1.Study on mechanism of Yourenji Capsules in improving osteoporosis based on network pharmacology and proteomics.
Yun-Hang GAO ; Han LI ; Jian-Liang LI ; Ling SONG ; Teng-Fei CHEN ; Hong-Ping HOU ; Bo PENG ; Peng LI ; Guang-Ping ZHANG
China Journal of Chinese Materia Medica 2025;50(2):515-526
This study aimed to explore the pharmacological mechanism of Yourenji Capsules(YRJ) in improving osteoporosis by combining network pharmacology and proteomics technologies. The SD rats were randomly divided into a blank control group and a 700 mg·kg~(-1) YRJ group. The rats were subjected to gavage administration with the corresponding drugs, and the blank serum, drug-containing serum, and YRJ samples were compared using ultra performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS/MS) to analyze the main components absorbed into blood. Network pharmacology analysis was conducted based on the YRJ components absorbed into blood to obtain related targets of the components and target genes involved in osteoporosis, and Venn diagrams were used to identify the intersection of drug action targets and disease targets. The STRING database was used for protein-protein interaction(PPI) network analysis of potential target proteins to construct a PPI network. Gene Ontology(GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment were performed using Enrichr to investigate the potential mechanism of action of YRJ. Ovariectomy(OVX) was performed to establish a rat model of osteoporosis, and the rats were divided into a sham group, a model group, and a 700 mg·kg~(-1) YRJ group. The rats were given the corresponding drugs by gavage. The femurs of the rats were subjected to label-free proteomics analysis to detect differentially expressed proteins, and GO functional enrichment and KEGG pathway enrichment analyses were performed on the differentially expressed proteins. With the help of network pharmacology and proteomics results, the mechanism by which YRJ improves osteoporosis was predicted. The analysis of the YRJ components absorbed into blood revealed 23 bioactive components of YRJ, and network pharmacology results indicated that key targets involved include tumor necrosis factor(TNF), tumor protein p53(TP53), protein kinase(AKT1), and matrix metalloproteinase 9(MMP9). These targets are mainly involved in osteoclast differentiation, estrogen signaling pathways, and nuclear factor-kappa B(NF-κB) signaling pathways. Additionally, the proteomics analysis highlighted important pathways such as peroxisome proliferator-activated receptor(PPAR) signaling pathways, mitogen-activated protein kinase(MAPK) signaling pathways, and β-alanine metabolism. The combined approaches of network pharmacology and proteomics have revealed that the mechanism by which YRJ improves osteoporosis may be closely related to the regulation of inflammation, osteoblast, and osteoclast metabolic pathways. The main pathways involved include the NF-κB signaling pathways, MAPK signaling pathways, and PPAR signaling pathways, among others.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Osteoporosis/metabolism*
;
Proteomics
;
Rats
;
Rats, Sprague-Dawley
;
Network Pharmacology
;
Female
;
Protein Interaction Maps/drug effects*
;
Capsules
;
Humans
;
Signal Transduction/drug effects*
2.Progress in R&D and key issues in industrial advancement of Cistanches Herba products.
Shuo YUAN ; Yu-Ling XIAO ; Jia-Xu SUN ; Jun LEI ; Jia-Xin HONG ; Peng-Fei TU ; Yong JIANG
China Journal of Chinese Materia Medica 2025;50(13):3815-3840
Cistanches Herba(CH) is a famous tonic traditional Chinese medicine, with the effects of tonifying kidney Yang, nourishing kidney Yin, replenishing essence and blood, and moistening the intestines to relieve constipation. Modern pharmacological studies have shown that CH has anti-aging, anti-fatigue, immunomodulatory, neuroprotective, and anti-aging activities, serving as an ideal raw material for the development of pharmaceuticals and health products. In 2023, CH was added in the catalog of medicinal and food substances, which provided policy support for its application in conventional food products and expanding pathways for industrial diversification. To comprehensively understand current development status of CH products, this review systematically investigated professional databases including Yaozhi(https://db.yaozh.com), Chinese Pharmacopoeia, Compendium of National Standards for Chinese Patent Medicines, and Kezhuang and collected market survey data to thoroughly review the applications of CH as a primary ingredient in domestic and international Chinese patent medicines, health foods, cosmetics, and common food products. Furthermore, this review points out challenges in the current industrial development and future potential market prospects, aiming to provide guidance for the development and industrialization of CH-based pharmaceuticals and health products, thereby promoting the vigorous growth of the CH industry.
