and synaptic damage was alleviated.The abnormal levels of glucose,lactate,ADP/ATP,5-HT,and CD300f protein expression were aggravated in the CD300f blocker group(P<0.05),and synaptic damage was aggravated.Conclusion ZGF can alleviate glucose metabolism disorders in hippocampal microglia and synaptic damage in hippocampal neurons in rats with diabetes-related depression.Its mechanism may be related to regulating the CD300f/GLUT1 signaling pathway.
10.Rapid detection and genotyping of SARS-CoV-2 Omicron BA.4/5 variants using a RT-PCR and CRISPR-Cas12a-based assay.
Yunan MA ; Lirong ZOU ; Yuanhao LIANG ; Quanxun LIU ; Qian SUN ; Yulian PANG ; Hongqing LIN ; Xiaoling DENG ; Shixing TANG
Journal of Southern Medical University 2023;43(4):516-526
OBJECTIVE:
To establish a rapid detection and genotyping method for SARS-CoV-2 Omicron BA.4/5 variants using CRISPPR-Cas12a gene editing technology.
METHODS:
We combined reverse transcription-polymerase chain reaction (RT-PCR) and CRISPR gene editing technology and designed a specific CRISPPR RNA (crRNA) with suboptimal protospacer adjacent motifs (PAM) for rapid detection and genotyping of SARS- CoV-2 Omicron BA.4/5 variants. The performance of this RT- PCR/ CRISPPR-Cas12a assay was evaluated using 43 clinical samples of patients infected by wild-type SARS-CoV-2 and the Alpha, Beta, Delta, Omicron BA. 1 and BA. 4/5 variants and 20 SARS- CoV- 2-negative clinical samples infected with 11 respiratory pathogens. With Sanger sequencing method as the gold standard, the specificity, sensitivity, concordance (Kappa) and area under the ROC curve (AUC) of RT-PCR/CRISPPR-Cas12a assay were calculated.
RESULTS:
This assay was capable of rapid and specific detection of SARS- CoV-2 Omicron BA.4/5 variant within 30 min with the lowest detection limit of 10 copies/μL, and no cross-reaction was observed in SARS-CoV-2-negative clinical samples infected with 11 common respiratory pathogens. The two Omicron BA.4/5 specific crRNAs (crRNA-1 and crRNA-2) allowed the assay to accurately distinguish Omicron BA.4/5 from BA.1 sublineage and other major SARS-CoV-2 variants of concern. For detection of SARS-CoV-2 Omicron BA.4/5 variants, the sensitivity of the established assay using crRNA-1 and crRNA-2 was 97.83% and 100% with specificity of 100% and AUC of 0.998 and 1.000, respectively, and their concordance rate with Sanger sequencing method was 92.83% and 96.41%, respectively.
CONCLUSION
By combining RT-PCR and CRISPPR-Cas12a gene editing technology, we successfully developed a new method for rapid detection and identification of SARS-CoV-2 Omicron BA.4/5 variants with a high sensitivity, specificity and reproducibility, which allows rapid detection and genotyping of SARS- CoV-2 variants and monitoring of the emerging variants and their dissemination.
Humans
;
COVID-19
;
CRISPR-Cas Systems
;
Genotype
;
Reproducibility of Results
;
Reverse Transcriptase Polymerase Chain Reaction
;
SARS-CoV-2/genetics*
;
RNA
;
COVID-19 Testing

Result Analysis
Print
Save
E-mail