1.Diagnostic Techniques and Risk Prediction for Cardiovascular-kidney-metabolic (CKM) Syndrome
Song HOU ; Lin-Shan ZHANG ; Xiu-Qin HONG ; Chi ZHANG ; Ying LIU ; Cai-Li ZHANG ; Yan ZHU ; Hai-Jun LIN ; Fu ZHANG ; Yu-Xiang YANG
Progress in Biochemistry and Biophysics 2025;52(10):2585-2601
Cardiovascular disease (CVD), chronic kidney disease (CKD), and metabolic disorders are the 3 major chronic diseases threatening human health, which are closely related and often coexist, significantly increasing the difficulty of disease management. In response, the American Heart Association (AHA) proposed a novel disease concept of “cardiovascular-kidney-metabolic (CKM) syndrome” in October 2023, which has triggered widespread concern about the co-treatment of heart and kidney diseases and the prevention and treatment of metabolic disorders around the world. This review posits that effectively managing CKM syndrome requires a new and multidimensional paradigm for diagnosis and risk prediction that integrates biological insights, advanced technology and social determinants of health (SDoH). We argue that the core pathological driver is a “metabolic toxic environment”, fueled by adipose tissue dysfunction and characterized by a vicious cycle of systemic inflammation and oxidative stress, which forms a common pathway to multi-organ injury. The at-risk population is defined not only by biological characteristics but also significantly impacted by adverse SDoH, which can elevate the risk of advanced CKM by a factor of 1.18 to 3.50, underscoring the critical need for equity in screening and care strategies. This review systematically charts the progression of diagnostic technologies. In diagnostics, we highlight a crucial shift from single-marker assessments to comprehensive multi-marker panels. The synergistic application of traditional biomarkers like NT-proBNP (reflecting cardiac stress) and UACR (indicating kidney damage) with emerging indicators such as systemic immune-inflammation index (SII) and Klotho protein facilitates a holistic evaluation of multi-organ health. Furthermore, this paper explores the pivotal role of non-invasive monitoring technologies in detecting subclinical disease. Techniques like multi-wavelength photoplethysmography (PPG) and impedance cardiography (ICG) provide a real-time window into microcirculatory and hemodynamic status, enabling the identification of early, often asymptomatic, functional abnormalities that precede overt organ failure. In imaging, progress is marked by a move towards precise, quantitative evaluation, exemplified by artificial intelligence-powered quantitative computed tomography (AI-QCT). By integrating AI-QCT with clinical risk factors, the predictive accuracy for cardiovascular events within 6 months significantly improves, with the area under the curve (AUC) increasing from 0.637 to 0.688, demonstrating its potential for reclassifying risk in CKM stage 3. In the domain of risk prediction, we trace the evolution from traditional statistical tools to next-generation models. The new PREVENT equation represents a major advancement by incorporating key kidney function markers (eGFR, UACR), which can enhance the detection rate of CKD in primary care by 20%-30%. However, we contend that the future lies in dynamic, machine learning-based models. Algorithms such as XGBoost have achieved an AUC of 0.82 for predicting 365-day cardiovascular events, while deep learning models like KFDeep have demonstrated exceptional performance in predicting kidney failure risk with an AUC of 0.946. Unlike static calculators, these AI-driven tools can process complex, multimodal data and continuously update risk profiles, paving the way for truly personalized and proactive medicine. In conclusion, this review advocates for a paradigm shift toward a holistic and technologically advanced framework for CKM management. Future efforts must focus on the deep integration of multimodal data, the development of novel AI-driven biomarkers, the implementation of refined SDoH-informed interventions, and the promotion of interdisciplinary collaboration to construct an efficient, equitable, and effective system for CKM screening and intervention.
2.Steroid sulfatase inhibitor DU-14 prevents amyloid β-protein-induced depressive-like behavior and theta rhythm suppression in rats.
