1.Translational Research of Electromagnetic Fields on Diseases Related With Bone Remodeling: Review and Prospects
Peng SHANG ; Jun-Yu LIU ; Sheng-Hang WANG ; Jian-Cheng YANG ; Zhe-Yuan ZHANG ; An-Lin LI ; Hao ZHANG ; Yu-Hong ZENG
Progress in Biochemistry and Biophysics 2025;52(2):439-455
Electromagnetic fields can regulate the fundamental biological processes involved in bone remodeling. As a non-invasive physical therapy, electromagnetic fields with specific parameters have demonstrated therapeutic effects on bone remodeling diseases, such as fractures and osteoporosis. Electromagnetic fields can be generated by the movement of charged particles or induced by varying currents. Based on whether the strength and direction of the electric field change over time, electromagnetic fields can be classified into static and time-varying fields. The treatment of bone remodeling diseases with static magnetic fields primarily focuses on fractures, often using magnetic splints to immobilize the fracture site while studying the effects of static magnetic fields on bone healing. However, there has been relatively little research on the prevention and treatment of osteoporosis using static magnetic fields. Pulsed electromagnetic fields, a type of time-varying field, have been widely used in clinical studies for treating fractures, osteoporosis, and non-union. However, current clinical applications are limited to low-frequency, and research on the relationship between frequency and biological effects remains insufficient. We believe that different types of electromagnetic fields acting on bone can induce various “secondary physical quantities”, such as magnetism, force, electricity, acoustics, and thermal energy, which can stimulate bone cells either individually or simultaneously. Bone cells possess specific electromagnetic properties, and in a static magnetic field, the presence of a magnetic field gradient can exert a certain magnetism on the bone tissue, leading to observable effects. In a time-varying magnetic field, the charged particles within the bone experience varying Lorentz forces, causing vibrations and generating acoustic effects. Additionally, as the frequency of the time-varying field increases, induced currents or potentials can be generated within the bone, leading to electrical effects. When the frequency and power exceed a certain threshold, electromagnetic energy can be converted into thermal energy, producing thermal effects. In summary, external electromagnetic fields with different characteristics can generate multiple physical quantities within biological tissues, such as magnetic, electric, mechanical, acoustic, and thermal effects. These physical quantities may also interact and couple with each other, stimulating the biological tissues in a combined or composite manner, thereby producing biological effects. This understanding is key to elucidating the electromagnetic mechanisms of how electromagnetic fields influence biological tissues. In the study of electromagnetic fields for bone remodeling diseases, attention should be paid to the biological effects of bone remodeling under different electromagnetic wave characteristics. This includes exploring innovative electromagnetic source technologies applicable to bone remodeling, identifying safe and effective electromagnetic field parameters, and combining basic research with technological invention to develop scientifically grounded, advanced key technologies for innovative electromagnetic treatment devices targeting bone remodeling diseases. In conclusion, electromagnetic fields and multiple physical factors have the potential to prevent and treat bone remodeling diseases, and have significant application prospects.
2.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
3.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
4.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
5.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
6.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
7.Four Weeks of HIIT Modulates Lactate-mediated Synaptic Plasticity to Improve Depressive-like Behavior in CUMS Rats
Yu-Mei HAN ; Zi-Wei ZHANG ; Jia-Ren LIANG ; Chun-Hui BAO ; Jun-Sheng TIAN ; Shi ZHOU ; Huan XIANG ; Yong-Hong YANG
Progress in Biochemistry and Biophysics 2025;52(6):1499-1510