Drugs, Chinese Herbal/pharmacology*
;
Humans
;
Cistanche/chemistry*
;
Animals
;
Medicine, Chinese Traditional
3.Dynamin 1-mediated endocytic recycling of glycosylated N-cadherin sustains the plastic mesenchymal state to promote ovarian cancer metastasis.
Yuee CAI ; Zhangyan GUAN ; Yin TONG ; Weiyang ZHAO ; Jiangwen ZHANG ; Ling PENG ; Philip P C IP ; Sally K Y TO ; Alice S T WONG
Protein & Cell 2025;16(7):602-608
4.Phenotypic Function of Legionella pneumophila Type I-F CRISPR-Cas.
Ting MO ; Hong Yu REN ; Xian Xian ZHANG ; Yun Wei LU ; Zhong Qiu TENG ; Xue ZHANG ; Lu Peng DAI ; Ling HOU ; Na ZHAO ; Jia HE ; Tian QIN
Biomedical and Environmental Sciences 2025;38(9):1105-1119
OBJECTIVE:
CRISPR-Cas protects bacteria from exogenous DNA invasion and is associated with bacterial biofilm formation and pathogenicity.
METHODS:
We analyzed the type I-F CRISPR-Cas system of Legionella pneumophila WX48, including Cas1, Cas2-Cas3, Csy1, Csy2, Csy3, and Cas6f, along with downstream CRISPR arrays. We explored the effects of the CRISPR-Cas system on the in vitro growth, biofilm-forming ability, and pathogenicity of L. pneumophila through constructing gene deletion mutants.
RESULTS:
The type I-F CRISPR-Cas system did not affect the in vitro growth of wild-type or mutant strains. The biofilm formation and intracellular proliferation of the mutant strains were weaker than those of the wild type owing to the regulation of type IV pili and Dot/Icm type IV secretion systems. In particular, Cas6f deletion strongly inhibited these processes.
CONCLUSION
The type I-F CRISPR-Cas system may reduce biofilm formation and intracellular proliferation in L. pneumophila.
Legionella pneumophila/pathogenicity*
;
CRISPR-Cas Systems
;
Biofilms/growth & development*
;
Phenotype
;
Bacterial Proteins/metabolism*
;
Gene Deletion
5.A Retrospective Study on the Qianyang Fengsui Dan Combined with Flying Needle Therapy in the Treatment of Kidney-Yang Deficiency Type of Insomnia
Hong-Yan YANG ; Bao-Ting XU ; Ling-Ling DONG ; Xiu-Hong LIU ; Yuan-Min LI ; Qing-Bo MIAO ; Chao-Peng LIU
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(3):664-670
Objective To analyze the clinical efficacy of the Qianyang Fengsui Dan(combined with flying needle therapy)in the treatment of kidney-yang deficiency type of insomnia.Methods A retrospective study was conducted to select 82 patients with insomnia admitted to the Department of Traditional Chinese Medicine of Dezhou Hospital of Traditional Chinese Medicine from November 2020 to November 2021,and they were divided into an observation group and a control group according to whether or not they were treated with Qianyang Fengsui Dan combined with flying needle therapy,with 41 cases in each group.The control group was treated with Estazolam,while the observation group was treated with Qianyang Fengsui Dan combined with flying needle therapy on the basis of the treatment of the control group,and the course of treatment was 1 month.The changes of Pittsburgh Sleep Quality Index(PSQI)scores and Epworth Sleepiness Scale(ESS)scores,as well as polysomnographic parameters were observed before and after treatment in the two groups.The changes of γ-aminobutyric acid(GABA),glutamate(GA),substance P(SP),and neuropeptide Y(NPY)levels were compared before and after treatment between the two groups.And followed up for 1 year to compare the incidence of relapce of the two groups of patients.Results(1)The total effective rate was 95.12%(39/41)in the observation group and 63.41%(26/41)in the control group,and the efficacy of the observation group was superior to that of the control group,and the difference was statistically significant(P<0.05).