1.Association of balanced time perspective and social jetlag with depressive symptom among junior high school students
WAN Xiaoke, WEI Ke, WANG Zhouyan, CHEN Gen, PENG Chang, WANG Hong
Chinese Journal of School Health 2025;46(10):1465-1468
Objective:
To explore the mediating role of balanced time perspective in the relationship between social jetlag and depressive symptom among junior high school students, so as to privide a basis for improving their mental health.
Methods:
In October 2024, a method of combining convenient sampling with cluster sampling was used to select 3 438 junior high school students from two districts(Yubei District and Kaizhou District) in Chongqing. The Center for Epidemiological Studies Depression Scale (CES-D), Munich Chronotype Questionnaire (MCTQ), and Balanced Time Perspective Inventory (BTPI) were administered for the survey. Statistical analyses included t-test, ANOVA, and Spearman correlation analysis, and conduct a mediation effect analysis using the Process program.
Results:
The mean score of depressive symptom among junior high school students was 15.00(9.00, 23.00 ), social jetlag was 1.18(0.72, 1.83) hours, and balanced time perspective score was -0.18(-2.82, 2.93). Social jetlag among junior high school students was positively correlated with depressive symptom score ( r =0.17), while balanced time perspective was negatively correlated with social jetlag ( r =-0.15) and depressive symptom score ( r =-0.68) (all P <0.01). Mediation analysis showed that balanced time perspective partially mediated the relationship between social jetlag and depressive symptom ( β=0.68, P <0.01) among junior high school students, accounting for 53.97% of the total effect.
Conclusions
Social jetlag of junior high school students influences depressive symptoms by affecting balanced time perspective. Efforts should be made to improve adolescents balanced time perspective for reducing the impact of social jetlag on depressive symptom.
2.Advances in antitumor research of bifunctional small molecule inhibitors targeting heat shock protein 90
Hong-ping ZHU ; Xin XIE ; Rui QIN ; Wei HUANG ; Yan-qing LIU ; Cheng PENG ; Gu HE ; Bo HAN
Acta Pharmaceutica Sinica 2024;59(1):1-16
The heat shock protein 90 (Hsp90) protein family is a cluster of highly conserved molecules that play an important role in maintaining cellular homeostasis. Hsp90 and its co-chaperones regulate a variety of pathways and cellular functions, such as cell growth, cell cycle control and apoptosis. Hsp90 is closely associated with the occurrence and development of tumors and other diseases, making it an attractive target for cancer therapeutics. Inhibition of Hsp90 expression can affect multiple oncogenic pathways simultaneously. Most Hsp90 small molecule inhibitors are in clinical trials due to their low efficacy, toxicity or drug resistance, but they have obvious synergistic anti-tumor effect when used with histone deacetylase (HDAC) inhibitors, tubulin inhibitors or topoisomerase II (Topo II) inhibitors. To address this issue, the design of Hsp90 dual-target inhibitors can improve efficacy and reduce drug resistance, making it an effective tumor treatment strategy. In this paper, the domain and biological function of Hsp90 are briefly introduced, and the design, discovery and structure-activity relationship of Hsp90 dual inhibitors are discussed, in order to provide reference for the discovery of novel Hsp90 dual inhibitors and clinical drug research from the perspective of medicinal chemistry.
3.Research progress on carrier-free and carrier-supported supramolecular nanosystems of traditional Chinese medicine anti-tumor star molecules
Zi-ye ZANG ; Yao-zhi ZHANG ; Yi-hang ZHAO ; Xin-ru TAN ; Ji-chang WEI ; An-qi XU ; Hong-fei DUAN ; Hong-yan ZHANG ; Peng-long WANG ; Xue-mei HUANG ; Hai-min LEI
Acta Pharmaceutica Sinica 2024;59(4):908-917
Anti-tumor traditional Chinese medicine has a long history of clinic application, in which the star molecules have always been the hotspot of modern drug research, but they are limited by the solubility, stability, targeting, bioactivity or toxicity of the monomer components of traditional Chinese medicine anti-tumor star molecules and other pharmacokinetic problems, which hinders the traditional Chinese medicine anti-tumor star molecules for further clinical translation and application. Currently, the nanosystems prepared by supramolecular technologies such as molecular self-assembly and nanomaterial encapsulation have broader application prospects in improving the anti-tumor effect of active components of traditional Chinese medicine, which has attracted extensive attention from scholars at home and abroad. In this paper, we systematically review the research progress in preparation of supramolecular nano-systems from anti-tumor star molecule of traditional Chinese medicine, and summarize the two major categories and ten small classes of carrier-free and carrier-based supramolecular nanosystems and their research cases, and the future development direction is put forward. The purpose of this paper is to provide reference for the research and clinical transformation of using supramolecular technology to improve the clinical application of anti-tumor star molecule of traditional Chinese medicine.
