1.Terms Related to The Study of Biomacromolecular Condensates
Ke RUAN ; Xiao-Feng FANG ; Dan LI ; Pi-Long LI ; Yi LIN ; Zheng WANG ; Yun-Yu SHI ; Ming-Jie ZHANG ; Hong ZHANG ; Cong LIU
Progress in Biochemistry and Biophysics 2025;52(4):1027-1035
Biomolecular condensates are formed through phase separation of biomacromolecules such as proteins and RNAs. These condensates exhibit liquid-like properties that can futher transition into more stable material states. They form complex internal structures via multivalent weak interactions, enabling precise spatiotemporal regulations. However, the use of inconsistent and non-standardized terminology has become increasingly problematic, hindering academic exchange and the dissemination of scientific knowledge. Therefore, it is necessary to discuss the terminology related to biomolecular condensates in order to clarify concepts, promote interdisciplinary cooperation, enhance research efficiency, and support the healthy development of this field.
2.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
3.Application of Recombinant Collagen in Biomedicine
Huan HU ; Hong ZHANG ; Jian WANG ; Li-Wen WANG ; Qian LIU ; Ning-Wen CHENG ; Xin-Yue ZHANG ; Yun-Lan LI
Progress in Biochemistry and Biophysics 2025;52(2):395-416
Collagen is a major structural protein in the matrix of animal cells and the most widely distributed and abundant functional protein in mammals. Collagen’s good biocompatibility, biodegradability and biological activity make it a very valuable biomaterial. According to the source of collagen, it can be broadly categorized into two types: one is animal collagen; the other is recombinant collagen. Animal collagen is mainly extracted and purified from animal connective tissues by chemical methods, such as acid, alkali and enzyme methods, etc. Recombinant collagen refers to collagen produced by gene splicing technology, where the amino acid sequence is first designed and improved according to one’s own needs, and the gene sequence of improved recombinant collagen is highly consistent with that of human beings, and then the designed gene sequence is cloned into the appropriate vector, and then transferred to the appropriate expression vector. The designed gene sequence is cloned into a suitable vector, and then transferred to a suitable expression system for full expression, and finally the target protein is obtained by extraction and purification technology. Recombinant collagen has excellent histocompatibility and water solubility, can be directly absorbed by the human body and participate in the construction of collagen, remodeling of the extracellular matrix, cell growth, wound healing and site filling, etc., which has demonstrated significant effects, and has become the focus of the development of modern biomedical materials. This paper firstly elaborates the structure, type, and tissue distribution of human collagen, as well as the associated genetic diseases of different types of collagen, then introduces the specific process of producing animal source collagen and recombinant collagen, explains the advantages of recombinant collagen production method, and then introduces the various systems of expressing recombinant collagen, as well as their advantages and disadvantages, and finally briefly introduces the application of animal collagen, focusing on the use of animal collagen in the development of biopharmaceutical materials. In terms of application, it focuses on the use of animal disease models exploring the application effects of recombinant collagen in wound hemostasis, wound repair, corneal therapy, female pelvic floor dysfunction (FPFD), vaginal atrophy (VA) and vaginal dryness, thin endometritis (TE), chronic endometritis (CE), bone tissue regeneration in vivo, cardiovascular diseases, breast cancer (BC) and anti-aging. The mechanism of action of recombinant collagen in the treatment of FPFD and CE was introduced, and the clinical application and curative effect of recombinant collagen in skin burn, skin wound, dermatitis, acne and menopausal urogenital syndrome (GSM) were summarized. From the exploratory studies and clinical applications, it is evident that recombinant collagen has demonstrated surprising effects in the treatment of all types of diseases, such as reducing inflammation, promoting cell proliferation, migration and adhesion, increasing collagen deposition, and remodeling the extracellular matrix. At the end of the review, the challenges faced by recombinant collagen are summarized: to develop new recombinant collagen types and dosage forms, to explore the mechanism of action of recombinant collagen, and to provide an outlook for the future development and application of recombinant collagen.
4.Fast Object Perception in The Subcortical Pathway: a Commentary on Wang et al.’s Paper in Human Brain Mapping (2023)
Hao-Yun MA ; Yu-Yin WEI ; Li-Ping HU
Progress in Biochemistry and Biophysics 2025;52(7):1904-1908
The subcortical visual pathway is generally thought to be involved in dangerous information processing, such as fear processing and defensive behavior. A recent study, published in Human Brain Mapping, shows a new function of the subcortical pathway involved in the fast processing of non-emotional object perception. Rapid object processing is a critical function of visual system. Topological perception theory proposes that the initial perception of objects begins with the extraction of topological property (TP). However, the mechanism of rapid TP processing remains unclear. The researchers investigated the subcortical mechanism of TP processing with transcranial magnetic stimulation (TMS). They find that a subcortical magnocellular pathway is responsible for the early processing of TP, and this subcortical processing of TP accelerates object recognition. Based on their findings, we propose a novel training approach called subcortical magnocellular pathway training (SMPT), aimed at improving the efficiency of the subcortical M pathway to restore visual and attentional functions in disorders associated with subcortical pathway dysfunction.