(2)After treatment,PSQI scores and ESS scores of patients in the two groups were significantly improved(P<0.05),and the observation group was significantly superior to the control group in improving PSQI scores and ESS scores,and the differences were statistically significant(P<0.05).(3)After treatment,sleep efficiency,awakening time,sleep latency,REM,and total sleep time were significantly improved in the two groups(P<0.05),and the observation group was significantly superior to the control group in improving sleep efficiency,awakening time,sleep latency,REM,and total sleep time,and the differences were statistically significant(P<0.05).(4)After treatment,the serum GABA,GA,SP,and NPY levels of patients in the two groups were significantly improved(P<0.05),and the observation group was significantly superior to the control group in improving the serum GABA,GA,SP,and NPY levels,and the differences were all statistically significant(P<0.05).(5)After treatment,follow-up for 1 year,the recurrence rate of the observation group was 0,and there were 7 cases of recurrence in the control group,and the recurrence rate of the control group was 17.07%(7/41),and the recurrence rate of the observation group was lower than that of the control group,and the difference was statistically significant(P<0.05).Conclusion The combination of flying needle therapy and Qianyang Fengsui Dan can effectively relieve insomnia and fatigue in patients with insomnia,reduce daytime drowsiness,regulate the release of blood monoamine neurotransmitters,and reduce the relapse rate,and its efficacy is superior to that of simple western medicine treatment.
6.Mechanism about LMP1 of EB Virus Promoting Plasma Blast Diffe-rentiation of DLBCL Cell via mTORC1
Jing-Jing GAO ; Xiong-Peng ZHU ; Ming-Quan WANG ; Xing-Zhi LIN ; Yan-Ling ZHUANG ; Hong-Jun LIN
Journal of Experimental Hematology 2024;32(1):219-224
Objective:To investigate possible mechanism on protien LMP1 expressed by EBV inducing plasmablast differentiation of DLBCL cell via the mTORC1 pathway.Methods:The expression levels of LMP1 protein,CD38 and the phosphorylation levels of p70S6K in EBV+and EBV-DLBCL cell lines were detected by Western blot.Cell lines overexpressing LMP1 gene stablely were constructed and LMP1 gene was silenced by RNAi.The expression of LMP1 gene was verified by RT-qPCR.The expression levels of LMP1 and CD38 and the phosphorylation levels of p70S6K in each group were detected by Western blot.Results:Compared with EBV-DLBCL cells,the expression of LMP1 was detected on EBV+DLBCL cells(P=0.0008),EBV+DLBCL cells had higher phosphorylation levels of p70S6K(P=0.0072)and expression levels of CD38(P=0.0091).Compared with vector group,the cells of LMP1OE group had higher expression levels of LMP1 and CD38(P=0.0353;P<0.0001),meanwhile molecular p70S6K was phosphorylated much more(P=0.0065);expression of LMP1 mRNA was verified(P<0.0001).Compared with si-NC group,expression level of LMP1 protein(P=0.0129)was not detected and phosphorylated p70S6K disappeared of LMP1KO group(P=0.0228);meanwhile,expression of CD38 decreased,although there was no significant difference(P=0.2377).Conclusion:LMP1 promotes DLBCL cells plasmablast differentiation via activating mTORC1 signal pathway.