Xing-Hua YUE ; Zhao-Jun WANG ; Mei-Na WU ; Hong-Yan CAI ; Jun ZHANG
Acta Physiologica Sinica 2025;77(5):801-810
The hippocampus, a major component of the limbic system, is the most important region related to emotion regulation and memory processing. Cognitive impairment and depressive symptoms observed in Alzheimer's disease (AD) patients may be attributed to hippocampal damage caused by amyloid β-protein (Aβ). Our previous studies have demonstrated that a steroid sulfatase inhibitor DU-14 can enhance hippocampal synaptic plasticity and spatial memory abilities in a chronic AD murine model by counteracting the toxic effects of Aβ. However, limited experimental evidence exists regarding the efficacy of steroid sulfatase inhibitor on depressive symptoms in AD animal models. In this study, we investigated the effects of DU-14 on depressive symptoms and theta-band neuronal oscillations in rats with intrahippocampal injection of Aβ1-42 using various behavioral tests such as sucrose preference test, tail suspension test, forced swimming test, and in vivo hippocampal local field potential (LFP) recording. The results demonstrated that, in comparison to the control group: (1) rats in the Aβ group exhibited a decrease in sucrose preference, indicating a loss of interest in pleasurable activities; (2) rats in the Aβ group displayed aggravated depressive-like behavior characterized by prolonged immobility time during tail suspension and forced swimming tests; (3) Aβ disrupted the induction of theta rhythm via tail pinch stimulation, and resulted in a significant reduction in peak power of theta rhythm. In contrast to the Aβ group, pretreatment with DU-14 resulted in: (1) a significant improvement in Aβ-induced anhedonia, as evidenced by increased sucrose preference; (2) significant alleviation of Aβ-induced despair and depressive-like behaviors, reflected by reduced immobility time during tail suspension and forced swimming tests; (3) successful mitigation of Aβ-mediated inhibition on bilateral hippocampal theta rhythm. These findings indicate that steroid sulfatase inhibitor DU-14 can counteract neurotoxicity induced by Aβ, and prevent Aβ-induced depressive-like behavior and suppression of theta rhythm.
Animals
;
Amyloid beta-Peptides/toxicity*
;
Rats
;
Depression/physiopathology*
;
Theta Rhythm/drug effects*
;
Hippocampus/physiopathology*
;
Male
;
Rats, Sprague-Dawley
;
Alzheimer Disease/physiopathology*
;
Steryl-Sulfatase/antagonists & inhibitors*
;
Peptide Fragments
;
Behavior, Animal/drug effects*
3.Multifaceted mechanisms of Danggui Shaoyao San in ameliorating Alzheimer's disease based on transcriptomics and metabolomics.
Min-Hao YAN ; Han CAI ; Hai-Xia DING ; Shi-Jie SU ; Xu-Nuo LI ; Zi-Qiao XU ; Wei-Cheng FENG ; Qi-Qing WU ; Jia-Xin CHEN ; Hong WANG ; Qi WANG
China Journal of Chinese Materia Medica 2025;50(8):2229-2236
This study explored the potential therapeutic targets and mechanisms of Danggui Shaoyao San(DSS) in the prevention and treatment of Alzheimer's disease(AD) through transcriptomics and metabolomics, combined with animal experiments. Fifty male C57BL/6J mice, aged seven weeks, were randomly divided into the following five groups: control, model, positive drug, low-dose DSS, and high-dose DSS groups. After the intervention, the Morris water maze was used to assess learning and memory abilities of mice, and Nissl staining and hematoxylin-eosin(HE) staining were performed to observe pathological changes in the hippocampal tissue. Transcriptomics and metabolomics were employed to sequence brain tissue and identify differential metabolites, analyzing key genes and metabolites related to disease progression. Reverse transcription-quantitative polymerase chain reaction(RT-qPCR) was employed to validate the expression of key genes. The Morris water maze results indicated that DSS significantly improved learning and cognitive function in scopolamine(SCOP)-induced model mice, with the high-dose DSS group showing the best results. Pathological staining showed that DSS effectively reduced hippocampal neuronal damage, increased Nissl body numbers, and reduced nuclear pyknosis and neuronal loss. Transcriptomics identified seven key genes, including neurexin 1(Nrxn1) and sodium voltage-gated channel α subunit 1(Scn1a), and metabolomics revealed 113 differential metabolites, all of which were closely associated with synaptic function, oxidative stress, and metabolic regulation. RT-qPCR experiments confirmed that the expression of these seven key genes was consistent with the transcriptomics results. This study suggests that DSS significantly improves learning and memory in SCOP model mice and alleviates hippocampal neuronal pathological damage. The mechanisms likely involve the modulation of synaptic function, reduction of oxidative stress, and metabolic balance, with these seven key genes serving as important targets for DSS in the treatment of AD.