5.N-butyl-9H-pyrimido4,5-bindole-2-carboxamide inhibits macrophage foaming and pyroptosis via NLRP3/caspase-1
Zhi-Yun SHU ; Zi-Xu HUYAN ; Wen-Qing ZHANG ; Shi-Shun XIE ; Hong-Yuan CHENG ; Guo-Xing XU ; Xiang-Jun LI
Chinese Pharmacological Bulletin 2024;40(6):1035-1041
Aim To design the pyrimidoindole deriva-tive N-butyl-9H-pyrimido[4,5-b]indole-2-carboxamide(BFPI)and synthesize it to investigate whether it in-hibits macrophage pyroptosis and foaming effects through the NLRP3/Caspase-1 pathway.Methods BFPI was synthesized using 2,4,6-triethoxycarbonyl-l,3,5-triazine and 2-aminoindole as starting materials and structurally characterized by 1H NMR,13C NMR,and ESI-MS.The in vitro cultured mouse monocyte macro-phage cell line RAW264.7 was divided into blank,model(PA)and therapeutic(BFPI)groups,and the cells in each group were treated with the corresponding culture medium for 24 h.The proliferative viability was detected by MTT assay,and the formation of intracel-lular lipid droplets was detected by oil red O staining,and NLRP3 was detected by Western-blot and RT-qPCR,caspase-1 and MCP-1 mRNA and protein ex-pression levels by Western blot and RT-qPCR.Results Compared with the blank group,the proliferation vi-ability of cells in the model group significantly de-creased and the formation of lipid droplets significantly increased;compared with the model group,the prolif-eration viability of cells in the treatment group signifi-cantly increased and the formation of lipid droplets sig-nificantly decreased,and the differences were statisti-cally significant(P<0.01);compared with the blank group,the cellular NLRP3,caspase-1 and MCP-1 mR-NA and protein expression levels of cells in the model group significantly increased;compared with the model group,the expression levels of the above indexes of the cells in the treatment group significantly decreased,and the difference was statistically significant(P<0.01).Conclusions BFPI contributes to delaying macrophage-derived foam cell formation during athero-genesis by inhibiting macrophage NLRP3,caspase-1,and MCP-1 expression and thereby promoting their pro-liferation and inhibiting lipid phagocytosis.
6.Preliminary study on delaying aging induced thymus degeneration in SAMP6 mice with Bazi Bushen capsule
Zhao-Dong LI ; Yin-Xiao CHEN ; Bo-Yang GONG ; Zhe XU ; Zhi-Xian YU ; Yue-Xuan SHI ; Yan-Fei PENG ; Yu-Hong BIAN ; Yun-Long HOU ; Xiang-Ling WANG ; Shu-Wu ZHAO
Chinese Pharmacological Bulletin 2024;40(6):1186-1192
Aim To explore the improvement effect of Bazi Bushen capsule on thymic degeneration in SAMP6 mice and the possible mechanism.Methods Twenty 12 week old male SAMP6 mice were randomly divided into the model group(SAMP6)and the Bazi Busheng capsule treatment group(SAMP6+BZBS).Ten SAMR1 mice were assigned to a homologous control group(SAMR1).The SAMP6+BZBS group was oral-ly administered Bazi Bushen capsule suspension(2.8 g·kg-1)daily,while the other two groups were orally administered an equal amount of distilled water.After nine weeks of administration,the morphology of the thymus in each group was observed and the thymus in-dex was calculated;HE staining was used to observe the structural changes of thymus tissue;SA-β-gal stai-ning was used to detect thymic aging;flow cytometry was used to detect the proportion of thymic CD3+T cells in each group;Western blot was used to detect the levels of p16,Bax,Bcl-2,and cleaved caspase-3 proteins in thymus;immunofluorescence was applied to detect the proportion of cortical thymic epithelial cells in each group;ELISA was employed to detect IL-7 lev-els in thymus.Results Compared with the SAMP6 group,the thymic index of the SAMP6+BZBS group significantly increased(P<0.05);the disordered thy-mic structure was significantly improved;the positive proportion of SA-β-gal staining significantly decreased(P<0.01);the proportion of CD3+T cells apparently increased(P<0.05);the level of p16 protein signifi-cantly decreased(P<0.05);the level of Bcl-2 pro-tein significantly increased(P<0.05),while the lev-el of cleaved caspase-3 protein markedly decreased(P<0.05);the proportion of cortical thymic epithelial cells evidently increased;the level of IL-7 significantly increased(P<0.01).Conclusions Bazi Bushen capsule can delay thymic degeneration,inhibit cell ap-optosis in thymus and promote thymic cell development in SAMP6 mice,which may be related to increasing the proportion of cortical thymic epithelial cells and promoting IL-7 secretion.