4.Research progress on the role of cytochrome P450 in plant sesquiterpene biosynthesis
Shi-xi GAO ; Mei RONG ; Jun-xiang PENG ; Yan-hong XU ; Jian-he WEI
Acta Pharmaceutica Sinica 2024;59(2):313-321
Sesquiterpenes are natural terpenoids with 15 carbon atoms in the basic skeleton, which mainly exist in plant volatile oil and have important physiological and medicinal value. Cytochrome P450 (CYP450) is a kind of monooxygenase encoded by supergene family, which is one of the largest gene families in plants. It is involved in the synthesis and metabolism of terpenoids, alkaloids and other secondary metabolites. In the process of terpene biosynthesis, CYP450 participates in the post-modification stage of terpenes by introducing functional groups such as hydroxyl, carboxyl and carbonyl, which plays an important role in enriching the diversity of terpenes. The CYP450 enzymes involved in sesquiterpene synthesis and their substrate catalytic specificity mechanisms have been partially investigated. In this paper, the biosynthetic pathway of plant sesquiterpenes, the structure and classification of CYP450 enzymes were briefly introduced, and the CYP450 enzymes involved in sesquiterpene biosynthesis were summarized, in order to provide a reference for intensive study of the role of CYP450 enzymes in the synthesis of sesquiterpenoids.
5.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.
6.Effects of Zhuangyao Shuanglu Tongnao Formula on neuronal apoptosis of rats with ischemia-reperfusion induced injury
Yang ZHAI ; Xue-Ni MO ; Hong-Li TENG ; Yue-Qiang HU ; Guang-Shan ZHENG ; Wei MA ; Peng YANG ; Xiao-Ping MEI ; Min ZOU ; Kai-Hua WANG
Chinese Traditional Patent Medicine 2024;46(3):795-802
AIM To investigate the effects of Zhuangyao Shuanglu Tongnao Formula on neuronal apoptosis in rats with cerebral ischemia-reperfusion injury based on the study of oxidative stress and inflammatory response.METHODS The rats were randomly divided into the sham operation group,the model group,the edaravone group(3.0 mg/kg),the low,medium and high dose groups(9.0,18.0,36.0 g/kg)of Zhuangyao Shuanglu Tongnao Formula,with 18 rats in each group.The middle cerebral artery occlusion/reperfusion was conducted by thread embolism method to simulate cerebral ischemia reperfusion injury in rats followed by 6 days corresponding drugs administration.Subsequently,the rats had their neurological function deficit scored by Zeal Longa scoring method;their sizes of cerebral infarction areas measured by TTC staining;their pathological damage and apoptosis of neurons in hippocampal CA1 area of ischemic penumbra of the brain tissue detected by HE staining and TUNEL staining;their SOD activity and levels of GSH,MDA,IL-6,IL-1β,TNF-α in brain tissue detected by kits;and their protein expressions of Bax,Bcl-2,caspase-3,cleaved-capase-3,TLR4,NF-κB p65,Nrf2,HO-1 in rat brain tissue determined by Western blot.RESULTS Compared with the model group,the groups intervened with edaravone,medium and high dose of Zhuangyao Shuanglu Tongnao Formula displayed improvements in the scores of nerve function defects,the rate of cerebral infarction,the rate of neuronal apoptosis,the levels of IL-6,IL-1β,TNF-α and MDA in the ischemic penumbra of brain tissues,the protein expressions of Bax and TLR4,the ratio of cleaved-capase-3/caspase-3 and p-NF-κB p65/NF-κB p65(P<0.05),the levels of GSH,the activity of SOD and the protein expressions of Bcl-2,Nrf2 and HO-1(P<0.05).CONCLUSION Being an inhibitor of oxidative stress and inflammatory response,Zhuangyao Shuanglu Tongnao Formula can alleviate brain injury in rats with cerebral ischemia reperfusion injury through the inhibition of neuronal apoptosis and improvement of neural function mediated by the inhibition of TLR4/NF-κB signal pathway and activation of Nrf2/HO-1 signal pathway.