Animals
;
Alzheimer Disease/genetics*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Mice, Inbred C57BL
;
Metabolomics
;
Transcriptome/drug effects*
;
Maze Learning/drug effects*
;
Hippocampus/metabolism*
;
Humans
;
Disease Models, Animal
;
Memory/drug effects*
4.Systematic review and Meta-analysis of efficacy and safety of Wumei Pills in treatment of type 2 diabetes mellitus.
Wei-Jin HUANG ; Yun-Yi YANG ; Jia-Yuan CAI ; Xiao-Xiao QU ; Yan-Ming HE ; Hong-Jie YANG
China Journal of Chinese Materia Medica 2025;50(12):3441-3451
Wumei Pills, a classic traditional Chinese medicine(TCM) formula, are widely used in the treatment of biliary ascariasis and diarrhea. In recent years, studies have shown that Wumei Pills have advantages in the treatment of type 2 diabetes mellitus(T2DM), while there are no relevant reports that systematically evaluate the efficacy of Wumei Pills in the treatment of T2DM. This study addresses this issue by systematically evaluating the efficacy and safety of Wumei Pills, aiming to provide an evidence-based basis for clinical practice. PubMed, Cochrane Library, EMbase, Web of Science, CNKI, Wanfang, and VIP were researched for the randomized controlled trial(RCT) involving Wumei Pills for the treatment of T2DM that were published from inception to September 2024. RevMan 5.3 was used for the Meta-analysis of the data. A total of 18 RCTs were included, with a total of 1 437 patients. Meta-analysis produced the following results.(1)Treatment group outperformed control group in terms of overall response rate(RR=1.28, 95%CI[1.14, 1.43], P<0.000 1), fasting blood glucose(FPG)(WMD=-0.69, 95%CI[-0.93,-0.46], P<0.000 01), two-hour postprandial plasma glucose(2hPG)(WMD=-0.74, 95%CI[-1.17,-0.31], P<0.000 7), glycated hemoglobin(HbA1c)(WMD=-0.39, 95%CI[-0.60,-0.18], P=0.000 3), high-density lipoprotein(HDL)(WMD=0.38, 95%CI[0.28, 0.48], P<0.000 01), and body mass index(BMI)(WMD=-1.41, 95%CI[-2.40,-0.42], P=0.005).(2)The two groups had comparable effects regarding total cholesterol(TC)(WMD=-0.53, 95%CI[-1.13, 0.08], P=0.09) and low-density lipoprotein(LDL)(WMD=-0.25, 95%CI[-0.56, 0.06], P=0.12).(3)Triglycerides(TG)(WMD=-0.28,95%CI [-0.59,0.03],P=0.08), sensitivity analysis showed potential reduction effect(WMD=-0.20,95%CI[-0.36,-0.04],P=0.01). Occurrence of adverse drug reaction(RR=0.43,95%CI [0.23,0.80],P=0.007), sensitivity analysis showed significant disappearance(RR=0.56,95%CI[0.26,1.22],P=0.14), suggesting that the efficacy of treatment group was not better than that of control group. The results indicate that the treatment of T2DM with Wumei Pills is greatly related to the improvement of glucose metabolism, lipid metabolism, and clinical efficacy. The findings provide a basis for clinical application of Wumei Pills in treating T2DM, while the conclusion remains to be verified by clinical studies with higher quality.