7.Preliminary study on delaying aging induced thymus degeneration in SAMP6 mice with Bazi Bushen capsule
Zhao-Dong LI ; Yin-Xiao CHEN ; Bo-Yang GONG ; Zhe XU ; Zhi-Xian YU ; Yue-Xuan SHI ; Yan-Fei PENG ; Yu-Hong BIAN ; Yun-Long HOU ; Xiang-Ling WANG ; Shu-Wu ZHAO
Chinese Pharmacological Bulletin 2024;40(6):1186-1192
Aim To explore the improvement effect of Bazi Bushen capsule on thymic degeneration in SAMP6 mice and the possible mechanism.Methods Twenty 12 week old male SAMP6 mice were randomly divided into the model group(SAMP6)and the Bazi Busheng capsule treatment group(SAMP6+BZBS).Ten SAMR1 mice were assigned to a homologous control group(SAMR1).The SAMP6+BZBS group was oral-ly administered Bazi Bushen capsule suspension(2.8 g·kg-1)daily,while the other two groups were orally administered an equal amount of distilled water.After nine weeks of administration,the morphology of the thymus in each group was observed and the thymus in-dex was calculated;HE staining was used to observe the structural changes of thymus tissue;SA-β-gal stai-ning was used to detect thymic aging;flow cytometry was used to detect the proportion of thymic CD3+T cells in each group;Western blot was used to detect the levels of p16,Bax,Bcl-2,and cleaved caspase-3 proteins in thymus;immunofluorescence was applied to detect the proportion of cortical thymic epithelial cells in each group;ELISA was employed to detect IL-7 lev-els in thymus.Results Compared with the SAMP6 group,the thymic index of the SAMP6+BZBS group significantly increased(P<0.05);the disordered thy-mic structure was significantly improved;the positive proportion of SA-β-gal staining significantly decreased(P<0.01);the proportion of CD3+T cells apparently increased(P<0.05);the level of p16 protein signifi-cantly decreased(P<0.05);the level of Bcl-2 pro-tein significantly increased(P<0.05),while the lev-el of cleaved caspase-3 protein markedly decreased(P<0.05);the proportion of cortical thymic epithelial cells evidently increased;the level of IL-7 significantly increased(P<0.01).Conclusions Bazi Bushen capsule can delay thymic degeneration,inhibit cell ap-optosis in thymus and promote thymic cell development in SAMP6 mice,which may be related to increasing the proportion of cortical thymic epithelial cells and promoting IL-7 secretion.
8.RBMX overexpression inhibits proliferation,migration,invasion and glycolysis of human bladder cancer cells by downregulating PKM2
Qiuxia YAN ; Peng ZENG ; Shuqiang HUANG ; Cuiyu TAN ; Xiuqin ZHOU ; Jing QIAO ; Xiaoying ZHAO ; Ling FENG ; Zhenjie ZHU ; Guozhi ZHANG ; Hong HU ; Cairong CHEN
Journal of Southern Medical University 2024;44(1):9-16
Objective To investigate the role of RNA-binding motif protein X-linked(RBMX)in regulating the proliferation,migration,invasion and glycolysis in human bladder cancer cells.Methods A lentivirus vectors system and RNA interference technique were used to construct bladder cancer 1376 and UC-3 cell models with RBMX overexpression and knockdown,respectively,and successful cell modeling was verified using RT-qPCR and Western blotting.Proliferation and colony forming ability of the cells were evaluated using EdU assay and colony-forming assay,and cell migration and invasion abilities were determined using Transwell experiment.The expressions of glycolysis-related proteins M1 pyruvate kinase(PKM1)and M2 pyruvate kinase(PKM2)were detected using Western blotting.The effects of RBMX overexpression and knockdown on glycolysis in the bladder cancer cells were assessed using glucose and lactic acid detection kits.Results RT-qPCR and Western blotting confirmed successful construction of 1376 and UC-3 cell models with RBMX overexpression and knockdown.RBMX overexpression significantly inhibited the proliferation,clone formation,migration and invasion of bladder cancer cells,while RBMX knockdown produced the opposite effects.Western blotting results showed that RBMX overexpression increased the expression of PKM1 and decreased the expression of PKM2,while RBMX knockdown produced the opposite effects.Glucose consumption and lactate production levels were significantly lowered in the cells with RBMX overexpression(P<0.05)but increased significantly following RBMX knockdown(P<0.05).Conclusion RBMX overexpression inhibits bladder cancer progression and lowers glycolysis level in bladder cancer cells by downregulating PKM2 expression,suggesting the potential of RBMX as a molecular target for diagnosis and treatment of bladder cancer.