7. Advances in relationship between pyroptosis and pulmonary arterial hypertension and therapeutic drugs
Qian YAN ; Yang SUN ; Jun-Peng LONG ; Jiao YAO ; Yu-Ting LIN ; Song-Wei YANG ; Yan-Tao YANG ; Gang PEI ; Qi-Di AI ; Nai-Hong CHEN ; Qian YAN ; Yang SUN ; Jun-Peng LONG ; Jiao YAO ; Yu-Ting LIN ; Song-Wei YANG ; Yan-Tao YANG ; Gang PEI ; Qi-Di AI ; Nai-Hong CHEN ; Sha-Sha LIU ; Nai-Hong CHEN
Chinese Pharmacological Bulletin 2024;40(1):25-30
Pyroptosis is the programmed death of cells accompanied by an inflammatory response and is widely involved in the development of a variety of diseases, such as infectious diseases, cardiovascular diseases, and neurodegeneration. It has been shown that cellular scorching is involved in the pathogenesis of pulmonary arterial hypertension ( PAH) in cardiovascular diseases. Patients with PAH have perivascular inflammatory infiltrates in lungs, pulmonary vasculopathy exists in an extremely inflam-matory microenvironment, and pro-inflammatory factors in cellular scorching drive pulmonary vascular remodelling in PAH patients. This article reviews the role of cellular scorch in the pathogenesis of PAH and the related research on drugs for the treatment of PAH, with the aim of providing new ideas for clinical treatment of PAH.
8.Identification of key genes in Wilms tumor based on high-throughput RNA sequencing and their impacts on prognosis and immune responses
Zhiqiang GAO ; Jie LIN ; Peng HONG ; Zaihong HU ; Junjun DONG ; Qinlin SHI ; Xiaomao TIAN ; Feng LIU ; Guanghui WEI
Journal of Southern Medical University 2024;44(4):727-738
Objective To identify the key genes differentially expressed in Wilms tumor and analyze their potential impacts on prognosis and immune responses of the patients. Methods High-throughput RNA sequencing was used to identify the differentially expressed mRNAs in clinical samples of Wilms tumor and paired normal tissues, and their biological functions were analyzed using GO, KEGG and GSEA enrichment analyses. The hub genes were identified using STRING database, based on which a prognostic model was constructed using LASSO regression. The mutations of the key hub genes were analyzed and their impacts on immunotherapy efficacy was predicted using the cBioPortal platform. RT-qPCR was used to verify the differential expressions of the key hub genes in Wilms tumor. Results Of the 1612 differentially expressed genes identified in Wilms tumor, 1030 were up-regulated and 582 were down-regulated, involving mainly cell cycle processes and immune responses. Ten hub genes were identified, among which 4 genes (TP53, MED1, CCNB1 and EGF) were closely related to the survival of children with Wilms tumor. A 3-gene prognostic signature was constructed through LASSO regression analysis, and the patients stratified into with high- and low-risk groups based on this signature had significantly different survival outcomes (HR=1.814, log-rank P=0.002). The AUCs of the 3-, 5-and 7-year survival ROC curves of this model were all greater than 0.7. The overall mutations in the key hub genes or the individual mutations in TP53/CCNB1 were strongly correlated with a lower survival rates, and a high TP53 expression was correlated with a poor immunotherapy efficacy. RT-qPCR confirmed that the key hub genes had significant differential expressions in Wilms tumor tissues and cells. Conclusion TP53 gene plays an important role in the Wilms tumor and may potentially serve as a new immunotherapeutic biomarker as well as a therapeutic target.