Humans
;
Diabetes Mellitus, Type 2/blood*
;
Drugs, Chinese Herbal/administration & dosage*
;
Randomized Controlled Trials as Topic
;
Blood Glucose/metabolism*
;
Hypoglycemic Agents/therapeutic use*
;
Treatment Outcome
;
Glycated Hemoglobin/metabolism*
;
Female
5.Construction of core outcome set for clinical research on traditional Chinese medicine treatment of simple obesity.
Tong-Tong WU ; Yan YU ; Qian HUANG ; Xue-Yin CHEN ; Fu-Ming-Xiang LIU ; Li-Hong YANG ; Chang-Cai XIE ; Shao-Nan LIU ; Yu CHEN ; Xin-Feng GUO
China Journal of Chinese Materia Medica 2025;50(12):3423-3430
Following the core outcome set standards for development(COS-STAD), this study aims to construct core outcome set(COS) for clinical research on traditional Chinese medicine(TCM) treatment of simple obesity. Firstly, a comprehensive review was conducted on the randomized controlled trial(RCT) and systematic review(SR) about TCM treatment of simple obesity that were published in Chinese and English databases to collect reported outcomes. Additional outcomes were obtained through semi-structured interviews with patients and open-ended questionnaire surveys for clinicians. All the collected outcomes were then merged and organized as an initial outcome pool, and then a preliminary list of outcomes was formed after discussion by the working group. Subsequently, two rounds of Delphi surveys were conducted with clinicians, methodology experts, and patients to score the importance of outcomes in the list. Finally, a consensus meeting was held to establish the COS for clinical research on TCM treatment of simple obesity. A total of 221 RCTs and 12 SRs were included, and after integration of supplementary outcomes, an initial outcome pool of 141 outcomes were formed. Following discussions in the steering advisory group meeting, a preliminary list of 33 outcomes was finalized, encompassing 9 domains. Through two rounds of Delphi surveys and a consensus meeting, the final COS for clinical research on TCM treatment of simple obesity was determined to include 8 outcomes: TCM symptom scores, body mass index(BMI), waist-hip ratio, waist circumference, visceral fat index, body fat rate, quality of life, and safety, which were classified into 4 domains: TCM-related outcomes, anthropometric measurements, quality of life, and safety. This study has preliminarily established a COS for clinical research on TCM treatment of simple obesity. It helps reduce the heterogeneity in the selection and reporting of outcomes in similar clinical studies, thereby improving the comparability of research results and the feasibility of meta-analysis and providing higher-level evidence support for clinical practice.
Humans
;
Obesity/therapy*
;
Medicine, Chinese Traditional
;
Randomized Controlled Trials as Topic
;
Treatment Outcome
;
Drugs, Chinese Herbal/therapeutic use*
6.Cystic fibrosis-causing variants in Chinese patients with congenital absence of the vas deferens: a cohort and meta-analysis.
Yi LU ; Jing WANG ; Zhong-Lin CAI ; Teng-Yan LI ; Hong-Jun LI ; Bin-Bin WANG
Asian Journal of Andrology 2025;27(5):611-620
Individuals with congenital absence of the vas deferens (CAVD) may transmit cystic fibrosis (CF)-causing variants of the cystic fibrosis transmembrane conductance regulator ( CFTR ) gene to their offspring through assisted reproductive technology (ART). We aimed to delineate the spectrum and estimate the prevalence of CF-causing variants in Chinese individuals with CAVD through a cohort analysis and meta-analysis. CFTR was sequenced in 145 Chinese individuals with CAVD. CFTR variants were classified as CF-causing or non-CF-causing variants regarding clinical significance. A comprehensive genotype analysis was performed in Chinese individuals with CAVD, incorporating previous studies and our study cohort. The prevalence of CF-causing variants was estimated through meta-analysis. In our cohort, 56 different CFTR variants were identified in 108 (74.5%) patients. Twenty variants were categorized as CF-causing and were detected in 28 (19.3%) patients. A comprehensive genotype analysis of 867 patients identified 174 different CFTR variants. Sixty-four were classified as CF-causing variants, 56.3% of which had not been previously reported in Chinese patients with CF. Meta-analysis showed that 14.8% (95% confidence interval [CI]: 11.0%-18.9%) CAVD cases harbored one CF-causing variant, and 68.6% (95% CI: 65.1%-72.0%) CAVD cases carried at least one CFTR variant. Our study underscores the urgent need for extensive CFTR screening, including sequencing of whole exons and flanking regions and detection of large rearrangements and deep intronic CF-causing variants, in Chinese individuals with CAVD before undergoing ART. The established CF-causing variants spectrum may aid in the development of genetic counseling strategies and preimplantation diagnosis to prevent the birth of a child with CF.