9.Discussion of the methodology and implementation steps for assessing the causality of adverse event
Hong FANG ; Shuo-Peng JIA ; Hai-Xue WANG ; Xiao-Jing PEI ; Min LIU ; An-Qi YU ; Ling-Yun ZHOU ; Fang-Fang SHI ; Shu-Jie LU ; Shu-Hang WANG ; Yue YU ; Dan-Dan CUI ; Yu TANG ; Ning LI ; Ze-Huai WEN
The Chinese Journal of Clinical Pharmacology 2024;40(2):299-304
The assessment of adverse drug events is an important basis for clinical safety evaluation and post-marketing risk control of drugs,and its causality assessment is gaining increasing attention.The existing methods for assessing the causal relationship between drugs and the occurrence of adverse reactions can be broadly classified into three categories:global introspective methods,standardized methods,and probabilistic methods.At present,there is no systematic introduction of the operational details of the various methods in the domestic literature.This paper compares representative causality assessment methods in terms of definition and concept,methodological steps,industry evaluation and advantages and disadvantages,clarifies the basic process of determining the causality of adverse drug reactions,and discusses how to further improve the adverse drug reaction monitoring and evaluation system,with a view to providing a reference for drug development and pharmacovigilance work in China.
10.RBMX overexpression inhibits proliferation,migration,invasion and glycolysis of human bladder cancer cells by downregulating PKM2
Qiuxia YAN ; Peng ZENG ; Shuqiang HUANG ; Cuiyu TAN ; Xiuqin ZHOU ; Jing QIAO ; Xiaoying ZHAO ; Ling FENG ; Zhenjie ZHU ; Guozhi ZHANG ; Hong HU ; Cairong CHEN
Journal of Southern Medical University 2024;44(1):9-16
Objective To investigate the role of RNA-binding motif protein X-linked(RBMX)in regulating the proliferation,migration,invasion and glycolysis in human bladder cancer cells.Methods A lentivirus vectors system and RNA interference technique were used to construct bladder cancer 1376 and UC-3 cell models with RBMX overexpression and knockdown,respectively,and successful cell modeling was verified using RT-qPCR and Western blotting.Proliferation and colony forming ability of the cells were evaluated using EdU assay and colony-forming assay,and cell migration and invasion abilities were determined using Transwell experiment.The expressions of glycolysis-related proteins M1 pyruvate kinase(PKM1)and M2 pyruvate kinase(PKM2)were detected using Western blotting.The effects of RBMX overexpression and knockdown on glycolysis in the bladder cancer cells were assessed using glucose and lactic acid detection kits.Results RT-qPCR and Western blotting confirmed successful construction of 1376 and UC-3 cell models with RBMX overexpression and knockdown.RBMX overexpression significantly inhibited the proliferation,clone formation,migration and invasion of bladder cancer cells,while RBMX knockdown produced the opposite effects.Western blotting results showed that RBMX overexpression increased the expression of PKM1 and decreased the expression of PKM2,while RBMX knockdown produced the opposite effects.Glucose consumption and lactate production levels were significantly lowered in the cells with RBMX overexpression(P<0.05)but increased significantly following RBMX knockdown(P<0.05).Conclusion RBMX overexpression inhibits bladder cancer progression and lowers glycolysis level in bladder cancer cells by downregulating PKM2 expression,suggesting the potential of RBMX as a molecular target for diagnosis and treatment of bladder cancer.

Result Analysis
Print
Save
E-mail