ObjectiveThis study aimed to investigate the effects of 4-week high-intensity interval training (HIIT) on synaptic plasticity in the prefrontal cortex (PFC) of rats exposed to chronic unpredictable mild stress (CUMS), and to explore its potential mechanisms. MethodsA total of 48 male Sprague-Dawley rats were randomly divided into 4 groups: control (C), model (M), control plus HIIT (HC), and model plus HIIT (HM). Rats in groups M and HM underwent 8 weeks of CUMS to establish depression-like behaviors, while groups HC and HM received HIIT intervention beginning from the 5th week for 4 consecutive weeks. The HIIT protocol consisted of repeated intervals of 3 min at high speed (85%-90% maximal training speed, Smax) alternated with one minute at low speed (50%-55% Smax), with 3 to 5 sets per session, conducted 5 d per week. Behavioral assessments and tail-vein blood lactate levels were measured at the end of the 4th and 8th weeks. After the intervention, rat PFC tissues were collected for Golgi staining to analyze synaptic morphology. Enzyme-linked immunosorbent assays (ELISA) were employed to detect brain-derived neurotrophic factor (BDNF), monocarboxylate transporter 1 (MCT1), lactate, and glutamate levels in the PFC, as well as serotonin (5-HT) levels in serum. Additionally, Western blot analysis was conducted to quantify the expression of synaptic plasticity-related proteins, including c-Fos, activity-regulated cytoskeleton-associated protein (Arc), and N-methyl-D-aspartate receptor 1 (NMDAR1). ResultsCompared to the control group (C), the CUMS-exposed rats (group M) exhibited significant reductions in sucrose preference rates, number of grid crossings, frequency of upright postures, and entries into and duration spent in open arms of the elevated plus maze, indicating marked depressive-like behaviors. Additionally, the group M showed significantly reduced dendritic spine density in the PFC, along with elevated levels of c-Fos, Arc, NMDAR1 protein expression, and increased concentrations of lactate and glutamate. Conversely, BDNF and MCT1 contents in the PFC and 5-HT levels in serum were significantly decreased. Following HIIT intervention, rats in the group HM displayed considerable improvement in behavioral indicators compared with the group M, accompanied by significant elevations in PFC MCT1 and lactate concentrations. Furthermore, HIIT notably normalized the expression levels of c-Fos, Arc, NMDAR1, as well as glutamate and BDNF contents in the PFC. Synaptic spine density also exhibited significant recovery. ConclusionFour weeks of HIIT intervention may alleviate depressive-like behaviors in CUMS rats by increasing lactate levels and reducing glutamate concentration in the PFC, thereby downregulating the overexpression of NMDAR, attenuating excitotoxicity, and enhancing synaptic plasticity.
8.Current status of generalized pustular psoriasis: Findings from a multicenter hospital-based survey of 127 Chinese patients.
Haimeng WANG ; Jiaming XU ; Xiaoling YU ; Siyu HAO ; Xueqin CHEN ; Bin PENG ; Xiaona LI ; Ping WANG ; Chaoyang MIAO ; Jinzhu GUO ; Qingjie HU ; Zhonglan SU ; Sheng WANG ; Chen YU ; Qingmiao SUN ; Minkuo ZHANG ; Bin YANG ; Yuzhen LI ; Zhiqiang SONG ; Songmei GENG ; Aijun CHEN ; Zigang XU ; Chunlei ZHANG ; Qianjin LU ; Yan LU ; Xian JIANG ; Gang WANG ; Hong FANG ; Qing SUN ; Jie LIU ; Hongzhong JIN
Chinese Medical Journal 2025;138(8):953-961
BACKGROUND:
Generalized pustular psoriasis (GPP), a rare and recurrent autoinflammatory disease, imposes a substantial burden on patients and society. Awareness of GPP in China remains limited.
METHODS:
This cross-sectional survey, conducted between September 2021 and May 2023 across 14 hospitals in China, included GPP patients of all ages and disease phases. Data collected encompassed demographics, clinical characteristics, economic impact, disease severity, quality of life, and treatment-related complications. Risk factors for GPP recurrence were analyzed.
RESULTS:
Among 127 patients (female/male ratio = 1.35:1), the mean age of disease onset was 25 years (1st quartile [Q1]-3rd quartile [Q3]: 11-44 years); 29.2% had experienced GPP for more than 10 years. Recurrence occurred in 75.6% of patients, and nearly half reported no identifiable triggers. Younger age at disease onset ( P = 0.021) and transitioning to plaque psoriasis ( P = 0.022) were associated with higher recurrence rates. The median diagnostic delay was 8 months (Q1-Q3: 2-41 months), and 32.3% of patients reported misdiagnoses. Comorbidities were present in 53.5% of patients, whereas 51.1% experienced systemic complications during treatment. Depression and anxiety affected 84.5% and 95.6% of patients, respectively. During GPP flares, the median Dermatology Life Quality Index score was 19.0 (Q1-Q3: 13.0-23.5). This score showed significant differences between patients with and without systemic symptoms; it demonstrated correlations with both depression and anxiety scores. Treatment costs caused financial hardship in 55.9% of patients, underscoring the burden associated with GPP.