9.Protective Effect of Dihydromyricetin Against Exercise-Induced Muscle Damage and Its Mechanism
Wu YING ; Wang DA-WEI ; Li JUN ; Xu XIAN-JIE ; Gao ZHI-DAN ; Li HONG-YAN ; Zhang YONG ; Liu PENG
Chinese Medical Sciences Journal 2024;39(1):46-53,中插5
Objective lo investigate the protective effect of dihydromyricetin(DHM)against exercise-induced muscle damage(EIMD)in mice and its potential mechanism. Methods Adult male C57BL/6J mice were randomly divided into control group(CG),exercise group(EG),and exercise+100 mg/kg weightd DHM(DHM)group.The intervention lasted for four weeks,during which the animals in the EG and DHM groups were subjected to exercise training for 1 h per day.The day after the training,a 90-min treadmill exercise(slope:0 and speed:18 m/min)was conducted in both EG and DHM groups.Samples of blood and gastrocnemius muscles were harvested from the three groups 24 h after the exercise,followed by the measurement of serum creatine kinase(CK)and lactate dehydrogenase(LDH)activities,total superoxide dismutase(T-SOD)activity,malondialdehyde(MDA),and skeletal muscle mitochondrial enzyme complex Ⅰ and Ⅱ activities.Histological changes in the skeletal muscle were observed by transmission electron microscopy,and the protein expressions of mitochondrial function-related pathways were detected by Western blotting. Results Skeletal muscle morphological changes and mitochondrial damage were alleviated in the DHM group compared to those in the EG.The activities of EIMD markers CK and LDH and the level of lipid peroxidation were notably repressed and the serum T-SOD activity was enhanced after DHM intervention.Western blotting demonstrated that the expressions of sirtuin type 3(SIRT3),estrogen-related receptor alpha,and peroxisome proliferator-activated receptor-gamma coactivator-1 alpha in the skeletal muscle of mice increased after the DHM intervention. Conclusion DHM can relieve EIMD in mice,possibly by promoting the recovery of the mitochondrial structure and function in the skeletal muscle of mice after high-intensity exercise via the activation of the SIRT3 signaling pathway.
10.Identification of key genes in Wilms tumor based on high-throughput RNA sequencing and their impacts on prognosis and immune responses
Zhiqiang GAO ; Jie LIN ; Peng HONG ; Zaihong HU ; Junjun DONG ; Qinlin SHI ; Xiaomao TIAN ; Feng LIU ; Guanghui WEI
Journal of Southern Medical University 2024;44(4):727-738
Objective To identify the key genes differentially expressed in Wilms tumor and analyze their potential impacts on prognosis and immune responses of the patients. Methods High-throughput RNA sequencing was used to identify the differentially expressed mRNAs in clinical samples of Wilms tumor and paired normal tissues, and their biological functions were analyzed using GO, KEGG and GSEA enrichment analyses. The hub genes were identified using STRING database, based on which a prognostic model was constructed using LASSO regression. The mutations of the key hub genes were analyzed and their impacts on immunotherapy efficacy was predicted using the cBioPortal platform. RT-qPCR was used to verify the differential expressions of the key hub genes in Wilms tumor. Results Of the 1612 differentially expressed genes identified in Wilms tumor, 1030 were up-regulated and 582 were down-regulated, involving mainly cell cycle processes and immune responses. Ten hub genes were identified, among which 4 genes (TP53, MED1, CCNB1 and EGF) were closely related to the survival of children with Wilms tumor. A 3-gene prognostic signature was constructed through LASSO regression analysis, and the patients stratified into with high- and low-risk groups based on this signature had significantly different survival outcomes (HR=1.814, log-rank P=0.002). The AUCs of the 3-, 5-and 7-year survival ROC curves of this model were all greater than 0.7. The overall mutations in the key hub genes or the individual mutations in TP53/CCNB1 were strongly correlated with a lower survival rates, and a high TP53 expression was correlated with a poor immunotherapy efficacy. RT-qPCR confirmed that the key hub genes had significant differential expressions in Wilms tumor tissues and cells. Conclusion TP53 gene plays an important role in the Wilms tumor and may potentially serve as a new immunotherapeutic biomarker as well as a therapeutic target.


Result Analysis
Print
Save
E-mail