7.Research progress of mitochondrial quality control in methamphetamine-induced neurotoxicity
Qian-Yun NIE ; Wen-Juan DONG ; Gen-Meng YANG ; Li-Xiang QIN ; Chun-Hui SONG ; Li-Hua LI ; Shi-Jun HONG
Chinese Pharmacological Bulletin 2024;40(7):1201-1205
Methamphetamine abuse is a major public health problem in the world,and in recent years,methamphetamine is also the most abused synthetic drug in China.The neurotoxic or addiction mechanism of methamphetamine has not been fully clarified,and there is still a lack of specific withdrawal methods and drugs for methamphetamine abuse.Mitochondria are not on-ly the organelles to which methamphetamine directly produces toxic effects,but also participate in regulating the neurotoxic damage process of methamphetamine.Mitochondrial quality is the regulatory basis for maintaining mitochondrial homeostasis and is regulated by three main mechanisms,which are mitochon-drial biogenesis,mitochondrial dynamic,and mitophagy.This review summarizes the research progress of mitochondrial quality control in methamphetamine-induced neurotoxicity,which may provide theoretical support for further research on the mechanism of methamphetamine neurotoxicity and development the mito-chondria-targeting drugs.
8.mfat-1 gene therapy prevents and ameliorates multiple sclerosis in mice
Min-Yi TANG ; Xin-Yun BI ; Shuai WANG ; Chao-Feng XING ; Xiao-Li WU ; Zi-Jian ZHAO ; Fang-Hong LI
Chinese Pharmacological Bulletin 2024;40(10):1930-1936
Aim To investigate the preventive and therapeutic effects of the mfat-1 gene therapy on exper-imental autoimmune encephalomyelitis in mice.Meth-ods mfat-1 gene therapy was used to render the host endogenous capability of producing ω-3 PUFAs,con-comitantly reduce the levels of ω-6 PUFAs,and change the proportion of ω-3/ω-6 PUFAs.Then,the levels of PUFAs in blood were analyzed by gas chromatography.The neurological deficits in mice were evaluated by neurological dysfunction score.HE staining and LFB staining of mouse spinal cord slices were used to ob-serve central nervous system inflammation infiltration and demyelinating lesions.Flow cytometry microsphere microarray technology was used to detect the content of cytokines in serum.Results The mfat-1 gene therapy could significantly raise the proportion of ω-3/ω-6 PU-FAs(P<0.05),markedly delay the incubation period and peak period and reduce neurological dysfunction scores(P<0.05),and improve inflammation and de-myelination of spinal cords(P<0.05).It could also greatly increase the levels of IL-2,IFN-γ,IL-4 and IL-17 in serum(P<0.05).Conclusion The pro-portion of ω-3/ω-6 PUFAs in blood circulation en-hanced by mfat-1 gene therapy can effectively prevent and treat experimental autoimmune encephalomyelitis in mice.
9.Progress in the clinical diagnosis and therapy of heart failure with preserved ejection fraction
Yun-Hong DUAN ; Bo XU ; Jian LI ; Shi-Si LI
Journal of Regional Anatomy and Operative Surgery 2024;33(7):649-653
Heart failure with preserved ejection fraction(HFpEF)may be a main form of heart failure,with a high mortality and an increasing incidence,which is a significant problem in cardiovascular disease.Although some important advancements in HFpEF has been made in recent years,its pathogenesis remains unclear,and the prognosis and mortality of patients have not significantly improved.Due to a large number of complications and complex pathological mechanism of HFpEF,and traditional treatment medicines of heart failure cannot effectively improve the prognosis of HFpEF patients,it is still lack of accurate diagnostic methods and effective clinical treatment strategies.Exploring and developing effective diagnostic and therapeutic approaches are of great clinical significance.This review summarizes the progress and future research direction in the diagnosis and treatment of HFpEF.
10.Radiofrequency ablation on prosthetic valve for atrial tachycardia after transcatheter aortic valve replacement
Hong-Xiao LI ; Bi-Jun HUANG ; Lu-Xin WANG ; Xing-Xu WANG ; Yun-Kai WANG ; Xiao-Yan HE ; Jian-Qiang ZHANG
Chinese Journal of Interventional Cardiology 2024;32(4):232-235
Transcatheter aortic valve replacement(TAVR)has emerged as a promising therapeutic alternative for addressing aortic valve-related pathologies.However,the occurrence of rapid arrhythmias linked to TAVR procedures is progressively drawing scrutiny.Presently,pharmacologic interventions constitute the mainstay of managing atrial arrhythmias related to TAVR,while the potential of ablation as a viable treatment modality remains undefined.Notably,in cases where the arrhythmia's genesis is presumed to be intricately linked to the prosthetic valve,the practicality and safety of ablation procedures remain unverified.Our institution has successfully ventured into radiofrequency ablation for a distinctive patient presenting with this intricate condition,thereby tentatively affirming the efficacy and safety of catheter ablation administered on the surface of prosthetic valves.

Result Analysis
Print
Save
E-mail