CONCLUSIONS
The substantial disease and economic burdens among Chinese GPP patients warrant increased attention. Patients with early onset disease and those transitioning to plaque psoriasis require targeted interventions to mitigate the high recurrence risk.
Humans
;
Male
;
Female
;
Psoriasis/pathology*
;
Adult
;
Cross-Sectional Studies
;
Adolescent
;
Child
;
Young Adult
;
Quality of Life
;
Middle Aged
;
China/epidemiology*
;
Recurrence
;
Risk Factors
;
Surveys and Questionnaires
;
East Asian People
9.Mechanism of Xiangmei Pills in treating ulcerative colitis based on UHPLC-Q-Orbitrap HRMS and 16S rDNA sequencing of intestinal flora.
Ya-Fang HOU ; Rui-Sheng WANG ; Zhen-Ling ZHANG ; Wen-Wen CAO ; Meng ZHAO ; Ya-Hong ZHAO
China Journal of Chinese Materia Medica 2025;50(4):882-895
The efficacy of Xiangmei Pills on rats with ulcerative colitis(UC) was investigated by characterizing the spectrum of the active chemical components of Xiangmei Pills. Rapid identification and classification of the main chemical components were performed,and the therapeutic effects of Xiangmei Pills on the proteins and intestinal flora of UC rats were analyzed to explore the mechanism of its action in treating UC. Fifty SD rats were acclimatized to feeding for 3 d and randomly divided into blank group, model group,mesalazine group(0. 4 g·kg~(-1)), low-dose group of Xiangmei Pills(1. 89 g·kg~(-1)), and high-dose group of Xiangmei Pills(5. 67 g·kg~(-1)), with 10 rats in each group. 5% dextrose sodium sulfate(DSS) was given by gavage to induce the male SD rat model with UC,and the corresponding medicinal solution was given by gavage after 10 days, respectively. The therapeutic effect of Xiangmei Pills on rats with UC was evaluated according to body mass, disease activity index(DAI), and hematoxylin-eosin(HE) staining, and the histopathological changes in the colon were observed. Ultra-high performance liquid chromatography-quadrupole/electrostatic field orbitrap high-resolution mass spectrometry(UHPLC-Q-Orbitrap HRMS) technique was used to rapidly and accurately identify the main chemical constituents of Xiangmei Pills. Immunohistochemistry was used to detect the expression of aryl hydrocarbon receptor(AhR),interferon-γ(IFN-γ), mucin-2(MUC-2), and cytochrome P450 1A1(CYP1A1) in colon tissue. Interleukin-22(IL-22) expression in colon tissue was detected by immunofluorescence. The 16S r DNA high-throughput sequencing technique was used to study the modulatory effects of Xiangmei Pills on the intestinal flora structure of rats with UC. Pharmacodynamic results showed that compared with that of the blank group, the colon tissue of the model group was congested, and ulcers were visible in the mucosa; compared with that in the model group, the histopathology of the colon of the rats with UC in the groups of Xiangmei Pills were improved, with scattered ulcers and reduced inflammatory cell infiltration. Chemical analysis showed that a total of 45 components were identified by mass spectrometry information, including 15 phenolic acids, 8 coumarins, 15 organic acids, 3 amino acids, 2 flavonoids, and 2 other components. Compared with those in the blank group, the levels of Ah R, CYP1A1, MUC-2, and IL-22 proteins in the colon tissue of rats in the model group were significantly decreased, and the level of IFN-γ protein was significantly increased; the intestinal flora of rats in the model group was disorganized, with a decrease in the abundance of the flora; the relative abundance of Bacteroidetes,unclassified genera of Ascomycetes, Prevotella of the Prevotella family, and Prevotella decreased significantly, and that of Firmicutes decreased, but the difference was not statistically significant. The relative abundance of Bacteroidetes, Bifidobacterium, and Lactobacillus increased significantly. Compared with those of the model group, the levels of Ah R, CYP1A1, MUC-2, and IL-22proteins in the colonic tissue of the groups of Xiangmei Pills were significantly higher, and the levels of IFN-γ proteins were significantly lower. The recovery of the intestinal flora was accelerated, and the diversity of the intestinal flora was significantly increased. The relative abundance of Bacteroidetes was significantly increased, and that of unclassified genera of Ascomycetes,Lactobacillus, Prevotella of the Prevotella family, and Prevotella was significantly increased. The relative abundance of Bacteroidetes and Bifidobacterium was significantly decreased. This study demonstrated that Xiangmei Pills can effectively treat UC, mainly through the phenolic acid and organic acid components to stimulate the intestinal barrier, regulate protein expression and the relative abundance and diversity of intestinal flora, and play a role in the treatment of UC.