Adult
;
Humans
;
Male
;
China
;
Cohort Studies
;
Cystic Fibrosis/genetics*
;
Cystic Fibrosis Transmembrane Conductance Regulator/genetics*
;
Genotype
;
Male Urogenital Diseases/genetics*
;
Mutation
;
Vas Deferens/abnormalities*
;
East Asian People/genetics*
7.Clinical Characteristics and Prognostic Analysis of Newly Diagnosed Acute Myeloid Leukemia Patients with NRAS and KRAS Gene Mutations.
Zhang-Yu YU ; Bo CAI ; Yi WANG ; Yang-Yang LEI ; Bing-Xia LI ; Yu-Fang LI ; Yan-Ping SHI ; Jia-Xin CHEN ; Shu-Hong LIU ; Chang-Lin YU ; Mei GUO
Journal of Experimental Hematology 2025;33(3):682-690
OBJECTIVE:
To retrospectively analyze the clinical characteristics, co-mutated genes in newly diagnosed acute myeloid leukemia (AML) patients with NRAS and KRAS gene mutations, and the impact of NRAS and KRAS mutations on prognosis.
METHODS:
The clinical data and next-generation sequencing results of 80 newly diagnosed AML patients treated at our hospital from December 2018 to December 2023 were collected. The clinical characteristics, co-mutated genes of NRAS and KRAS , and the impact of NRAS and KRAS mutations on prognosis in newly diagnosed AML patients were analyzed.
RESULTS:
Among 80 newly diagnosed AML patients, NRAS mutations were detected in 20 cases(25.0%), and KRAS mutations were detected in 9 cases(11.3%). NRAS mutations predominantly occurred at codons 12 and 13 of exon 2, as well as codon 61 of exon 3, while KRAS mutations were most commonly occurred at codons 12 and 13 of exon 2, all of which were missense mutations. There were no statistically significant differences observed in terms of age, sex, white blood cell count(WBC), hemoglobin(Hb), platelet count(PLT), bone marrow blasts, first induction chemotherapy regimen, CR1/CRi1 rates, chromosome karyotype, 2022 ELN risk classification and allogeneic hematopoietic stem cell transplantation(allo-HSCT) among the NRAS mutation group, KRAS mutation group and NRAS/KRAS wild-type group (P >0.05). KRAS mutations were significantly correlated with PTPN11 mutations (r =0.344), whereas no genes significantly associated with NRAS mutations were found. Survival analysis showed that compared to the NRAS/KRAS wild-type group, patients with NRAS mutation had a relatively higher 5-year overall survival (OS) rate and relapse-free survival (RFS) rate, though the differences were not statistically significant (P =0.097, P =0.249). Compared to the NRAS/KRAS wild-type group, patients with KRAS mutation had a lower 5-year OS rate and RFS rate, with no significant differences observed (P =0.275, P =0.442). There was no significant difference in the 5-year RFS rate between the KRAS mutation group and NRAS mutation group (P =0.157), but the 5-year OS rate of patients with KRAS mutation was significantly lower than that of patients with NRAS mutation (P =0.037).