Animals
;
Colitis, Ulcerative/metabolism*
;
Drugs, Chinese Herbal/chemistry*
;
Rats, Sprague-Dawley
;
Male
;
Rats
;
Gastrointestinal Microbiome/genetics*
;
Chromatography, High Pressure Liquid
;
Humans
;
Mass Spectrometry
;
RNA, Ribosomal, 16S/genetics*
;
Bacteria/drug effects*
10.Comparison between sinking and floating fresh Rehmanniae Radix samples by UHPLC-Q-Orbitrap HRMS, fingerprinting, and chemometrics.
Shi-Long LIU ; Hong-Wei ZHANG ; Zhen-Ling ZHANG ; Han-Ting JIA ; Zhi-Jun GUO ; Rui-Sheng WANG ; Hong-Wei ZHANG ; Shuo WANG ; Yi-Jian ZHONG
China Journal of Chinese Materia Medica 2025;50(14):3918-3929
This study aims to explore the scientific connotation of sinking Rehmanniae Radix has the best quality and compare the quality between floating and sinking fresh Rehmanniae Radix samples. Ultra-performance liquid chromatography tandem quadrupole electrostatic field Orbitrap high-resolution mass spectrometry(UHPLC-Q-Orbitrap HRMS) was employed to detect the chemical components in floating and sinking fresh Rehmanniae Radix samples. The fingerprint of fresh Rehmanniae Radix was established by high performance liquid chromatography(HPLC), and four index components were determined simultaneously. The cluster analysis, principal component analysis(PCA), and orthogonal partial least squares-discriminant analysis(OPLS-DA) were conducted to compare the quality of floating and sinking fresh Rehmanniae Radix samples. An evaporative light-scattering detector was used to compare the content of five sugars. The extract yield and drying rate were determined, and the quality connotation of sinking Rehmanniae Radix has the best quality was explained by multiple indicators. A total of 41 components were preliminarily identified from fresh Rehmanniae Radix by UHPLC-Q-Orbitrap HRMS, including 7 iridoid glycosides, 9 phenylethanol glycosides, 6 amino acids, 4 sugars, 3 phenolic acids, 5 nucleosides, 3 organic acids, 1 ionone, 1 furan, 1 coumarin, and 1 phenylpropanoid. The results showed that the main chemical components were consistent between floating and sinking fresh Rehmanniae Radix. Nine common peaks were identified in the fingerprints of 15 batches of floating and sinking fresh Rehmanniae Radix samples, and the similarity of fingerprints was greater than 0.9. The cluster analysis, PCA, and OPLS-DA classified floating and sinking fresh Rehmanniae Radix sasmples into two categories, indicating differences in the quality between them. The total content of catalpol, rehmannioside D, ajugol, and verbascoside in sinking fresh Rehmanniae Radix samples was higher than that in floating samples of the same batch and specification, and the main differential component was catalpol. The total content of fructose, glucose, sucrose, raffinose, and stachyose in sinking fresh Rehmanniae Radix samples was higher than that in floating samples of the same batch and specification, and the main differential component was stachyose. The extract yield and drying rate of the sinking samples were higher than those of floating samples. This study preliminarily showed that floating and sinking fresh Rehmanniae Radix samples had the same components but great differences in the content of medicinal substance basis. The total content of four glycosides and five sugars, extract yield, and drying rate of sinking fresh Rehmanniae Radix samples is higher than that of floating samples of the same batch and specification. These findings, to a certain extent, explains the scientificity of sinking Rehmanniae Radix has the best quality recorded in ancient books and provide a reference for the quality control and clinical application of fresh Rehmanniae Radix.
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Rehmannia/chemistry*
;
Chemometrics
;
Mass Spectrometry/methods*
;
Quality Control
;
Principal Component Analysis
;
Plant Extracts

Result Analysis
Print
Save
E-mail