CONCLUSION
In newly diagnosed AML patients, KRAS mutation was significantly correlated with PTPN11 mutation. Compared to patients with NRAS/KRAS wild-type, those with NRAS mutation showed a more favorable prognosis, while patients with KRAS mutation showed a poorer prognosis; however, these differences did not reach statistical significance. Notably, the prognosis of AML patients with KRAS mutation was significantly inferior compared to those with NRAS mutation.
Humans
;
Leukemia, Myeloid, Acute/diagnosis*
;
Mutation
;
Prognosis
;
Proto-Oncogene Proteins p21(ras)/genetics*
;
GTP Phosphohydrolases/genetics*
;
Retrospective Studies
;
Membrane Proteins/genetics*
;
Female
;
Male
;
Middle Aged
;
Adult
;
Aged
8.Effects of Down-regulation of NCL Expression on the Biological Behavior of Acute Myeloid Leukemia Kasumi-1 Cells.
Hui-Li LIU ; Wen-Xin XU ; Yang-Yan CAI ; Hong-Mei LI
Journal of Experimental Hematology 2025;33(5):1312-1317
OBJECTIVE:
To investigate the role of nucleolin (NCL) in acute myeloid leukemia (AML) Kasumi-1 cells and its underlying mechanism.
METHODS:
The Kasumi-1 cells were infected with lentivirus carrying shRNA to downregulate NCL expression. Cell proliferation was detected by CCK-8 assay, and cell apoptosis and cell cycle were determined by flow cytometry. Transcriptome next-generation sequencing (NGS) was performed to predict associated signaling pathways, the expression levels of related genes were measured by RT-PCR.
RESULTS:
Down-regulation of NCL expression significantly inhibited the proliferation of Kasumi-1 cells (P <0.01) and markedly increased the apoptosis rate (P <0.001). Cell cycle analysis showed significant changes in the distribution of cells in the G1 and S phases after NCL knockdown (P <0.05), while no significant difference was observed in the G2 phase (P >0.05). Transcriptome sequencing analysis demonstrated that differentially expressed genes in Kasumi-1 cells with low expression of NCL were primarily enriched in key signaling pathways, including ribosome, spliceosome, RNA transport, cell cycle, and amino acid biosynthesis. qPCR validation showed that the expression of BAX, CASP3, CYCS, PMAIP1, TP53 , and CDKN1A was significantly upregulated after NCL downregulation (P <0.05), with CDKN1A exhibiting the most pronounced difference.
CONCLUSION
NCL plays a critical role in regulating the proliferation, apoptosis, and cell cycle progression of Kasumi-1 cells. The mechanism likely involves suppressing cell cycle progression through activation of the TP53-CDKN1A pathway and promoting apoptosis by upregulating apoptosis-related genes.
Humans
;
Leukemia, Myeloid, Acute/pathology*
;
Down-Regulation
;
Cell Proliferation
;
Apoptosis
;
RNA-Binding Proteins/genetics*
;
Nucleolin
;
Cell Line, Tumor
;
Phosphoproteins/metabolism*
;
Cell Cycle
;
Signal Transduction
;
RNA, Small Interfering
9.Lentivirus-modified hematopoietic stem cell gene therapy for advanced symptomatic juvenile metachromatic leukodystrophy: a long-term follow-up pilot study.
Zhao ZHANG ; Hua JIANG ; Li HUANG ; Sixi LIU ; Xiaoya ZHOU ; Yun CAI ; Ming LI ; Fei GAO ; Xiaoting LIANG ; Kam-Sze TSANG ; Guangfu CHEN ; Chui-Yan MA ; Yuet-Hung CHAI ; Hongsheng LIU ; Chen YANG ; Mo YANG ; Xiaoling ZHANG ; Shuo HAN ; Xin DU ; Ling CHEN ; Wuh-Liang HWU ; Jiacai ZHUO ; Qizhou LIAN
Protein & Cell 2025;16(1):16-27
Metachromatic leukodystrophy (MLD) is an inherited disease caused by a deficiency of the enzyme arylsulfatase A (ARSA). Lentivirus-modified autologous hematopoietic stem cell gene therapy (HSCGT) has recently been approved for clinical use in pre and early symptomatic children with MLD to increase ARSA activity. Unfortunately, this advanced therapy is not available for most patients with MLD who have progressed to more advanced symptomatic stages at diagnosis. Patients with late-onset juvenile MLD typically present with a slower neurological progression of symptoms and represent a significant burden to the economy and healthcare system, whereas those with early onset infantile MLD die within a few years of symptom onset. We conducted a pilot study to determine the safety and benefit of HSCGT in patients with postsymptomatic juvenile MLD and report preliminary results. The safety profile of HSCGT was favorable in this long-term follow-up over 9 years. The most common adverse events (AEs) within 2 months of HSCGT were related to busulfan conditioning, and all AEs resolved. No HSCGT-related AEs and no evidence of distorted hematopoietic differentiation during long-term follow-up for up to 9.6 years. Importantly, to date, patients have maintained remarkably improved ARSA activity with a stable disease state, including increased Functional Independence Measure (FIM) score and decreased magnetic resonance imaging (MRI) lesion score. This long-term follow-up pilot study suggests that HSCGT is safe and provides clinical benefit to patients with postsymptomatic juvenile MLD.
Humans
;
Leukodystrophy, Metachromatic/genetics*
;
Pilot Projects
;
Genetic Therapy/methods*
;
Hematopoietic Stem Cell Transplantation
;
Male
;
Follow-Up Studies
;
Female
;
Lentivirus/genetics*
;
Child
;
Child, Preschool
;
Hematopoietic Stem Cells/metabolism*
;
Cerebroside-Sulfatase/metabolism*
;
Adolescent
10. MW-9, a chalcones derivative bearing heterocyclic moieties, ameliorates ulcerative colitis via regulating MAPK signaling pathway
Zhao WU ; Nan-Ting ZOU ; Chun-Fei ZHANG ; Hao-Hong ZHANG ; Qing-Yan MO ; Ze-Wei MAO ; Chun-Ping WAN ; Ming-Qian JU ; Chun-Ping WAN ; Xing-Cai XU
Chinese Pharmacological Bulletin 2024;40(3):514-520
Aim To investigate the therapeutic effect of the MW-9 on ulcerative colitis(UC)and reveal the underlying mechanism, so as to provide a scientific guidance for the MW-9 treatment of UC. Methods The model of lipopolysaccharide(LPS)-stimulated RAW264.7 macrophage cells was established. The effect of MW-9 on RAW264.7 cells viability was detected by MTT assay. The levels of nitric oxide(NO)in RAW264.7 macrophages were measured by Griess assay. Cell supernatants and serum levels of inflammatory cytokines containing IL-6, TNF-α and IL-1β were determined by ELISA kits. Dextran sulfate sodium(DSS)-induced UC model in mice was established and body weight of mice in each group was measured. The histopathological damage degree of colonic tissue was assessed by HE staining. The protein expression of p-p38, p-ERK1/2 and p-JNK was detected by Western blot. Results MW-9 intervention significantly inhibited NO release in RAW264.7 macrophages with IC50 of 20.47 mg·L-1 and decreased the overproduction of inflammatory factors IL-6, IL-1β and TNF-α(P<0.05). MW-9 had no cytotoxicity at the concentrations below 6 mg·L-1. After MW-9 treatment, mouse body weight was gradually reduced, and the serum IL-6, IL-1β and TNF-α levels were significantly down-regulated. Compared with the model group, MW-9 significantly decreased the expression of p-p38 and p-ERK1/2 protein. Conclusions MW-9 has significant anti-inflammatory activities both in vitro and in vivo, and its underlying mechanism for the treatment of UC may be associated with the inhibition of MAPK signaling pathway.

Result Analysis
Print
Save
E-mail